
Topic 7: Support for parallelism

Lars Karlsson

based on slides by
Mary Jane Irwin

and Stephen Hegner

2012-12-14

Parallelism at multiple levels

I Job/process level parallelism Inreased throughput by
running multiple independent jobs/processes in parallel.

I Thread level parallelism (aka TLP) Threads
cooperating to speed up a single program—parallel
processing.

I Instruction level parallelism (aka ILP) Multiple
instructions (in the same thread) executing in parallel
(e.g., via pipelining).

Multicores now common

I The power wall forced a change in the design of
microprocessors

I Before 2002 the single-thread performance increased by
approx 50% per year

I Today the increase is closer to 20% per year

I CMP – Chip Multicore microProcessor Contains
more than one core per integrated circuit.

I Tens or fewer cores in high-end processors today.
I Many tens or hundreds of cores in specialized

accelerators/coprocessors (GPUs, AMD APUs, Intel
MIC, etc).

I Rapid scaling of the number of cores.
I Simpler cores draw less power, take less die area.

Clusters (of multicores) are also common
I Cluster – a set of independent servers connected over a

local area network (LAN) functioning as a single large
multiprocessor

I Search engines
I Web servers
I Online multiplayer games
I Databases
I Scientific simulations
I etc

I Emphasis on high-speed networks
I Operating system bypass Send and receive messages

without the overhead of invoking the operating system.
I Independent progress Enable network communication

in parallel with computation.

Scalability

I The main difficulty in using multiprocessors is to
construct parallel programs that maintain high
performance as the number of processors increases—i.e.,
writing scalable parallel programs

I Challenges:
I Scheduling
I Load balancing
I Synchronization overhead
I Communication overhead (network and memory)
I etc

Amdahl’s Law
I If the execution time of a fraction X of a program is

reduced by a factor (speed up) of S, then the execution
time of the entire program is only reduced by the factor

1
(1 − X) + X/S

0
0.2

0.4
0.6

0.8
1

0

10

20

30

40
0

10

20

30

40

XS

P
ro

gr
am

 s
pe

ed
up

Amdahl’s Law: Examples

I A 20x speedup (S = 20) usable 25% (X = 0.25) of the
time:

speedup =
1

0.75+ 0.25/20
= 1.311

I To get a speedup of 90 from 100 processors, the
percentage of the original program that could be
sequential would have to be 0.1% or less:

speedup =
1

0.001+ 0.999/100
= 90.992

Scalability and load balancing

I It is harder to get good speedup when the problem size is
fixed than getting good speedup when the size of the
problem is increased.

I Strong scaling When speedup is achieved on fixed
problem sizes.

I Weak scaling When speedup is achieved on problem
sizes increasing proportionally to the increase in the
number of processors.

I Load balancing is important. Just a single processor
with twice the load of the others cuts the speedup almost
in half

Shared memory multiprocessor

I Single address space shared by all processors
I UMA (aka SMP) Uniform Memory Access
I ccNUMA Cache-Coherent Non-Uniform Memory

Access. More scalable, but harder to program.

I Processors communicate through shared variables in
memory (via loads, stores, and atomic read-modify-write
operations)

I Cache coherency is a big deal and requires HW support

Example: Sum 100,000 numbers on 100 processors
1: // Local reduction phase
2: sum[Pn] = 0;
3: for i = 1000*Pn; i < 1000*(Pn+1); ++i do
4: sum[Pn] = sum[Pn] + A[i];
5: end for
6: // Global reduction phase
7: half = Pn;
8: while half > 1 do
9: synch(); // Synchronize
10: if half % 2 != 0 && Pn == 0 then
11: sum[0] = sum[0] + sum[half-1];
12: end if
13: half = half / 2;
14: if Pn < half then
15: sum[Pn] = sum[Pn] + sum[Pn+half];
16: end if
17: end while

Process synchronization

I Need to coordinate processes working together

I Synchronization primitives (mutexes/locks,
semaphores, condition variables, barriers, etc) are used to
coordinate or synchronize processes

I Need architecture-supported atomic operations
(beyond load and store) to efficiently implement
multiprocessor synchronization

I In MIPS, we have ll and sc that enable construction of
arbitrary atomic read-modify-write operations.
Common special cases:

I Compare-and-swap (CAS)
I Test-and-set

Spin lock implementation
Lock:
1: // Shared lock variable initialized to 0
2: repeat
3: repeat
4: Read lock using ll (load-linked)
5: until read 0 (unlocked)
6: // Other processors may acquire the lock before we do
7: Try to set lock to 1 using sc (store-conditional). This

step succeeds only if no other processor acquires the
lock since our last ll.

8: until sc succeeds
9: // We have now acquired the lock

Unlock:
1: Set lock to 0

Spin lock scalability

I The spin lock implementation has poor scalability when
the lock is heavily contended (i.e., when many
processors simultaneously try to acquire the lock)

I When the lock is released, all spinning processors
simultaneously try to fetch the new lock value, which
results in a lot of communication.

I Many sophisticated and scalable algorithms exist

Cache coherence

I Multiprocessors have multiple memory hierarchies

I Multiple copies of the same variable
I OK as long as the variable is not modified
I Problematic when modifications occur—need cache

coherence protocol to maintain a coherent view of
memory

I Intuition: A read to a location should return the value
written by the last write to that location

I OK for uniprocessors
I But the concept of last is not well-defined on

multiprocessors!

Necessary cache coherence features

I Write propagation Written value must eventually
become visible to other processors (allowed to take some
time)

I Write serialization Writes to a location are seen in the
same order by all processors

Handling writes: Update versus invalidate
Two alternative strategies:

I Write-update A modification of a shared variable
updates all copies of the variable directly without going
through the memory.

I Advantage—the new value is quickly propagated
I Disadvantage—unnecessary coherence traffic if the new

value is not used by the other processors (see also false
sharing below)

I Write-invalidate A modification of a shared variabe
invalidates all copies of the variable. Other processors
obtain the new value via a cache miss on the next access
of the shared variable.

I Advantage—less coherence traffic
I Disadvantage—longer latency when obtaining the new

value

Cache coherence granularity and false sharing

I Cache coherence typically operates on the level of cache
blocks

I False sharing When two processors write to different
(non-shared) variables located in the same cache block.
The cache coherence implementation do not make this
distinction and must assume sharing.

I See the earlier summation example, where false sharing
does occur

Types of cache coherence protocols

I Snooping-based cache coherence Relies on a shared
medium (bus). Processors listens to the bus traffic to
detect reads and writes of shared data. Easier to
implement, but less scalable.

I Directory-based cache coherence Each block has a
home node (typically the node where the block is
physically located) that keeps track of its sharing state.
Harder to implement, but more scalable. Can use scalable
interconnect instead of a bus.

A write-invalidate CC protocol (MSI)

More sophisticated CC protocols

I More sophisticated protocols are used in practice

I MESI splits the shared state into a new shared state and
an exclusive state. Writes in the exclusive state do not
trigger invalidations.

I MOESI adds an owned state similar to the shared state,
but the memory version might be stale and the owner has
the responsibility of updating the memory eventually

Memory models
I Cache coherence protocols enforce a consistency model

for accesses to the same location

I But we also need models for accesses to different
locations

I Such models are called memory models and are
specified at different levels

I Processors specify a memory model at the machine
instruction level

I Programming languages specify a memory model at
the source code level

I Until recently, popular programming languages such as
Java, C, and C++ did not specify a memory model

Program order

In uniprocessors, the system guarantees
that the statements of a program appear to

execute in program order.

I In reality, program order execution is an illusion
I The truth is that both the compiler and the processor

aggressively transform and reorder the statements and
instructions of the program

I These reorderings are made for performance reasons

Sequential consistency
Generalization of program order to multiprocessors

In multiprocessors, a natural generalization
of program order is called sequential
consistency. A sequentially consistent

system guarantees that a parallel program
appears to execute as if the instructions of

all the processors were executed in some
sequential order that preserves the

program order of each processor.

I In reality, sequential consistency is much too slow

Reordering: Surprising results
Initialize global variables A = B = 0
Thread 1 Thread 2
1: r2 = A 3: r1 = B
2: B = 1 4: A = 2

Is it possible to get r1 = 1 and r2 = 2 after execution?
I To get r1 = 1, stmt 3 must execute after stmt 2
I To get r2 = 2, stmt 1 must execute after stmt 4
I Impossible (if sequentially consistent)!

1 3

2 4

The Java memory model

I In Java, the above program is said to be incorrectly
synchronized since there is a data race in the sense
that

I There is a write to a variable (e.g., A = 2)
I There is a read of that same variable (e.g., r2 = A)
I And the write and the read are not ordered by

synchronization

I Synchronizations via, e.g., locks or reads/writes of
volatile variables are necessary to eliminate the race
condition

Hardware multithreading

I Hides data dependency stalls, cache miss stalls, and
branch stalls by finding and executing instructions
independent of the stalling instructions

I Allows multiple processes (threads) to share the
functional units of a single processor

I Must duplicate state hardware for each thread:
I Separate register file,
I program counter (PC),
I instruction buffer,
I store buffer, etc

I The caches, TLBs, etc can be shared although the miss
rates can increase due to interference

I Hardware must support efficient thread context
switching

Types of multithreading
I Fine-grain Switch threads on every instruction issue

I Round-robin thread interleaving (skipping stalled
threads)

I Processor must be able to switch threads every clock
cycle

I Advantage—can hide throughput losses from both short
and long stalls

I Disadvantage—slows down the execution of an
individual thread since it may be delayed by other
threads even if not currently stalled

I Coarse-grain Switch threads only on costly stalls
I Advantages—thread switching doesn’t have to be

essentially free, and less likely to slow down an individual
thread

I Disadvantages—limited, due to pipeline start-up costs,
in its ability to overcome throughput loss (pipeline must
be flushed and refilled on thread switches)

Multithreading on a 4-way SS processor

Niagara integer pipeline

Single Instruction Multiple Data (SIMD)
I SIMD computers have multiple datapaths sharing the

same control logic

I SIMD is common today in the form of short vector
instructions

I MMX
I SSE
I AVX
I AltiVec
I etc

I AVX has 256-bit SIMD registers. Each SIMD instruction
operates in parallel on one of

I 4 double-words (double, long)
I 8 words (float, int)
I 16 half-words (short)
I 32 bytes (char)

VMIPS daxpy code

l.d $f0, a($sp) ;load scalar a
lv $v1, 0($s0) ;load vector X
mulvs.d $v2, $v1, $f0 ;vector-scalar multiply
lv $v3, 0($s1) ;load vector Y
addv.d $v4, $v2, $v3 ;add Y to a * X
sv $v4, 0($s1) ;store vector result

Graphics Processing Units (GPUs)

I Highly parallel

I Many simple cores

I Highly multithreaded

I Highly parallel memory system

I Has SIMD features

I Novel ISAs without backward compatibility woes

Brief history of GPUs)

I First introduced in 1999

I GPGPU programming via graphics APIs since 2003

I NVIDIA CUDA and GPU Computing since 2006

I Now hundreds of cores per die

CUDA Thread hierarchy

Image source: “NVIDIA Next Generation CUDA Compute Architecture:
Fermi”, NVIDIA whitepaper

Fermi streaming multiprocessor (SM)

Image source: “NVIDIA Next Generation CUDA Compute Architecture:
Fermi”, NVIDIA whitepaper

Dual warp schedulers

Image source: “NVIDIA Next Generation CUDA Compute Architecture:
Fermi”, NVIDIA whitepaper

Summary table

Image source: “NVIDIA Next Generation CUDA Compute Architecture:
Fermi”, NVIDIA whitepaper

