Topic 7: Support for parallelism

Lars Karlsson

based on slides by
Mary Jane Irwin
and Stephen Hegner

2012-12-14

Parallelism at multiple levels

» Job/process level parallelism Inreased throughput by
running multiple independent jobs/processes in parallel.

» Thread level parallelism (aka TLP) Threads
cooperating to speed up a single program—parallel
processing.

» Instruction level parallelism (aka ILP) Multiple
instructions (in the same thread) executing in parallel

(e.g., via pipelining).

Multicores now common

» The power wall forced a change in the design of
MiCroprocessors

» Before 2002 the single-thread performance increased by
approx 50% per year
» Today the increase is closer to 20% per year

» CMP — Chip Multicore microProcessor Contains
more than one core per integrated circuit.

» Tens or fewer cores in high-end processors today.

» Many tens or hundreds of cores in specialized
accelerators/coprocessors (GPUs, AMD APUs, Intel
MIC, etc).

» Rapid scaling of the number of cores.

» Simpler cores draw less power, take less die area.

Clusters (of multicores) are also common

» Cluster — a set of independent servers connected over a
local area network (LAN) functioning as a single large
multiprocessor

» Search engines
» Web servers

Online multiplayer games

» Databases

» Scientific simulations

> etc

v

» Emphasis on high-speed networks
» Operating system bypass Send and receive messages
without the overhead of invoking the operating system.
» Independent progress Enable network communication
in parallel with computation.

Scalability

» The main difficulty in using multiprocessors is to
construct parallel programs that maintain high
performance as the number of processors increases—i.e.,
writing scalable parallel programs

» Challenges:

Scheduling

Load balancing

Synchronization overhead

Communication overhead (network and memory)
etc

v

\{

v

v

v

Amdahl’s Law

» If the execution time of a fraction X of a program is
reduced by a factor (speed up) of S, then the execution
time of the entire program is only reduced by the factor

1
(1—X)+X/S

:!{!'ll:,!"ll,,
)

Program speedup

XX
XK
SN

Amdahl's Law: Examples

» A 20x speedup (S = 20) usable 25% (X = 0.25) of the
time:
1

dup = = 1.311
*PeetiP = 0.75 1 0.25/20

» To get a speedup of 90 from 100 processors, the
percentage of the original program that could be
sequential would have to be 0.1% or less:

1
dup = — 90.992
"PEEiP = 0.001 + 0.999/100

Scalability and load balancing

» It is harder to get good speedup when the problem size is
fixed than getting good speedup when the size of the
problem is increased.

» Strong scaling When speedup is achieved on fixed
problem sizes.

» Weak scaling When speedup is achieved on problem
sizes increasing proportionally to the increase in the
number of processors.

» Load balancing is important. Just a single processor
with twice the load of the others cuts the speedup almost
in half

Shared memory multiprocessor

» Single address space shared by all processors
» UMA (aka SMP) Uniform Memory Access
» ccNUMA Cache-Coherent Non-Uniform Memory
Access. More scalable, but harder to program.

» Processors communicate through shared variables in
memory (via loads, stores, and atomic read-modify-write
operations)

» Cache coherency is a big deal and requires HW support

Example: Sum 100,000 numbers on

NGO RN

// Local reduction phase
sum[Pn] = 0;
for i = 1000%Pn; i < 1000%(Pn+1); ++i do
sum[Pn] = sum[Pn] + A[il;
end for
// Global reduction phase
half = Pn;
while half > 1 do
synch(); // Synchronize
if half % 2 !'= 0 && Pn == 0 then
sum[0] = sum[0] + sum[half-1];
end if
half = half / 2;
if Pn < half then
sum[Pn] = sum[Pn] + sum[Pn+half];
end if

. end while

100 processors

Process synchronization

» Need to coordinate processes working together

» Synchronization primitives (mutexes/locks,
semaphores, condition variables, barriers, etc) are used to
coordinate or synchronize processes

» Need architecture-supported atomic operations
(beyond load and store) to efficiently implement
multiprocessor synchronization

» In MIPS, we have 11 and sc that enable construction of
arbitrary atomic read-modify-write operations.
Common special cases:

» Compare-and-swap (CAS)
» Test-and-set

Spin lock implementation

Lock:

1. // Shared lock variable initialized to 0
2: repeat

3:

4
5:
6
7

repeat

Read lock using 11 (load-linked)
until read 0 (unlocked)
// Other processors may acquire the lock before we do
Try to set lock to 1 using sc (store-conditional). This
step succeeds only if no other processor acquires the
lock since our last 11.

8: until sc succeeds
9: // We have now acquired the lock

Unlock:
1: Set lock to 0

Spin lock scalability

» The spin lock implementation has poor scalability when
the lock is heavily contended (i.e., when many
processors simultaneously try to acquire the lock)

» When the lock is released, all spinning processors
simultaneously try to fetch the new lock value, which
results in a lot of communication.

» Many sophisticated and scalable algorithms exist

Cache coherence

» Multiprocessors have multiple memory hierarchies

» Multiple copies of the same variable
» OK as long as the variable is not modified
» Problematic when modifications occur—need cache
coherence protocol to maintain a coherent view of
memory

» Intuition: A read to a location should return the value
written by the last write to that location
» OK for uniprocessors
» But the concept of last is not well-defined on
multiprocessors!

Necessary cache coherence features

» Write propagation Written value must eventually
become visible to other processors (allowed to take some
time)

» Write serialization Writes to a location are seen in the
same order by all processors

Handling writes: Update versus invalidate

Two alternative strategies:

» Write-update A modification of a shared variable
updates all copies of the variable directly without going
through the memory.

» Advantage—the new value is quickly propagated

» Disadvantage—unnecessary coherence traffic if the new
value is not used by the other processors (see also false
sharing below)

» Write-invalidate A modification of a shared variabe
invalidates all copies of the variable. Other processors
obtain the new value via a cache miss on the next access
of the shared variable.

» Advantage—Iless coherence traffic
» Disadvantage—longer latency when obtaining the new
value

Cache coherence granularity and false sharing

» Cache coherence typically operates on the level of cache
blocks

» False sharing When two processors write to different
(non-shared) variables located in the same cache block.
The cache coherence implementation do not make this
distinction and must assume sharing.

» See the earlier summation example, where false sharing
does occur

Types of cache coherence protocols

» Snooping-based cache coherence Relies on a shared
medium (bus). Processors listens to the bus traffic to
detect reads and writes of shared data. Easier to
implement, but less scalable.

» Directory-based cache coherence Each block has a
home node (typically the node where the block is
physically located) that keeps track of its sharing state.
Harder to implement, but more scalable. Can use scalable
interconnect instead of a bus.

A write-invalidate CC protocol (MSI)

read (hit or

read (miss) miss)

Shared

Invalid \ receives invalidate
(clean)

(write by another processor
to this block)

write (miss)
send invalidate
write-back due to
read (miss) by
another processor to
this block

write-back caching
protocol in black

signals from the processor
coherence additions in red
signals from the bus

read (hit) or write (hit) coherence additions in
blue

More sophisticated CC protocols

» More sophisticated protocols are used in practice

» MESI splits the shared state into a new shared state and
an exclusive state. Writes in the exclusive state do not
trigger invalidations.

» MOESI adds an owned state similar to the shared state,
but the memory version might be stale and the owner has
the responsibility of updating the memory eventually

Memory models

» Cache coherence protocols enforce a consistency model
for accesses to the same location

» But we also need models for accesses to different
locations

» Such models are called memory models and are
specified at different levels
» Processors specify a memory model at the machine
instruction level
» Programming languages specify a memory model at
the source code level

» Until recently, popular programming languages such as
Java, C, and C++ did not specify a memory model

Program order

In uniprocessors, the system guarantees
that the statements of a program appear to
execute in program order.

» In reality, program order execution is an illusion

» The truth is that both the compiler and the processor
aggressively transform and reorder the statements and
instructions of the program

» These reorderings are made for performance reasons

Sequential consistency

Generalization of program order to multiprocessors

In multiprocessors, a natural generalization
of program order is called sequential
consistency. A sequentially consistent

system guarantees that a parallel program
appears to execute as if the instructions of
all the processors were executed in some
sequential order that preserves the
program order of each processor.

» In reality, sequential consistency is much too slow

Reordering: Surprising results

Initialize global variables A =B =0

Thread 1 Thread 2
1: r2 = A 3: r1 =B
2: B=1 4: A =2

Is it possible to get r1 = 1 and r2 = 2 after execution?

» To get r1 = 1, stmt 3 must execute after stmt 2
» To get r2 = 2, stmt 1 must execute after stmt 4
» Impossible (if sequentially consistent)!

oye
5%

The Java memory model

» In Java, the above program is said to be incorrectly
synchronized since there is a data race in the sense
that

» There is a write to a variable (e.g., A = 2)

» There is a read of that same variable (e.g., r2 = A)

» And the write and the read are not ordered by
synchronization

» Synchronizations via, e.g., locks or reads/writes of
volatile variables are necessary to eliminate the race
condition

Hardware multithreading

» Hides data dependency stalls, cache miss stalls, and
branch stalls by finding and executing instructions
independent of the stalling instructions

» Allows multiple processes (threads) to share the
functional units of a single processor
» Must duplicate state hardware for each thread:
» Separate register file,
» program counter (PC),
» instruction buffer,
» store buffer, etc
» The caches, TLBs, etc can be shared although the miss
rates can increase due to interference
» Hardware must support efficient thread context
switching

Types of multithreading

» Fine-grain Switch threads on every instruction issue

» Round-robin thread interleaving (skipping stalled
threads)

» Processor must be able to switch threads every clock
cycle

» Advantage—can hide throughput losses from both short
and long stalls

» Disadvantage—slows down the execution of an
individual thread since it may be delayed by other
threads even if not currently stalled

» Coarse-grain Switch threads only on costly stalls
» Advantages—thread switching doesn’t have to be
essentially free, and less likely to slow down an individual
thread
» Disadvantages—Ilimited, due to pipeline start-up costs,
in its ability to overcome throughput loss (pipeline must
be flushed and refilled on thread switches)

Multithreading on a 4-way SS processor

« [awiL

Issue slots —
Thread A Thread B

[1| [11
| []|
HEE u
HE |
EEEE H
L L 11
]|
u [] |
[] |
Thread C Thread D
EEE BH
HEEE
[1 HE
| HE
u EEEE
EEE

Coarse MT

Niagara integer pipeline

D Fetch [Thrd Sel] Decode [Execute DMemng D WB
L L L
RegFile 1

x8
ALU —»
Inst 1 Y — D$ Crossbar
1$ o Inter,
| bufxs Shit | DTLB | Interface
ITLB Div Stbufx8

I l— Instr type
;herlze;? [—Cache misses
Loai [—Traps & interrupts
09IC |+ Resource conflicts

PC
logicx8

From MPR, Vol. 18, #9, Sept. 2004

Single Instruction Multiple Data (SIMD)

» SIMD computers have multiple datapaths sharing the
same control logic

» SIMD is common today in the form of short vector
instructions
» MMX
» SSE
» AVX
» AltiVec
> etc

» AVX has 256-bit SIMD registers. Each SIMD instruction
operates in parallel on one of
» 4 double-words (double, long)
» 8 words (float, int)
» 16 half-words (short)
» 32 bytes (char)

VMIPS daxpy code

1.4 $£0, a($sp) ;load scalar a
1lv $vi, 0($s0) ;load vector X
mulvs.d $v2, $vi, $f0 ;vector-scalar multiply
1lv $v3, 0($s1) ;load vector Y

addv.d $v4, $v2, $v3 ;add Y to a * X
SV $vd, 0($s1) ;store vector result

Graphics Processing Units (GPUs)

» Highly parallel

» Many simple cores

» Highly multithreaded

» Highly parallel memory system
» Has SIMD features

» Novel ISAs without backward compatibility woes

Brief history of GPUs)

First introduced in 1999

v

v

GPGPU programming via graphics APlIs since 2003

v

NVIDIA CUDA and GPU Computing since 2006

v

Now hundreds of cores per die

CUDA Thread hierarchy

Thread
§ per-Thread Private
é Local Memory
Thread Block
Sscsacaccq) M
lw« L— per-Block
S j«<——| Shared Memory
SRl

per-

Context
Global
Memory

A 4

CUDA Hierarchy of threads, blocks, and grids, with corresponding
per-thread private, per-block shared, and per-application global
memory spaces.

Image source: “NVIDIA Next Generation CUDA Compute Architecture:
Fermi”, NVIDIA whitepaper

Fermi streaming multiprocessor (SM)

Fermi Streaming Multiprocessor (SM)

Image source: “NVIDIA Next Generation CUDA Compute Architecture
Fermi”, NVIDIA whitepaper

Dual warp schedulers

Warp Scheduler Warp Scheduler

Instruction Dispatch Unit Instruction Dispatch Unit

RNEURARRRRR R ARLARERRAAR RN RN ARIR AR ARRRRNARRARRRRRRARAN
AAAAAAAAAAAAAARAARAAARALAAAAAL; AAAAAARAAAARARAAARARAAARARAAAA
Warp & instruction 11 Warp 9 instruction 11

Warp 2 instruction 42 Warp 3 instruction 33

Warp 14 instruction 95 Warp 15 instruction 95

©
E
Warp 8 instruction 12 Warp 9 instruction 12
Warp 14 instruction 96 Warp 3 instruction 34
: Warp 2 instruction 43

Warp 15 instruction 96

Image source: “NVIDIA Next Generation CUDA Compute Architecture:
Fermi”, NVIDIA whitepaper

=] F

it
)
»
?)

Summary table

GPU G80 GT200 Fermi

Transistors 681 million 1.4 billien 3.0 billion

CUDA Cores 128 240 512

Double Precision Floating None 30 FMA ops / clock | 256 FMA ops /clock

Point Capabili

Single Precision Floating 128 MAD 240 MAD ops / 512 FMA ops /clock

Point Capability ops/clock clock

Special Function Units 2 2 4

(SFUs) / SM

Warp schedulers (per SM) 1 1 2

Shared Memory (per SM) 16 KB 16 KB Configurable 48 KB or
16 KB

L1 Cache (per SM) None None Configurable 16 KB or

L2 Cache None None 768 KB

ECC Memory Support No No Yes

Concurrent Kernels No No Up to 16

Load/Store Address Width 32-bit 32-bit 64-bit

Image source: “NVIDIA Next Generation CUDA Compute Architecture:
Fermi”, NVIDIA whitepaper

u}
o)
I
i
it

N

