
5DV118 20111127 t:5C sl:1 Hegner UU

5DV118
Computer Organization and Architecture

Umeå University
Department of Computing Science

These slides are mostly taken verbatim, or with minor
changes, from those prepared by

Mary Jane Irwin (www.cse.psu.edu/~mji)

of The Pennsylvania State University
[Adapted from Computer Organization and Design, 4th Edition,

Patterson & Hennessy, © 2008, MK]

Stephen J. Hegner

Topic 5: The Memory Hierarchy
Part C: Cache Coherence in Multicores

http://www.cse.psu.edu/~mji

5DV118 20111127 t:5C sl:2 Hegner UU

Key to the Slides

 The source of each slide is coded in the footer on the
right side:
 Irwin CSE331 = slide by Mary Jane Irwin from the course

CSE331 (Computer Organization and Design) at
Pennsylvania State University.

 Irwin CSE431 = slide by Mary Jane Irwin from the course
CSE431 (Computer Architecture) at Pennsylvania State
University.

 Hegner UU = slide by Stephen J. Hegner at Umeå University.

5DV118 20111127 t:5C sl:3 Irwin CSE431 PSU

Cache Coherence in Multicores
 In future multicore processors its likely that the cores will

share a common physical address space, causing a
cache coherence problem

Core 1 Core 2

L1 I$ L1 D$

Unified (shared) L2

L1 I$ L1 D$

5DV118 20111127 t:5C sl:4 Irwin CSE431 PSU

Cache Coherence in Multicores
 In future multicore processors its likely that the cores will

share a common physical address space, causing a
cache coherence problem

Core 1 Core 2

L1 I$ L1 D$

Unified (shared) L2

L1 I$ L1 D$

X = 0

X = 0 X = 0

Read X Read X

Write 1 to X

X = 1

X = 1

5DV118 20111127 t:5C sl:5 Irwin CSE431 PSU

A Coherent Memory System

 Any read of a data item should return the most recently
written value of the data item
 Coherence – defines what values can be returned by a read

- Writes to the same location are serialized (two writes to the same
location must be seen in the same order by all cores)

 Consistency – determines when a written value will be returned
by a read

 To enforce coherence, caches must provide
 Replication of shared data items in multiple cores’ caches

 Replication reduces both latency and contention for a read shared
data item

 Migration of shared data items to a core’s local cache
 Migration reduced the latency of the access the data and the

bandwidth demand on the shared memory (L2 in our example)

5DV118 20111127 t:5C sl:6 Hegner UU

Coherence and Consistency Clarified

 The consistency of data in multiple caches is defined
according to a consistency model.

 In the caches of processors, the sequential or serialized
model of consistency is typically used.
 In this model, writes must be seen in the same order by all

processes, regardless of which caches they access.

 A cache-coherence protocol is an algorithm for maintaining
the consistency of a multi-cache system according to a
specified consistency model.
 Cache coherence thus refers to the process of maintaining

consistency (according to a specific consistency model) of the data
which are distributed amongst the various caches.

 Bottom line: It is necessary to start with a consistency
model and then define a cache-coherence protocol with
respect to that model.

5DV118 20111127 t:5C sl:7 Irwin CSE431 PSU

Cache Coherence Protocols
 Need a hardware protocol to ensure cache coherence

the most popular of which is snooping
 The cache controllers monitor (snoop) on the broadcast medium

(e.g., bus) with duplicate address tag hardware (so they don’t
interfere with core’s access to the cache) to determine if their
cache has a copy of a block that is requested

 Write invalidate protocol – writes require exclusive
access and invalidate all other copies
 Exclusive access ensure that no other readable or writable

copies of an item exists

 If two processors attempt to write the same data at the
same time, one of them wins the race causing the other
core’s copy to be invalidated. For the other core to
complete, it must obtain a new copy of the data which
must now contain the updated value – thus enforcing
write serialization

5DV118 20111127 t:5C sl:8 Irwin CSE431 PSU

Handling Writes
Ensuring that all other processors sharing data are

informed of writes can be handled two ways:

1. Write-update (write-broadcast) – writing processor
broadcasts new data over the bus, all copies are
updated
 All writes go to the bus → higher bus traffic
 Since new values appear in caches sooner, can reduce latency

2. Write-invalidate – writing processor issues invalidation
signal on bus, cache snoops check to see if they have a
copy of the data, if so they invalidate their cache block
containing the word (this allows multiple readers but
only one writer)
 Uses the bus only on the first write → lower bus traffic, so

better use of bus bandwidth

5DV118 20111127 t:5C sl:9 Irwin CSE431 PSU

Example of Snooping Invalidation

Core 1 Core 2

L1 I$ L1 D$

Unified (shared) L2

L1 I$ L1 D$

5DV118 20111127 t:5C sl:10 Irwin CSE431 PSU

Example of Snooping Invalidation

 When the second miss by Core 2 occurs, Core 1
responds with the value canceling the response from
the L2 cache (and also updating the L2 copy)

Core 1 Core 2

L1 I$ L1 D$

Unified (shared) L2

L1 I$ L1 D$

X = 0

X = 0 X = 0

Read X Read X

Write 1 to X

X = 1

Read X

X = I

X = IX = 1

X = 1

5DV118 20111127 t:5C sl:11 Irwin CSE431 PSU

A Write-Invalidate CC Protocol

Shared
(clean)

Invalid

Modified
(dirty)

write-back caching
protocol in black

 read (miss)

write
 (h

it o
r m

iss
)

read (hit or
miss)

read (hit) or
write (hit or miss)

w
rit

e
(m

is
s)

5DV118 20111127 t:5C sl:12 Irwin CSE431 PSU

A Write-Invalidate CC Protocol

Shared
(clean)

Invalid

Modified
(dirty)

write-back caching
protocol in black

 read (miss)

write
 (h

it o
r m

iss
)

read (hit or
miss)

read (hit) or write (hit)

w
rit

e
(m

is
s)

se
nd in

va
lidate

 receives invalidate
(write by another core

 to this block)
w

rit
e-

ba
ck

 d
ue

 t
o

re
ad

(m

is
s)

 b
y

an
ot

h e
r

co
re

 t
o

th
is

 b
lo

ck

se
nd

 in
va

lid
at

e

signals from the core in
red
signals from the bus in
blue

5DV118 20111127 t:5C sl:13 Irwin CSE431 PSU

Write-Invalidate CC Examples
 I = invalid (many), S = shared (many), M = modified (only one)

Core 1

 A S

Main Mem
 A

Core 2

 A I

Core 1

 A S

Main Mem
 A

Core 2

 A I

Core 1

 A M

Main Mem
 A

Core 2

 A I

Core 1

 A M

Main Mem
 A

Core 2

 A I

5DV118 20111127 t:5C sl:14 Irwin CSE431 PSU

Write-Invalidate CC Examples
 I = invalid (many), S = shared (many), M = modified (only one)

1. read miss for A

2. read request for A

3. snoop sees
read request for

A & lets MM
supply A

4. gets A from MM
& changes its state

to S

1. write miss for A

2. writes A &
changes its state

to M

1. read miss for A3. snoop sees read
request for A, writes-

back A to MM

2. read request for A

4. gets A from MM
& changes its state

to M

3. C2 sends invalidate for A

4. change A
state to I

5. C2 sends invalidate for A

5. change A
state to I

1. write miss for A

2. writes A &
changes its state

to M

3. C2 sends invalidate for A

4. change A
state to I

Core 1

 A S

Main Mem
 A

Core 2

 A I

Core 1

 A S

Main Mem
 A

Core 2

 A I

Core 1

 A M

Main Mem
 A

Core 2

 A I

Core 1

 A M

Main Mem
 A

Core 2

 A I

5DV118 20111127 t:5C sl:15 Irwin CSE431 PSU

Data Miss Rates
 Shared data has lower spatial and temporal locality

 Share data misses often dominate cache behavior even though
they may only be 10% to 40% of the data accesses

FFT

0

2

4

6

8

1 2 4 8 16

Capacity miss rate

Coherence miss rate

Ocean

0

2

4

6

8

10

12

14

16

18

1 2 4 8 16

Capacity miss rate
Coherence miss rate64KB 2-way set associative

data cache with 32B blocks

Hennessy & Patterson, Computer
Architecture: A Quantitative Approach

5DV118 20111127 t:5C sl:16 Irwin CSE431 PSU

Block Size Effects

 Writes to one word in a multi-word block mean that the
full block is invalidated

 Multi-word blocks can also result in false sharing: when
two cores are writing to two different variables that
happen to fall in the same cache block
 With write-invalidate false sharing increases cache miss rates

 Compilers can help reduce false sharing by allocating
highly correlated data to the same cache block

A B

Core1 Core2

4 word cache block

5DV118 20111127 t:5C sl:17 Irwin CSE431 PSU

Other Coherence Protocols

 There are many variations on cache coherence protocols

 Another write-invalidate protocol used in the Pentium 4
(and many other processors) is MESI with four states:
 Modified – same
 Exclusive – only one copy of the shared data is allowed to be

cached; memory has an up-to-date copy
- Since there is only one copy of the block, write hits don’t need to

send invalidate signal

 Shared – multiple copies of the shared data may be cached (i.e.,
data permitted to be cached with more than one processor);
memory has an up-to-date copy

 Invalid – same

5DV118 20111127 t:5C sl:18 Irwin CSE431 PSU

MESI Cache Coherency Protocol

Processor write
or read hit

Modified
 (dirty)

 Invalid
(not valid
 block)

Shared
(clean)

Processor
write
miss

Processor
shared read
miss

Processor
write

[Send invalidate signal]

[Write
 back block]

Processor
shared read

Invalidate for this block

Another
processor
has read/write
miss for this
block

[W
ri

te
 b

ac
k

b
lo

c k
]

Exclusive
 (clean)

Processor
exclusive
read

Processor exclusive
read miss

Processor
exclusive
read

Processor
exclusive
read miss

[Write back block]

Processor
shared
read

