
5DV118 20111127 t:5B sl:1 Hegner UU

5DV118
Computer Organization and Architecture

Umeå University
Department of Computing Science

These slides are mostly taken verbatim, or with minor
changes, from those prepared by

Mary Jane Irwin (www.cse.psu.edu/~mji)

of The Pennsylvania State University
[Adapted from Computer Organization and Design, 4th Edition,

Patterson & Hennessy, © 2008, MK]

Stephen J. Hegner

Topic 5: The Memory Hierarchy
Part B: Address Translation

http://www.cse.psu.edu/~mji

5DV118 20111127 t:5B sl:2 Hegner UU

Key to the Slides

 The source of each slide is coded in the footer on the
right side:
 Irwin CSE331 = slide by Mary Jane Irwin from the course

CSE331 (Computer Organization and Design) at
Pennsylvania State University.

 Irwin CSE431 = slide by Mary Jane Irwin from the course
CSE431 (Computer Architecture) at Pennsylvania State
University.

 Hegner UU = slide by Stephen J. Hegner at Umeå University.

5DV118 20111127 t:5B sl:3 Irwin CSE431 PSU

Review: Major Components of a Computer

 Processor

Control

Datapath

Memory

Devices

Input

Output

C
ach

e

M
ain

M

em
o

ry

S
eco

n
d

ary
M

em
o

ry
(D

isk)

5DV118 20111127 t:5B sl:4 Irwin CSE431 PSU

How is the Hierarchy Managed?

 registers ↔ memory
 by compiler (programmer?)

 cache ↔ main memory
 by the cache controller hardware

 main memory ↔ disks
 by the operating system (virtual memory)
 virtual to physical address mapping assisted by the hardware

(TLB)
 by the programmer (files)

5DV118 20111127 t:5B sl:5 Irwin CSE431 PSU

Review: The Memory Hierarchy

Increasing
distance
from the
processor in
access time

L1$

L2$

Main Memory

Secondary Memory

Processor

(Relative) size of the memory at each level

Inclusive– what
is in L1$ is a
subset of what
is in L2$ is a
subset of what
is in MM that is
a subset of is
in SM

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes (disk sector = page)

8-32 bytes (block)

 Take advantage of the principle of locality to present the
user with as much memory as is available in the cheapest
technology at the speed offered by the fastest technology

5DV118 20111127 t:5B sl:6 Irwin CSE431 PSU

Virtual Memory
 Use main memory as a “cache” for secondary memory

 Allows efficient and safe sharing of memory among multiple
programs

 Provides the ability to easily run programs larger than the size of
physical memory

 Simplifies loading a program for execution by providing for code
relocation (i.e., the code can be loaded anywhere in main
memory)

 What makes it work? – again the Principle of Locality
 A program is likely to access a relatively small portion of its

address space during any period of time

 Each program is compiled into its own address space – a
“virtual” address space
 During run-time each virtual address must be translated to a

physical address (an address in main memory)

5DV118 20111127 t:5B sl:7 Irwin CSE431 PSU

Two Programs Sharing Physical Memory

Program 1
virtual address space

main memory

 A program’s address space is divided into pages (all one
fixed size) or segments (variable sizes)
 The starting location of each page (either in main memory or in

secondary memory) is contained in the program’s page table

Program 2
virtual address space

5DV118 20111127 t:5B sl:8 Irwin CSE431 PSU

Address Translation

Virtual Address (VA)

Page offsetVirtual page number

31 30 . . . 12 11 . . . 0

Page offsetPhysical page number

Physical Address (PA)
29 . . . 12 11 0

Translation

 So each memory request first requires an address
translation from the virtual space to the physical space
 A virtual memory miss (i.e., when the page is not in physical

memory) is called a page fault

 A virtual address is translated to a physical address by a
combination of hardware and software

5DV118 20111127 t:5B sl:9 Irwin CSE431 PSU

Address Translation Mechanisms

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

Page Table
(in main memory)

Offset

Physical page #

Offset

P
ag

e
ta

bl
e

re
g i

st
er

5DV118 20111127 t:5B sl:10 Irwin CSE431 PSU

Virtual Addressing with a Cache

 Thus it takes an extra memory access to translate a VA
to a PA

CPU
Trans-
lation

Cache Main
Memory

VA PA miss

hit
data

 This makes memory (cache) accesses very expensive (if
every access was really two accesses)

 The hardware fix is to use a Translation Lookaside Buffer
(TLB) – a small cache that keeps track of recently used
address mappings to avoid having to do a page table
lookup

5DV118 20111127 t:5B sl:11 Irwin CSE431 PSU

Making Address Translation Fast

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

1
1
1
0
1

Tag
Physical page

base addrV

TLB

Page Table
(in physical memory)

P
ag

e
ta

bl
e

re
g i

st
er

5DV118 20111127 t:5B sl:12 Irwin CSE431 PSU

Translation Lookaside Buffers (TLBs)

 Just like any other cache, the TLB can be organized as
fully associative, set associative, or direct mapped

 V Virtual Page # Physical Page # Dirty Ref Access

 TLB access time is typically smaller than cache access
time (because TLBs are much smaller than caches)
 TLBs are typically not more than 512 entries even on high end

machines

5DV118 20111127 t:5B sl:13 Irwin CSE431 PSU

A TLB in the Memory Hierarchy

 A TLB miss – is it a page fault or merely a TLB miss?
 If the page is loaded into main memory, then the TLB miss can be

handled (in hardware or software) by loading the translation
information from the page table into the TLB

- Takes 10’s of cycles to find and load the translation info into the TLB

 If the page is not in main memory, then it’s a true page fault
- Takes 1,000,000’s of cycles to service a page fault

 TLB misses are much more frequent than true page faults

CPU
TLB

Lookup
Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

¾ t¼ t

5DV118 20111127 t:5B sl:14 Irwin CSE431 PSU

TLB Event Combinations

TLB Page
Table

Cache Possible? Under what circumstances?

Hit Hit Hit

Hit Hit Miss

Miss Hit Hit

Miss Hit Miss

Miss Miss Miss

Hit Miss Miss/

 Hit

Miss Miss Hit

5DV118 20111127 t:5B sl:15 Irwin CSE431 PSU

TLB Event Combinations

TLB Page
Table

Cache Possible? Under what circumstances?

Hit Hit Hit

Hit Hit Miss

Miss Hit Hit

Miss Hit Miss

Miss Miss Miss

Hit Miss Miss/

 Hit

Miss Miss Hit

Yes – what we want!

Yes – although the page table is not
checked if the TLB hits

Yes – TLB miss, PA in page table

Yes – TLB miss, PA in page table, but data
not in cache

Yes – page fault

Impossible – TLB translation not possible if
page is not present in memory

Impossible – data not allowed in cache if
page is not in memory

5DV118 20111127 t:5B sl:16 Irwin CSE431 PSU

Handling a TLB Miss
 Consider a TLB miss for a page that is present in

memory (i.e., the Valid bit in the page table is set)
 A TLB miss (or a page fault exception) must be asserted by the

end of the same clock cycle that the memory access occurs so
that the next clock cycle will begin exception processing

Register CP0 Reg # Description

EPC 14 Where to restart after exception

Cause 13 Cause of exception

BadVAddr 8 Address that caused exception

Index 0 Location in TLB to be read/written

Random 1 Pseudorandom location in TLB

EntryLo 2 Physical page address and flags

EntryHi 10 Virtual page address

Context 4 Page table address & page number

5DV118 20111127 t:5B sl:17 Irwin CSE431 PSU

A MIPS Software TLB Miss Handler

 When a TLB miss occurs, the hardware saves the
address that caused the miss in BadVAddr and transfers
control to 8000 0000hex, the location of the TLB miss
handler

TLBmiss:
 mfc0 $k1, Context #copy addr of PTE into $k1
 lw $k1, 0($k1) #put PTE into $k1
 mtc0 $k1, EntryLo #put PTE into EntryLo
 tlbwr #put EntryLo into TLB

at Random
 eret #return from exception

 tlbwr copies from EntryLo into the TLB entry selected
by the control register Random

 A TLB miss takes about a dozen clock cycles to handle

5DV118 20111127 t:5B sl:18 Irwin CSE431 PSU

Some Virtual Memory Design Parameters

Paged VM TLBs

Total size 16,000 to
250,000 words

16 to 512
entries

Total size (KB) 250,000 to
1,000,000,000

0.25 to 16

Block size (B) 4000 to 64,000 4 to 8

Hit time 0.5 to 1
clock cycle

Miss penalty (clocks) 10,000,000 to
100,000,000

10 to 100

Miss rates 0.00001% to
0.0001%

0.01% to
1%

5DV118 20111127 t:5B sl:19 Irwin CSE431 PSU

Two Machines’ TLB Parameters
Intel Nehalem AMD Barcelona

Address sizes 48 bits (vir); 44 bits (phy) 48 bits (vir); 48 bits (phy)

Page size 4KB 4KB

TLB organization L1 TLB for instructions
and L1 TLB for data per
core; both are 4-way set
assoc.; LRU

L1 ITLB has 128 entries,
L2 DTLB has 64 entries

L2 TLB (unified) is 4-way
set assoc.; LRU

L2 TLB has 512 entries

TLB misses handled in
hardware

L1 TLB for instructions and
 L1 TLB for data per core;
both are fully assoc.; LRU

L1 ITLB and DTLB each
have 48 entries

L2 TLB for instructions and
L2 TLB for data per core;
each are 4-way set assoc.;
round robin LRU

Both L2 TLBs have 512
entries

TLB misses handled in
hardware

5DV118 20111127 t:5B sl:20 Irwin CSE431 PSU

Two Machines’ TLB Parameters

Intel P4 AMD Opteron

TLB organization 1 TLB for instructions
and 1TLB for data

Both 4-way set
associative

Both use ~LRU
replacement

Both have 128 entries

TLB misses handled in
hardware

2 TLBs for instructions and
2 TLBs for data

Both L1 TLBs fully
associative with ~LRU
replacement

Both L2 TLBs are 4-way set
associative with round-robin
LRU

Both L1 TLBs have 40
entries

Both L2 TLBs have 512
entries

TBL misses handled in
hardware

5DV118 20111127 t:5B sl:21 Irwin CSE431 PSU

Why Not a Virtually Addressed Cache?
 A virtually addressed cache would only require address

translation on cache misses

data

CPU
Trans-
lation

Cache

Main
Memory

VA

hit

PA

 but
 Two programs which are sharing data will have two different

virtual addresses for the same physical address – aliasing – so
have two copies of the shared data in the cache and two entries
in the TBL which would lead to coherence issues

- Must update all cache entries with the same physical address or
the memory becomes inconsistent

5DV118 20111127 t:5B sl:22 Irwin CSE431 PSU

Reducing Translation Time
 Can overlap the cache access with the TLB access

 Works when the high order bits of the VA are used to access the
TLB while the low order bits are used as index into cache

Tag Data

=

Tag Data

=

Cache Hit Desired word

VA Tag
PA
Tag

TLB Hit

2-way Associative Cache
 Index

PA Tag

Block offset

Page offsetVirtual page #

5DV118 20111127 t:5B sl:23 Irwin CSE431 PSU

The Hardware/Software Boundary

 What parts of the virtual to physical address translation
is done by or assisted by the hardware?
 Translation Lookaside Buffer (TLB) that caches the recent

translations
- TLB access time is part of the cache hit time

- May allot an extra stage in the pipeline for TLB access

 Page table storage, fault detection and updating
- Page faults result in interrupts (precise) that are then handled by

the OS

- Hardware must support (i.e., update appropriately) Dirty and
Reference bits (e.g., ~LRU) in the Page Tables

 Disk placement
- Bootstrap (e.g., out of disk sector 0) so the system can service a

limited number of page faults before the OS is even loaded

5DV118 20111127 t:5B sl:24 Irwin CSE431 PSU

4 Questions for the Memory Hierarchy

 Q1: Where can an entry be placed in the upper level?
(Entry placement)

 Q2: How is an entry found if it is in the upper level?
 (Entry identification)

 Q3: Which entry should be replaced on a miss?
(Entry replacement)

 Q4: What happens on a write?
(Write strategy)

5DV118 20111127 t:5B sl:25 Irwin CSE431 PSU

Q1&Q2: Where can an entry be placed/found?

of sets Entries per set

Direct mapped # of entries 1

Set associative (# of entries)/ associativity Associativity (typically
2 to 16)

Fully associative 1 # of entries

Location method # of comparisons

Direct mapped Index 1

Set associative Index the set; compare
set’s tags

Degree of
associativity

Fully associative Compare all entries’ tags

Separate lookup (page)
table

of entries

0

5DV118 20111127 t:5B sl:26 Irwin CSE431 PSU

Q3: Which entry should be replaced on a miss?

 Easy for direct mapped – only one choice

 Set associative or fully associative
 Random
 LRU (Least Recently Used)

 For a 2-way set associative, random replacement has
a miss rate about 1.1 times higher than LRU

 LRU is too costly to implement for high levels of
associativity (> 4-way) since tracking the usage
information is costly

5DV118 20111127 t:5B sl:27 Irwin CSE431 PSU

Q4: What happens on a write?
 Write-through – The information is written to the entry in

the current memory level and to the entry in the next level
of the memory hierarchy
 Always combined with a write buffer so write waits to next level

memory can be eliminated (as long as the write buffer doesn’t fill)

 Write-back – The information is written only to the entry in
the current memory level. The modified entry is written to
next level of memory only when it is replaced.
 Need a dirty bit to keep track of whether the entry is clean or dirty
 Virtual memory systems always use write-back of dirty pages to

disk

 Pros and cons of each?
 Write-through: read misses don’t result in writes (so are simpler

and cheaper), easier to implement
 Write-back: writes run at the speed of the cache; repeated writes

require only one write to lower level

5DV118 20111127 t:5B sl:28 Irwin CSE431 PSU

Summary

 The Principle of Locality:
 Program likely to access a relatively small portion of the

address space at any instant of time.
- Temporal Locality: Locality in Time

- Spatial Locality: Locality in Space

 Caches, TLBs, Virtual Memory all understood by
examining how they deal with the four questions
1. Where can entry be placed?

2. How is entry found?

3. What entry is replaced on miss?

4. How are writes handled?

 Page tables map virtual address to physical address
 TLBs are important for fast translation

