
5DV118 20111127 t:5A sl:1 Hegner UU

5DV118
Computer Organization and Architecture

Umeå University
Department of Computing Science

These slides are mostly taken verbatim, or with minor
changes, from those prepared by

Mary Jane Irwin (www.cse.psu.edu/~mji)

of The Pennsylvania State University
[Adapted from Computer Organization and Design, 4th Edition,

Patterson & Hennessy, © 2008, MK]

Stephen J. Hegner

Topic 5: The Memory Hierarchy
Part A: Caches

http://www.cse.psu.edu/~mji

5DV118 20111127 t:5A sl:2 Hegner UU

Key to the Slides

 The source of each slide is coded in the footer on the
right side:
 Irwin CSE331 = slide by Mary Jane Irwin from the course

CSE331 (Computer Organization and Design) at
Pennsylvania State University.

 Irwin CSE431 = slide by Mary Jane Irwin from the course
CSE431 (Computer Architecture) at Pennsylvania State
University.

 Hegner UU = slide by Stephen J. Hegner at Umeå University.

5DV118 20111127 t:5A sl:3 Irwin CSE431 PSU

Review: Major Components of a Computer

 Processor

Control

Datapath

Memory

Devices

Input

Output

C
ach

e

M
ain

M

em
o

ry

S
eco

n
d

ary
M

em
o

ry
(D

isk)

5DV118 20111127 t:5A sl:4 Irwin CSE431 PSU

Processor-Memory Performance Gap

1

10

100

1000

10000

1980 1984 1988 1992 1996 2000 2004

Year

P
er

fo
rm

an
ce

“Moore’s Law”

µProc
55%/year
(2X/1.5yr)

DRAM
7%/year
(2X/10yrs)

Processor-Memory
Performance Gap
(grows 50%/year)

5DV118 20111127 t:5A sl:5 Irwin CSE431 PSU

The “Memory Wall”

 Processor vs DRAM speed disparity continues to grow

0.01

0.1

1

10

100

1000

VAX/1980 PPro/1996 2010+

Core

Memory

C
lo

ck
s

p
er

 in
st

ru
ct

io
n

C
lo

ck
s

p
er

 D
R

A
M

 a
cc

e
ss

 Good memory hierarchy (cache) design is increasingly
important to overall performance

5DV118 20111127 t:5A sl:6 Irwin CSE431 PSU

The Memory Hierarchy Goal

 Fact: Large memories are slow and fast memories are
small

 How do we create a memory that gives the illusion of
being large, cheap and fast (most of the time)?
 With hierarchy
 With parallelism

5DV118 20111127 t:5A sl:7 Irwin CSE431 PSU

Second
Level
Cache

(SRAM)

A Typical Memory Hierarchy

Control

Datapath

Secondary
Memory
(Disk)

On-Chip Components

R
egF

ile

Main
Memory
(DRAM)

D
ata

C
ache

Instr
C

ache

IT
LB

D
T

LB

Speed (%cycles): ½’s 1’s 10’s 100’s 10,000’s

Size (bytes): 100’s 10K’s M’s G’s T’s

 Cost: highest lowest

 Take advantage of the principle of locality to present the
user with as much memory as is available in the
cheapest technology at the speed offered by the fastest
technology

5DV118 20111127 t:5A sl:8 Irwin CSE431 PSU

Memory Hierarchy Technologies
 Caches use SRAM for speed and technology

compatibility
 Fast (typical access times of 0.5 to 2.5 nsec)
 Low density (6 transistor cells), higher power, expensive ($2000

to $5000 per GB in 2008)
 Static: content will last “forever” (as long as power is left on)

 Main memory uses DRAM for size (density)
 Slower (typical access times of 50 to 70 nsec)
 High density (1 transistor cells), lower power, cheaper ($20 to $75

per GB in 2008)
 Dynamic: needs to be “refreshed” regularly (~ every 8 ms)

- Consumes 1% to 2% of the active cycles of the DRAM

 Addresses divided into 2 halves (row and column)
- RAS or Row Access Strobe triggering the row decoder

- CAS or Column Access Strobe triggering the column selector

5DV118 20111127 t:5A sl:9 Irwin CSE431 PSU

The Memory Hierarchy: Why Does it Work?

 Temporal Locality (locality in time)
 If a memory location is referenced then it will tend to be referenced again

soon

⇒ Keep most recently accessed data items closer to the
processor

 Spatial Locality (locality in space)
 If a memory location is referenced, the locations with nearby addresses

will tend to be referenced soon

⇒ Move blocks consisting of contiguous words closer to the
processor

5DV118 20111127 t:5A sl:10 Irwin CSE431 PSU

The Memory Hierarchy: Terminology
 Block (or line): the minimum unit of information that is present (or not)

in a cache
 Hit Rate: the fraction of memory accesses found in a level of the

memory hierarchy
 Hit Time: Time to access that level which consists of

 Time to access the block + Time to determine hit/miss
 Miss Rate: the fraction of memory accesses not found in a level of

the memory hierarchy ⇒ 1 - (Hit Rate)
 Miss Penalty: Time to replace a block in that level with the corresponding block

from a lower level which consists of

 Time to access the block in the lower level + Time to transmit
that block to the level that experienced the miss + Time to
insert the block in that level + Time to pass the block to the
requestor

Hit Time << Miss Penalty

5DV118 20111127 t:5A sl:11 Irwin CSE431 PSU

Characteristics of the Memory Hierarchy

Increasing
distance
from the
processor
in access
time

L1$

L2$

Main Memory

Secondary Memory

Processor

(Relative) size of the memory at each level

Inclusive–
what is in L1$
is a subset of
what is in L2$
 is a subset of
what is in MM
that is a
subset of is in
SM

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes (disk sector = page)

8-32 bytes (block)

5DV118 20111127 t:5A sl:12 Irwin CSE431 PSU

How is the Hierarchy Managed?

 registers ↔ memory
 by compiler (programmer?)

 cache ↔ main memory
 by the cache controller hardware

 main memory ↔ disks
 by the operating system (virtual memory)
 virtual to physical address mapping assisted by the hardware

(TLB)
 by the programmer (files)

5DV118 20111127 t:5A sl:13 Irwin CSE431 PSU

 Two questions to answer (in hardware):
 Q1: How do we know if a data item is in the cache?
 Q2: If it is, how do we find it?

 Direct mapped
 Each memory block is mapped to exactly one block in the

cache
- lots of lower level blocks must share blocks in the cache

 Address mapping (to answer Q2):

(block address) modulo (# of blocks in the cache)

 Have a tag associated with each cache block that contains
the address information (the upper portion of the address)
required to identify the block (to answer Q1)

Cache Basics

5DV118 20111127 t:5A sl:14 Irwin CSE431 PSU

Caching: A Simple First Example

00

01
10
11

Cache
0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Main Memory

Tag Data

Q1: Is it there?

Compare the cache
tag to the high order 2
memory address bits
to tell if the memory
block is in the cache

Valid

One word blocks
Two low order bits
define the byte in the
word (32b words)

Q2: How do we find it?

Use next 2 low order
memory address bits
– the index – to
determine which
cache block (i.e.,
modulo the number of
blocks in the cache)

(block address) modulo (# of blocks in the cache)

Index

5DV118 20111127 t:5A sl:15 Irwin CSE431 PSU

Caching: A Simple First Example

00

01
10
11

Cache

Main Memory

Q2: How do we find it?

Use next 2 low order
memory address bits
– the index – to
determine which
cache block (i.e.,
modulo the number of
blocks in the cache)

Tag Data

Q1: Is it there?

Compare the cache
tag to the high order 2
memory address bits
to tell if the memory
block is in the cache

Valid

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

One word blocks
Two low order bits
define the byte in the
word (32b words)

(block address) modulo (# of blocks in the cache)

Index

5DV118 20111127 t:5A sl:16 Irwin CSE431 PSU

Direct Mapped Cache

0 1 2 3

4 3 4 15

 Consider the main memory word reference string

 0 1 2 3 4 3 4 15Start with an empty cache - all
blocks initially marked as not valid

5DV118 20111127 t:5A sl:17 Irwin CSE431 PSU

Direct Mapped Cache

0 1 2 3

4 3 4 15

 Consider the main memory word reference string

 0 1 2 3 4 3 4 15

00 Mem(0) 00 Mem(0)
00 Mem(1)

00 Mem(0) 00 Mem(0)
00 Mem(1)
00 Mem(2)

miss miss miss miss

miss misshit hit

00 Mem(0)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 4

11 15

00 Mem(1)
00 Mem(2)

00 Mem(3)

Start with an empty cache - all
blocks initially marked as not valid

 8 requests, 6 misses

5DV118 20111127 t:5A sl:18 Irwin CSE431 PSU

 One word blocks, cache size = 1K words (or 4KB)
MIPS Direct Mapped Cache Example

20Tag 10
Index

Data Index TagValid
0
1
2
.
.
.

1021
1022
1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

5DV118 20111127 t:5A sl:19 Irwin CSE431 PSU

Multiword Block Direct Mapped Cache

8
Index

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31 30 . . . 13 12 11 . . . 4 3 2 1 0
Byte
offset

20

20Tag

Hit Data

32

Block offset

 Four words/block, cache size = 1K words

What kind of locality are we taking advantage of?

5DV118 20111127 t:5A sl:20 Irwin CSE431 PSU

Taking Advantage of Spatial Locality

0

 Let cache block hold more than one word

 0 1 2 3 4 3 4 15

1 2

3 4 3

4 15

Start with an empty cache - all
blocks initially marked as not valid

5DV118 20111127 t:5A sl:21 Irwin CSE431 PSU

Taking Advantage of Spatial Locality

0

 Let cache block hold more than one word

 0 1 2 3 4 3 4 15

1 2

3 4 3

4 15

00 Mem(1) Mem(0)

miss

00 Mem(1) Mem(0)

hit

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

miss

hit

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

miss

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

01 5 4
hit

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

hit

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

miss

11 15 14

Start with an empty cache - all
blocks initially marked as not valid

 8 requests, 4 misses

5DV118 20111127 t:5A sl:22 Irwin CSE431 PSU

Miss Rate vs Block Size vs Cache Size

 Miss rate goes up if the block size becomes a significant
fraction of the cache size because the number of blocks
that can be held in the same size cache is smaller
(increasing capacity misses)

5DV118 20111127 t:5A sl:23 Irwin CSE431 PSU

Cache Field Sizes

 The number of bits in a cache includes both the storage
for data and for the tags
 32-bit byte address
 For a direct mapped cache with 2n blocks, n bits are used for the

index
 For a block size of 2m words (2m + 2 bytes), m bits are used to

address the word within the block and 2 bits are used to address
the byte within the word

 What is the size of the tag field?
 The total number of bits in a direct-mapped cache is then

2n x (block size + tag field size + valid field size)
 How many total bits are required for a direct mapped

cache with 16KB of data and 4-word blocks assuming a
32-bit address?

5DV118 20111127 t:5A sl:24 Irwin CSE431 PSU

 Read hits (I$ and D$)
 this is what we want!

 Write hits (D$ only)
 require the cache and memory to be consistent

- always write the data into both the cache block and the next level in
the memory hierarchy (write-through)

- writes run at the speed of the next level in the memory hierarchy – so
slow! – or can use a write buffer and stall only if the write buffer is full

 allow cache and memory to be inconsistent
- write the data only into the cache block (write-back the cache block to

the next level in the memory hierarchy when that cache block is
“evicted”)

- need a dirty bit for each data cache block to tell if it needs to be
written back to memory when it is evicted – can use a write buffer to
help “buffer” write-backs of dirty blocks

Handling Cache Hits

5DV118 20111127 t:5A sl:25 Irwin CSE431 PSU

Sources of Cache Misses
 Compulsory (cold start or process migration, first

reference):
 First access to a block, “cold” fact of life, not a whole lot you

can do about it. If you are going to run “millions” of instruction,
compulsory misses are insignificant

 Solution: increase block size (increases miss penalty; very
large blocks could increase miss rate)

 Capacity:
 Cache cannot contain all blocks accessed by the program
 Solution: increase cache size (may increase access time)

 Conflict (collision):
 Multiple memory locations mapped to the same cache location
 Solution 1: increase cache size
 Solution 2: increase associativity (stay tuned) (may increase

access time)

5DV118 20111127 t:5A sl:26 Irwin CSE431 PSU

Handling Cache Misses (Single Word Blocks)
 Read misses (I$ and D$)

 stall the pipeline, fetch the block from the next level in the memory
hierarchy, install it in the cache and send the requested word to
the processor, then let the pipeline resume

 Write misses (D$ only)
1. General write allocate for multiple-word blocks – stall the pipeline,

fetch the block from next level in the memory hierarchy, install it in
the cache (which may involve having to evict a dirty block if using
a write-back cache), write the word from the processor to the
cache, then let the pipeline resume, or

2. Faster write allocate for single-word blocks – just write the word
into the cache updating both the tag and data, no need to check
for cache hit, no need to stall, or

3. No-write allocate – skip the cache write (but must invalidate that
cache block since it will now hold stale data) and just write the
word to the write buffer (and eventually to the next memory level),
no need to stall if the write buffer isn’t full

Revised sjh 20090212

5DV118 20111127 t:5A sl:27 Irwin CSE431 PSU

Multiword Block Considerations

 Read misses (I$ and D$)
 Processed the same as for single word blocks – a miss returns

the entire block from memory
 Miss penalty grows as block size grows

- Early restart – processor resumes execution as soon as the
requested word of the block is returned

- Requested word first – requested word is transferred from the
memory to the cache (and processor) first

 Nonblocking cache – allows the processor to continue to access
the cache while the cache is handling an earlier miss

 Write misses (D$)
 If using write allocate must first fetch the block from memory and

then write the word to the block (or could end up with a “garbled”
block in the cache (e.g., for 4 word blocks, a new tag, one word
of data from the new block, and three words of data from the old
block))

5DV118 20111127 t:5A sl:28 Irwin CSE431 PSU

 The off-chip interconnect and memory architecture can
affect overall system performance in dramatic ways

Memory Systems that Support Caches

CPU

Cache

 DRAM
Memory

bus

One-word-wide organization (one-word-wide
bus and one-word-wide memory)

 Assume
1. 1 memory bus clock cycle to send the addr

2. 15 memory bus clock cycles to get the 1st
word in the block from DRAM (row cycle
time), 5 memory bus clock cycles for 2nd,
3rd, 4th words (column access time)

3. 1 memory bus clock cycle to return a word
of data

 Memory-Bus to Cache bandwidth
 number of bytes accessed from memory

and transferred to cache/CPU per memory
bus clock cycle

32-bit data
&

32-bit addr
per cycle

on-chip

5DV118 20111127 t:5A sl:29 Irwin CSE431 PSU

Review: (DDR) SDRAM Operation

N
 r

ow
s

N cols

DRAM

Column
Address

M-bit Output

M bit planes
 N x M SRAM

Row
Address

 After a row is
read into the SRAM register
 Input CAS as the starting “burst”

address along with a burst length

 Transfers a burst of data (ideally
a cache block) from a series of
sequential addr’s within that row
- The memory bus clock controls

transfer of successive words in
the burst

+1

Row Address

CAS

RAS

Col Address

1st M-bit Access 2nd M-bit 3rd M-bit 4th M-bit

Cycle Time

Row Add

5DV118 20111127 t:5A sl:30 Irwin CSE431 PSU

DRAM Size Increase

 Add a table like figure 5.12 to show DRAM growth since
1980

5DV118 20111127 t:5A sl:31 Irwin CSE431 PSU

One Word Wide Bus, One Word Blocks

CPU

Cache

 DRAM
Memory

bus

on-chip

 If the block size is one word, then for a
memory access due to a cache miss, the
pipeline will have to stall for the number of
cycles required to return one data word
from memory

 cycle to send address

 cycles to read DRAM

 cycle to return data

 total clock cycles miss penalty

 Number of bytes transferred per clock cycle
(bandwidth) for a single miss is

 bytes per memory bus clock cycle

5DV118 20111127 t:5A sl:32 Irwin CSE431 PSU

 1

15

 1

17

One Word Wide Bus, One Word Blocks

CPU

Cache

 DRAM
Memory

bus

on-chip

 If the block size is one word, then for a memory
access due to a cache miss, the pipeline will have
to stall for the number of cycles required to return
one data word from memory

 memory bus clock cycle to send address

 memory bus clock cycles to read DRAM

 memory bus clock cycle to return data

 total clock cycles miss penalty

 Number of bytes transferred per clock cycle
(bandwidth) for a single miss is

 bytes per memory bus clock cycle4/17 = 0.235

5DV118 20111127 t:5A sl:33 Irwin CSE431 PSU

One Word Wide Bus, Four Word Blocks

CPU

Cache

 DRAM
Memory

bus

on-chip

 What if the block size is four words and each
word is in a different DRAM row?

 cycle to send 1st address

 cycles to read DRAM

 cycles to return last data word

 total clock cycles miss penalty

 Number of bytes transferred per clock cycle
(bandwidth) for a single miss is

 bytes per clock

5DV118 20111127 t:5A sl:34 Irwin CSE431 PSU

One Word Wide Bus, Four Word Blocks

CPU

Cache

 DRAM
Memory

bus

on-chip

 What if the block size is four words and each
word is in a different DRAM row?

 cycle to send 1st address

 cycles to read DRAM

 cycles to return last data word

 total clock cycles miss penalty

 Number of bytes transferred per clock cycle
(bandwidth) for a single miss is

 bytes per clock

15 cycles

15 cycles

15 cycles

15 cycles

 1

4 x 15 = 60

 1

 62

 (4 x 4)/62 = 0.258

5DV118 20111127 t:5A sl:35 Irwin CSE431 PSU

One Word Wide Bus, Four Word Blocks

CPU

Cache

 DRAM
Memory

bus

on-chip

 What if the block size is four words and all words
are in the same DRAM row?

 cycle to send 1st address

 cycles to read DRAM

 cycles to return last data word

 total clock cycles miss penalty

 Number of bytes transferred per clock cycle
(bandwidth) for a single miss is

 bytes per clock

5DV118 20111127 t:5A sl:36 Irwin CSE431 PSU

One Word Wide Bus, Four Word Blocks

CPU

Cache

 DRAM
Memory

bus

on-chip

 What if the block size is four words and all
words are in the same DRAM row?

 cycle to send 1st address

 cycles to read DRAM

 cycles to return last data word

 total clock cycles miss penalty

 Number of bytes transferred per clock cycle
(bandwidth) for a single miss is

 bytes per clock

15 cycles

5 cycles

5 cycles

5 cycles

 1

 15 + 3*5 = 30

 1

 32

(4 x 4)/32 = 0.5

5DV118 20111127 t:5A sl:37 Irwin CSE431 PSU

Interleaved Memory, One Word Wide Bus

 For a block size of four words

 cycle to send 1st address

 cycles to read DRAM banks

 cycles to return last data word

 total clock cycles miss penalty

CPU

Cache

 DRAM
Memory
bank 1

bus

on-chip

 DRAM
Memory
bank 0

 DRAM
Memory
bank 2

 DRAM
Memory
bank 3

 Number of bytes transferred
per clock cycle (bandwidth) for a
single miss is

 bytes per clock

5DV118 20111127 t:5A sl:38 Irwin CSE431 PSU

Interleaved Memory, One Word Wide Bus

 For a block size of four words

 cycle to send 1st address

 cycles to read DRAM banks

 cycles to return last data word

 total clock cycles miss penalty

CPU

Cache

bus

on-chip

 Number of bytes transferred
per clock cycle (bandwidth) for a
single miss is

 bytes per clock

15 cycles

15 cycles

15 cycles

15 cycles

(4 x 4)/20 = 0.8

 1

 15

 4*1 = 4

 20

 DRAM
Memory
bank 1

 DRAM
Memory
bank 0

 DRAM
Memory
bank 2

 DRAM
Memory
bank 3

5DV118 20111127 t:5A sl:39 Irwin CSE431 PSU

DRAM Memory System Summary

 It is important to match the cache characteristics
 caches access one block at a time (usually more than one

word)

 with the DRAM characteristics
 use DRAMs that support fast multiple word accesses,

preferably ones that match the block size of the cache

 with the memory-bus characteristics
 make sure the memory-bus can support the DRAM access

rates and patterns
 with the goal of increasing the Memory-Bus to Cache

bandwidth

5DV118 20111127 t:5A sl:40 Irwin CSE431 PSU

Measuring Cache Performance
 Assuming cache hit costs are included as part of the

normal CPU execution cycle, then

CPU time = IC × CPI × CC

= IC × (CPIi d e a l + Memory-stall cycles) × CC

CPIs t a l l

 Memory-stall cycles come from cache misses (a sum of
read-stalls and write-stalls)

Read-stall cycles = reads/program × read miss rate
 × read miss penalty

Write-stall cycles = (writes/program × write miss rate
 × write miss penalty)

 + write buffer stalls

 For write-through caches, we can simplify this to
Memory-stall cycles = accesses/program × miss rate × miss penalty

5DV118 20111127 t:5A sl:41 Irwin CSE431 PSU

Impacts of Cache Performance
 Relative cache penalty increases as processor performance

improves (faster clock rate and/or lower CPI)
 The memory speed is unlikely to improve as fast as processor cycle

time. When calculating CPIs t a l l, the cache miss penalty is measured
in processor clock cycles needed to handle a miss

 The lower the CPIi d e a l, the more pronounced the impact of stalls

 A processor with a CPIi d e a l of 2, a 100 cycle miss penalty,
36% load/store instr’s, and 2% I$ and 4% D$ miss rates

Memory-stall cycles = 2% × 100 + 36% × 4% × 100 = 3.44
So CPIs t a l l s = 2 + 3.44 = 5.44

more than twice the CPIi d e a l !

 What if the CPIi d e a l is reduced to 1? 0.5? 0.25?

 What if the D$ miss rate went up 1%? 2%?
 What if the processor clock rate is doubled (doubling the miss

penalty)?

5DV118 20111127 t:5A sl:42 Irwin CSE431 PSU

Average Memory Access Time (AMAT)

 A larger cache will have a longer access time. An
increase in hit time will likely add another stage to the
pipeline. At some point the increase in hit time for a
larger cache will overcome the improvement in hit rate
leading to a decrease in performance.

 Average Memory Access Time (AMAT) is the average to
access memory considering both hits and misses

AMAT = Time for a hit + Miss rate x Miss penalty

 What is the AMAT for a processor with a 20 psec clock, a
miss penalty of 50 clock cycles, a miss rate of 0.02
misses per instruction and a cache access time of 1
clock cycle?

5DV118 20111127 t:5A sl:43 Irwin CSE431 PSU

Reducing Cache Miss Rates #1

1. Allow more flexible block placement

 In a direct mapped cache a memory block maps to
exactly one cache block

 At the other extreme, could allow a memory block to be
mapped to any cache block – fully associative cache

 A compromise is to divide the cache into sets each of
which consists of n “ways” (n-way set associative). A
memory block maps to a unique set (specified by the
index field) and can be placed in any way of that set (so
there are n choices)

(block address) modulo (# sets in the cache)

5DV118 20111127 t:5A sl:44 Irwin CSE431 PSU

Another Reference String Mapping

0 4 0 4

0 4 0 4

 Consider the main memory word reference string

 0 4 0 4 0 4 0 4Start with an empty cache - all
blocks initially marked as not valid

5DV118 20111127 t:5A sl:45 Irwin CSE431 PSU

Another Reference String Mapping

0 4 0 4

0 4 0 4

 Consider the main memory word reference string

 0 4 0 4 0 4 0 4

miss miss miss miss

miss miss miss miss

00 Mem(0) 00 Mem(0)
01 4

01 Mem(4)
000

00 Mem(0)
01

4

00 Mem(0)
01 4

00 Mem(0)
01

4
01 Mem(4)

000
01 Mem(4)

000

Start with an empty cache - all
blocks initially marked as not valid

 Ping pong effect due to conflict misses - two memory
locations that map into the same cache block

 8 requests, 8 misses

5DV118 20111127 t:5A sl:46 Irwin CSE431 PSU

Set Associative Cache Example

0

Cache

Main Memory

Q2: How do we find it?

Use next 1 low order
memory address bit to
determine which
cache set (i.e., modulo
the number of sets in
the cache)

Tag Data

Q1: Is it there?

Compare all the cache
tags in the set to the
high order 3 memory
address bits to tell if
the memory block is in
the cache

V

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Set

1

0
1

Way

0

1

One word blocks
Two low order bits
define the byte in the
word (32b words)

5DV118 20111127 t:5A sl:47 Irwin CSE431 PSU

Another Reference String Mapping

0 4 0 4

 Consider the main memory word reference string

 0 4 0 4 0 4 0 4Start with an empty cache - all
blocks initially marked as not valid

5DV118 20111127 t:5A sl:48 Irwin CSE431 PSU

Another Reference String Mapping

0 4 0 4

 Consider the main memory word reference string

 0 4 0 4 0 4 0 4

miss miss hit hit

000 Mem(0) 000 Mem(0)

Start with an empty cache - all
blocks initially marked as not valid

010 Mem(4) 010 Mem(4)

000 Mem(0) 000 Mem(0)

010 Mem(4)

 Solves the ping pong effect in a direct mapped cache
due to conflict misses since now two memory locations
that map into the same cache set can co-exist!

 8 requests, 2 misses

5DV118 20111127 t:5A sl:49 Irwin CSE431 PSU

Four-Way Set Associative Cache
 28 = 256 sets each with four ways (each with one block)

31 30 . . . 13 12 11 . . . 2 1 0 Byte offset

DataTagV
0
1
2
.
.
.

 253
 254
 255

DataTagV
0
1
2
.
.
.

 253
 254
 255

DataTagV
0
1
2
.
.
.

 253
 254
 255

 Index DataTagV
0
1
2
.
.
.

 253
 254
 255

8
Index

22Tag

Hit Data

32

4x1 select

Way 0 Way 1 Way 2 Way 3

5DV118 20111127 t:5A sl:50 Irwin CSE431 PSU

Range of Set Associative Caches
 For a fixed size cache, each increase by a factor of two

in associativity doubles the number of blocks per set (i.e.,
the number or ways) and halves the number of sets –
decreases the size of the index by 1 bit and increases
the size of the tag by 1 bit

Block offset Byte offsetIndexTag

5DV118 20111127 t:5A sl:51 Irwin CSE431 PSU

Range of Set Associative Caches
 For a fixed size cache, each increase by a factor of two

in associativity doubles the number of blocks per set (i.e.,
the number or ways) and halves the number of sets –
decreases the size of the index by 1 bit and increases
the size of the tag by 1 bit

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all the bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags, only a
single comparator

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block

5DV118 20111127 t:5A sl:52 Irwin CSE431 PSU

Costs of Set Associative Caches
 When a miss occurs, which way’s block do we pick for

replacement?
 Least Recently Used (LRU): the block replaced is the one that

has been unused for the longest time
- Must have hardware to keep track of when each way’s block was

used relative to the other blocks in the set

- For 2-way set associative, takes one bit per set → set the bit when a
block is referenced (and reset the other way’s bit)

 N-way set associative cache costs
 N comparators (delay and area)
 MUX delay (set selection) before data is available
 Data available after set selection (and Hit/Miss decision). In a

direct mapped cache, the cache block is available before the
Hit/Miss decision

- So its not possible to just assume a hit and continue and recover later
if it was a miss

5DV118 20111127 t:5A sl:53 Irwin CSE431 PSU

Benefits of Set Associative Caches
 The choice of direct mapped or set associative depends

on the cost of a miss versus the cost of implementation

0

2

4

6

8

10

12

1-way 2-way 4-way 8-way

Associativity

M
is

s
R

at
e

4KB
8KB
16KB
32KB
64KB
128KB
256KB
512KB

Data from Hennessy &
Patterson, Computer
Architecture, 2003

 Largest gains are in going from direct mapped to 2-way
(20%+ reduction in miss rate)

5DV118 20111127 t:5A sl:54 Irwin CSE431 PSU

Reducing Cache Miss Rates #2
1. Use multiple levels of caches

 With advancing technology have more than enough room
on the die for bigger L1 caches or for a second level of
caches – normally a unified L2 cache (i.e., it holds both
instructions and data) and in some cases even a unified
L3 cache

 For our example, CPIi d e a l of 2, 100 cycle miss penalty (to
main memory) and a 25 cycle miss penalty (to UL2$),
36% load/stores, a 2% (4%) L1 I$ (D$) miss rate, add a
0.5% UL2$ miss rate

CPIs t a l l s = 2 + .02×25 + .36×.04×25 + .005×100 +
.36×.005×100 = 3.54
 (as compared to 5.44 with no L2$)

5DV118 20111127 t:5A sl:55 Irwin CSE431 PSU

Multilevel Cache Design Considerations
 Design considerations for L1 and L2 caches are very

different
 Primary cache should focus on minimizing hit time in support of

a shorter clock cycle
- Smaller with smaller block sizes

 Secondary cache(s) should focus on reducing miss rate to
reduce the penalty of long main memory access times

- Larger with larger block sizes

- Higher levels of associativity

 The miss penalty of the L1 cache is significantly reduced
by the presence of an L2 cache – so it can be smaller
(i.e., faster) but have a higher miss rate

 For the L2 cache, hit time is less important than miss rate
 The L2$ hit time determines L1$’s miss penalty
 L2$ local miss rate >> than the global miss rate

5DV118 20111127 t:5A sl:56 Irwin CSE431 PSU

Using the Memory Hierarchy Well

 Include plots from Figure 5.18

5DV118 20111127 t:5A sl:57 Irwin CSE431 PSU

Two Machines’ Cache Parameters

Intel Nehalem AMD Barcelona

L1 cache
organization & size

Split I$ and D$; 32KB for
each per core; 64B blocks

Split I$ and D$; 64KB for each
per core; 64B blocks

L1 associativity 4-way (I), 8-way (D) set
assoc.; ~LRU replacement

2-way set assoc.; LRU
replacement

L1 write policy write-back, write-allocate write-back, write-allocate

L2 cache
organization & size

Unified; 256KB (0.25MB) per
core; 64B blocks

Unified; 512KB (0.5MB) per
core; 64B blocks

L2 associativity 8-way set assoc.; ~LRU 16-way set assoc.; ~LRU

L2 write policy write-back write-back

L2 write policy write-back, write-allocate write-back, write-allocate

L3 cache
organization & size

Unified; 8192KB (8MB)
shared by cores; 64B blocks

Unified; 2048KB (2MB)
shared by cores; 64B blocks

L3 associativity 16-way set assoc. 32-way set assoc.; evict block
shared by fewest cores

L3 write policy write-back, write-allocate write-back; write-allocate

5DV118 20111127 t:5A sl:58 Irwin CSE431 PSU

Two Older Machines’ Cache Parameters

Intel P4 AMD Opteron

L1 organization Split I$ and D$ Split I$ and D$

L1 cache size 8KB for D$, 96KB for
trace cache (~I$)

64KB for each of I$ and D$

L1 block size 64 bytes 64 bytes

L1 associativity 4-way set assoc. 2-way set assoc.

L1 replacement ~ LRU LRU

L1 write policy write-through write-back

L2 organization Unified Unified

L2 cache size 512KB 1024KB (1MB)

L2 block size 128 bytes 64 bytes

L2 associativity 8-way set assoc. 16-way set assoc.

L2 replacement ~LRU ~LRU

L2 write policy write-back write-back

5DV118 20111127 t:5A sl:59 Irwin CSE431 PSU

FSM Cache Controller

 Key characteristics for a simple L1 cache
 Direct mapped
 Write-back using write-allocate
 Block size of 4 32-bit words (so 16B); Cache size of 16KB (so

1024 blocks)
 18-bit tags, 10-bit index, 2-bit block offset, 2-bit byte offset, dirty

bit, valid bit, LRU bits (if set associative)

Cache
 &
 Cache
 Controller

1-bit Read/Write

P
ro

ce
ss

o
r

D
D

R
 S

D
R

A
M

1-bit Valid

32-bit address

32-bit data

32-bit data

1-bit Ready

1-bit Read/Write

1-bit Valid

32-bit address

128-bit data

128-bit data

1-bit Ready

5DV118 20111127 t:5A sl:60 Irwin CSE431 PSU

Four State Cache Controller

Idle

Compare Tag
If Valid && Hit

Set Valid, Set Tag,
If Write set Dirty

Allocate
Read new block

from memory

Write Back
Write old block

to memory

Cache Hit
Mark Cache Ready

Cache Miss
Old block is
Dirty

Memory Ready

Memory Ready

Memory
Not Ready

Memory
Not Ready

Cache Miss
Old block is
clean

Valid CPU request

5DV118 20111127 t:5A sl:61 Irwin CSE431 PSU

Summary: Improving Cache Performance
0. Reduce the time to hit in the cache

 smaller cache
 direct mapped cache
 smaller blocks
 for writes

- no write allocate – no “hit” on cache, just write to write buffer

- write allocate – to avoid two cycles (first check for hit, then write)
pipeline writes via a delayed write buffer to cache

1. Reduce the miss rate
 bigger cache
 more flexible placement (increase associativity)
 larger blocks (16 to 64 bytes typical)
 victim cache – small buffer holding most recently discarded

blocks

5DV118 20111127 t:5A sl:62 Irwin CSE431 PSU

Summary: Improving Cache Performance
2. Reduce the miss penalty

 smaller blocks
 use a write buffer to hold dirty blocks being replaced so don’t

have to wait for the write to complete before reading
 check write buffer (and/or victim cache) on read miss – may get

lucky
 for large blocks fetch critical word first
 use multiple cache levels – L2 cache not tied to CPU clock rate
 faster backing store/improved memory bandwidth

- wider buses

- memory interleaving, DDR SDRAMs

5DV118 20111127 t:5A sl:63 Irwin CSE431 PSU

Summary: The Cache Design Space
 Several interacting dimensions

 cache size
 block size
 associativity
 replacement policy
 write-through vs write-back
 write allocation

 The optimal choice is a compromise
 depends on access characteristics

- workload

- use (I-cache, D-cache, TLB)

 depends on technology / cost

 Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

