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 The source of each slide is coded in the footer on the 
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 Irwin CSE331 = slide by Mary Jane Irwin from the course 

CSE331 (Computer Organization and Design) at 
Pennsylvania State University.

 Irwin CSE431 = slide by Mary Jane Irwin from the course 
CSE431 (Computer Architecture) at Pennsylvania State 
University.

 Hegner UU = slide by Stephen J. Hegner at Umeå University.
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Review:  MIPS (RISC) Design Principles

 Simplicity favors regularity
 fixed size instructions
 small number of instruction formats
 opcode always the first 6 bits

 Smaller is faster
 limited instruction set
 limited number of registers in register file
 limited number of addressing modes

 Make the common case fast
 arithmetic operands from the register file (load-store machine)
 allow instructions to contain immediate operands

 Good design demands good compromises
 three instruction formats 
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 Our implementation of the MIPS is simplified
 memory-reference instructions:  lw, sw 
 arithmetic-logical instructions:  add, sub, and, or, slt
 control flow instructions:  beq, j

 Generic implementation
 use the program counter (PC) to supply                                            

  the instruction address and fetch the                                            
instruction from memory (and update the PC)

 decode the instruction (and read registers)
 execute the instruction

 All instructions (except j) use the ALU after reading the 
registers

How?  memory-reference?  arithmetic?  control flow?

The Processor:  Datapath & Control

Fetch
PC = PC+4

DecodeExec
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Aside:  Clocking Methodologies
 The clocking methodology defines when data in a state 

element is valid and stable relative to the clock
 State elements -  a memory element such as a register
 Edge-triggered – all state changes occur on a clock edge

 Typical execution
 read contents of state elements -> send values through 

combinational logic -> write results to one or more state elements

State
element

1

State
element

2

Combinational
logic

clock

one clock cycle

 Assumes state elements are written on every clock 
cycle; if not, need explicit write control signal
 write occurs only when both the write control is asserted and the 

clock edge occurs
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Fetching Instructions
 Fetching instructions involves

 reading the instruction from the Instruction Memory
 updating the PC value to be the address of the next 

(sequential) instruction

Read
Address

Instruction

Instruction
Memory

Add

PC

4

 PC is updated every clock cycle, so it does not need an 
explicit write control signal just a clock signal

 Reading from the Instruction Memory is a combinational 
activity, so it doesn’t need an explicit read control signal

Fetch
PC = PC+4

DecodeExec

clock
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Decoding Instructions
 Decoding instructions involves

 sending the fetched instruction’s opcode and function field 
bits to the control unit

and
Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

Control
Unit

 reading two values from the Register File
- Register File addresses are contained in the instruction

Fetch
PC = PC+4

DecodeExec
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Executing Load and Store Operations
 Load and store operations involves

 compute memory address by adding the base register (read from 
the Register File during decode) to the 16-bit signed-extended 
offset field in the instruction

 store value (read from the Register File during decode) written to 
the Data Memory

 load value, read from the Data Memory, written to the Register 
File

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

overflow
zero

ALU controlRegWrite

Data
Memory

Address

Write Data

Read Data

Sign
Extend

MemWrite

MemRead

16 32
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Adding the Control
 Selecting the operations to perform (ALU, Register File 

and Memory read/write)

 Controlling the flow of data (multiplexor inputs)

I-Type: op rs rt address offset

31 25 20 15 0

R-type:

31 25 20 15 5 0

op rs rt rd functshamt

10

 Observations
 op field always                                                                                        

in bits 31-26

 addr of registers                                                                                       
     to be read are                                                                                      
         always specified by the                                                                    
              rs field (bits 25-21) and rt field (bits 20-16); for lw and sw rs is 
the base register

 addr. of register to be written is in one of two places – in rt (bits 20-16) 
for lw; in rd (bits 15-11) for R-type instructions

 offset for beq, lw, and sw always in bits 15-0

J-type:
31 25 0

op target address
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Single Cycle Datapath with Control Unit

Read
Address

Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15 
 -11]

Control
Unit

Instr[31-26]

Branch
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R-type Instruction Data/Control Flow

Read
Address

Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 
1
Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15 
 -11]

Control
Unit

Instr[31-26]

Branch
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Load Word Instruction Data/Control Flow

Read
Address

Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15 
 -11]

Control
Unit

Instr[31-26]

Branch



5DV118 20111120 t:04A sl:13 Irwin CSE431 PSU

Load Word Instruction Data/Control Flow

Read
Address

Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15 
 -11]

Control
Unit

Instr[31-26]

Branch
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Branch Instruction Data/Control Flow

Read
Address

Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15 
 -11]

Control
Unit

Instr[31-26]

Branch
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Branch Instruction Data/Control Flow

Read
Address

Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15 
 -11]

Control
Unit

Instr[31-26]

Branch
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Adding the Jump Operation 

Read
Address

Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15 
 -11]

Control
Unit

Instr[31-26]

Branch

Shift
left 2

0

1

Jump

32
Instr[25-0]

26
PC+4[31-28]

28
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Instruction Times (Critical Paths)

Instr. I Mem Reg Rd ALU Op D Mem Reg Wr Total

R-
type

load

store

beq

jump

  What is the clock cycle time assuming negligible 
delays for muxes, control unit, sign extend, PC access, 
shift left 2, wires, setup and hold times except:

 Instruction and Data Memory (200 ps)

 ALU and adders (200 ps)

 Register File access (reads or writes) (100 ps)
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Instruction Critical Paths

Instr. I Mem Reg Rd ALU Op D Mem Reg Wr Total

R-
type

load

store

beq

jump

200 100 200 100 600

200 100 200 200 100 800

  What is the clock cycle time assuming negligible 
delays for muxes, control unit, sign extend, PC access, 
shift left 2, wires, setup and hold times except:

 Instruction and Data Memory (200 ps)

 ALU and adders (200 ps)

 Register File access (reads or writes) (100 ps)

200 100 200 200 700

200 100 200 500

200 200
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Single Cycle Disadvantages & Advantages
 Uses the clock cycle inefficiently – the clock cycle must 

be timed to accommodate the slowest instruction
 especially problematic for more complex instructions like 

floating point multiply

 May be wasteful of area since some functional units 
(e.g., adders) must be duplicated since they can not be 
shared during a clock cycle

but
 Is simple and easy to understand

Clk

lw sw Waste

Cycle 1 Cycle 2
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How Can We Make It Faster?

 Fetch (and execute) more than one instruction at a time
 Superscalar processing – stay tuned

 Start fetching and executing the next instruction before 
the current one has completed
 Pipelining – (all?) modern processors are pipelined for 

performance
 Remember the performance equation:                                           

    CPU time = CPI * CC * IC

 Under ideal conditions and with a large number of 
instructions, the speedup from pipelining is 
approximately equal to the number of pipe stages
 A five stage pipeline is nearly five times as fast because the CC 

is nearly five times as fast
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The Five Stages of Load Instruction

 IFetch: Instruction Fetch and Update PC

 Dec: Registers Fetch and Instruction Decode

 Exec: Execute R-type; calculate memory address

 Mem: Read/write the data from/to the Data Memory

 WB: Write the result data into the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IFetch Dec Exec Mem WBlw
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A Pipelined MIPS Processor
 Start the next instruction before the current one has 

completed
 improves throughput - total amount of work done in a given time
 instruction latency (execution time, delay time, response time - 

time from the start of an instruction to its completion) is not 
reduced

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IFetch Dec Exec Mem WBlw

Cycle 7Cycle 6 Cycle 8

sw IFetch Dec Exec Mem WB

R-type IFetch Dec Exec Mem WB

- clock cycle (pipeline stage time) is limited by the slowest stage

- for some stages don’t need the whole clock cycle (e.g., WB)

- for some instructions, some stages are wasted cycles (i.e., 
nothing is done during that cycle for that instruction)
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Single Cycle versus Pipeline

lw IFetch Dec Exec Mem WB

Pipeline Implementation (CC = 200 ps):

IFetch Dec Exec Mem WBsw

IFetch Dec Exec Mem WBR-type

Clk

Single Cycle Implementation (CC = 800 ps):

lw sw Waste

Cycle 1 Cycle 2

 To complete an entire instruction in the pipelined case 
takes 1000 ps (as compared to 800 ps for the single 
cycle case).  Why ?

 How long does each take to complete 1,000,000 adds ?

400 ps
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Pipelining the MIPS ISA

 What makes it easy
 all instructions are the same length (32 bits)

- can fetch in the 1st stage and decode in the 2nd stage

 few instruction formats (three) with symmetry across formats
- can begin reading register file in 2nd stage

 memory operations occur only in loads and stores
- can use the execute stage to calculate memory addresses

 each  instruction writes at most one result (i.e., changes the 
machine state) and does it in the last few pipeline stages (MEM 
or WB)

 operands must be aligned in memory so a single data transfer 
takes only one data memory access
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MIPS Pipeline Datapath Additions/Mods
 State registers between each pipeline stage to isolate them

IF:IFetch ID:Dec EX:Execute MEM:
MemAccess

WB:
WriteBack

Read
Address

Instruction
Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX EX/MEM

MEM/WB

System Clock
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MIPS Pipeline Control Path Modifications
 All control signals can be determined during Decode

 and held in the state registers between pipeline stages

Read
Address

Instruction
Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB

Control

ALU
cntrl

RegWrite

MemRead

MemtoReg

RegDst

ALUOp

ALUSrc

Branch

PCSrc
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Pipeline Control

 IF Stage:  read Instr Memory (always asserted) and write 
PC (on System Clock)

 ID Stage:  no optional control signals to set

EX
Stage

MEM 
Stage

WB 
Stage

Reg
Dst

ALU
Op1

ALU
Op0

ALU
Src

Brch Mem
Read

Mem
Write

Reg
Write

Mem 
toReg

R 1 1 0 0 0 0 0 1 0

lw 0 0 0 1 0 1 0 1 1

sw X 0 0 1 0 0 1 0 X

beq X 0 1 0 1 0 0 0 X
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Graphically Representing MIPS Pipeline

 Can help with answering questions like:
 How many cycles does it take to execute this code?
 What is the ALU doing during cycle 4?
 Is there a hazard, why does it occur, and how can it be fixed?

A
L

UIM Reg DM Reg
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Why Pipeline? For Performance!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg
A

L
UIM Reg DM Reg

A
L

UIM Reg DM Reg

Once the 
pipeline is full, 
one instruction 

is completed 
every cycle, so 

CPI = 1

Time to fill the pipeline
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Can Pipelining Get Us Into Trouble?

 Yes:  Pipeline Hazards
 structural hazards: attempt to use the same resource by two 

different instructions at the same time
 data hazards: attempt to use data before it is ready

- An instruction’s source operand(s) are produced by a prior 
instruction still in the pipeline

 control hazards: attempt to make a decision about program 
control flow before the condition has been evaluated and the 
new PC target address calculated

- branch and jump instructions, exceptions

 Can usually resolve hazards by waiting
 pipeline control must detect the hazard
 and take action to resolve hazards
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I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw

Inst 1

Inst 2

Inst 4

Inst 3

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg
A

L
UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A Single Memory Would Be a Structural Hazard

Reading data from 
memory

Reading instruction 
from memory

 Fix with separate instr and data memories (I$ and D$)
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How About Register File Access?

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 1

Inst 2

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg
A

L
UIM Reg DM Reg

Fix register file 
access hazard by 
doing reads in the 
second half of the 
cycle and writes in 

the first half

add $1,

add $2,$1,

clock edge that controls 
register reading

clock edge that controls 
loading of pipeline state 
registers and writing

Revised sjh 20092411
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Register Usage Can Cause Data Hazards

I
n
s
t
r.

O
r
d
e
r

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or  $8,$1,$9
A

L
UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

 Dependencies backward in time cause hazards

 Read before write data hazard
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Register Usage Can Cause Data Hazards

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

 Dependencies backward in time cause hazards

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or  $8,$1,$9

 Read before write data hazard
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Loads Can Cause Data Hazards

I
n
s
t
r.

O
r
d
e
r

lw  $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or  $8,$1,$9
A

L
UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

 Dependencies backward in time cause hazards

 Load-use data hazard
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Branch Instructions Cause Control Hazards

I
n
s
t
r.

O
r
d
e
r

lw

Inst 4

Inst 3

beq

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

 Dependencies backward in time cause hazards
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Other Pipeline Structures Are Possible
 What about the (slow) multiply operation?

 Make the clock twice as slow or …
 let it take two cycles (since it doesn’t use the DM stage)

A
L

UIM Reg DM Reg

MUL

A
L

UIM Reg DM1 RegDM2

 What if the data memory access is twice as slow as 
the instruction memory?
 make the clock twice as slow or …
 let data memory access take two cycles (and keep the same 

clock rate)
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Other Sample Pipeline Alternatives

 ARM7

 XScale A
L

UIM1 IM2 DM1 Reg
DM2

IM Reg EX

PC update
IM access

decode
reg
   access

ALU op
DM access
shift/rotate
commit result
   (write back)

Reg SHFT

PC update
BTB access

start IM access

IM access

decode
reg 1 access

shift/rotate
reg 2 access

ALU op

start DM access
exception

DM write
reg write
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Summary

 All modern day processors use pipelining

 Pipelining doesn’t help latency of single task, it helps 
throughput of entire workload

 Potential speedup:  a CPI of 1 and fast a CC

 Pipeline rate limited by slowest pipeline stage
 Unbalanced pipe stages makes for inefficiencies

 The time to “fill” pipeline and time to “drain” it can impact 
speedup for deep pipelines and short code runs

 Must detect and resolve hazards
 Stalling negatively affects CPI (makes CPI less than the ideal 

of 1)


