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Key to the Slides

O The source of each slide is coded in the footer on the
right side:

® |rwin CSE331 = slide by Mary Jane Irwin from the course
CSE331 (Computer Organization and Design) at
Pennsylvania State University.

® |rwin CSE431 = slide by Mary Jane Irwin from the course
CSE431 (Computer Architecture) at Pennsylvania State
University.

® Hegner UU = slide by Stephen J. Hegner at Umea University.
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Review: MIPS (RISC) Desian Principles

Q Simplicity favors regularity
® fixed size instructions
® small number of instruction formats
® opcode always the first 6 bits

Q Smaller is faster
® |imited instruction set
® limited number of registers in register file
® |imited number of addressing modes

Q Make the common case fast
® arithmetic operands from the register file (load-store machine)
® allow instructions to contain immediate operands

O Good design demands good compromises
® three instruction formats
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The Processor: Datapath & Control

d Our implementation of the MIPS is simplified
® memory-reference instructions: 1w, sw
® arithmetic-logical instructions: add, sub, and, or, slt
® control flow instructions: beq, I

0 Generic implementation

® use the program counter (PC) to supply
the instruction address and fetch the
instruction from memory (and update the PC)

® decode the instruction (and read registers)
® execute the instruction

d All instructions (except j) use the ALU after reading the
registers

How? memory-reference? arithmetic? control flow?
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Aside: Clocking Methodologi

a The clocking methodology defines when data in a state

element is valid and stable relative to the clock
® State elements - a memory element such as a register
® Edge-triggered — all state changes occur on a clock edge

a Typical execution

® read contents of state elements -> send values through

combinational logic -> write results to one or more state elements

State
—> element
1

Combinational
logic

State
element
2

clock

P
«

one clock cycle
J Assumes state elements are written on every clock
cycle; if not, need explicit write control signal

N
>

® write occurs only when both the write control is asserted and the

clock edge occurs
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Fetching Instructions

A Fetching instructions involves
® reading the instruction from the Instruction Memory

® updating the PC value to be the address of the next
(sequential) instruction

clock | l )Ad
4 —p
!ﬁ Instruction
Memory
Exec Decode
> P »Read Instruction—»

" |Address

® PC is updated every clock cycle, so it does not need an
explicit write control signal just a clock signal

® Reading from the Instruction Memory is a combinational
activity, so it doesn’t need an explicit read control signal
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Decodina Instructions

a Decoding instructions involves

® sending the fetched instruction’s opcode and function field

bits to the control unit

Fetch
RC = PC+4

Exec

eco

and

Instruction

\ 4

\ 4

.| Control
Unit
Read Addr 1
. Read
Register
Read Addr 2 Data 1
File
\Write Addr Read
. Data 2
\Write Data

v

® reading two values from the Register File
- Register File addresses are contained in the instruction
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Executing Load and Store Operations

0 Load and store operations involves

® compute memory address by adding the base register (read from
the Register File during decode) to the 16-bit signed-extended
offset field in the instruction

® store value (read from the Register File during decode) written to
the Data Memory

® |oad value, read from the Data Memory, written to the Register

File
RegWrite ALU control MemWrite
l overflow l
»Read Addr 1 Z€ero
Register Dlzteaa? > » Address
Instruction »Read A::f:r 2 > Data
e Memory Read Data
YT ALU ry
»\\Vrite Addr Read
Data 2 > / »(\Write Data
»\\Vrite Data _I
\ Sign MemRead
\
16 \ Exten 32
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Adding the Control

Q Selecting the operations to perform (ALU, Register File
and Memory read/write)

a Controlling the flow of data (multiplexor inputs)

3125201510 5””0
R-type: | op | rs | rt |rd |sham functl
a Observations N s B\ | — 0
® op field always -Type: | op rs rt address offset
in bits 31-26 31 25 0
® addrofregisters JtyPe: [ op | targetaddress

to be read are
always specified by the
rs field (bits 25-21) and rt field (bits 20-16); for lw and sw rs is
the base register

® addr. of register to be written is in one of two places — in rt (bits 20-16)
for lw; in rd (bits 15-11) for R-type instructions

® offset for beq, Iw, and sw always in bits 15-0
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Sinale Cvcle Datapath with Control Unit

> Ad >
>Ad
4 —p
PCSrc
B h
fanc MemRead
Instr[B1= Control MemioReg
Unit MemWrite
\/ AlLUSrc
RegWrite
RegDst
ovf
A T A
Instr[25:211
Instruction ) 'ReadR,:dciI;tlr Read —pAddress
Memory lnstri20l161 9ISt bata 1 zero
* »Read Addr 2 Data y
Read .
> P > Instr[31-0=H 0 File Memory Read Datap—1
Address 1 \Write Addr Rea 0 ALU ry i
»\Write Data » 0
[Instr(1 : Data 2
W D
1] —b[ rite Data ‘
Instr[15-01 \\ @ \\
16 @ 32
Instr[5-0]
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R-tvpe Instruction Data/Control Flow

. /
> ‘O
Ad >
>Ad 1
4 —p
PCSrc
Branch
MemRead
Instr[B1- Control MemioReg
Unit MemVVrite
\_/ AlLUSrc
RegWrite
RegDst
ﬁ \ ovf ‘
nstruct Instr[25:21} Read Ader” T
nlil ruction 1 Register Read —pAddress
emory |]nstr[20-16£ Read Addr 2 Data 1 Zero Dat
Read . ata >
» P > Instr[31-0-H 0 File Memory Read Datap—{1
Address Write Addr 5. 3 ALU i .
»\Write Data 0
lInstr[ : Data 2 \
W D
1] —b[ rite Data i
Instr[15-01 \\ @ \\
16 @ 32
Instr[5-0] ‘,
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Load Word Instruction Data/Control Flow

> Ad >
>Ad
4 —p
PCSrc
B h
fanc MemRead
Instr[B1= Control MemioReg
Unit MemWrite
\/ AlLUSrc
RegWrite
RegDst
ovf
A T A
Instr[25:211
Instruction ) 'ReadR,:dciI;tlr Read —pAddress
Memory lnstri20l161 9ISt bata 1 zero
* »Read Addr 2 Data y
Read .
> P > Instr[31-0=H 0 File Memory Read Datap—1
Address 1 \Write Addr Rea 0 ALU ry i
»\Write Data » 0
[Instr(1 : Data 2
W D
1] —b[ rite Data ‘
Instr[15-01 \\ @ \\
16 @ 32
Instr[5-0]
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Load Word Instruction Data/Control Flow

> r4
> ‘ 5
Ad .
>Ad 1
4 —p
PCSrc
B h
o MemRead
Instr[B1- Control MemioReg
Unit MemWrite
\_/ Al USrc
RegWrite
RegDst
(N o ,
Instr{25-211
Instruction - bRead Addr Read rddrese
Memory Register ¥
[nstr[20E16] Data 1 zero
* »Read Addr 2 Data F
Read .
> P > | 1-0} File R D
Address nStr[S 0 O \Write Addr R O ALU Memory ead Data ‘T i
ea
lInstr[1 1 \Write Dat Data 2 »\Write Data » 0
rite Data
A1 (‘D
Instr[15-01] \\ @ \\
16 w 32
Instr[5-0] ‘.,
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Branch Instruction Data/Control Flow

) Ad >
>Ad
4 —p
PCSrc
B h
tanc MemRead
Instr[B1= Control MemioReg
Unit MemWrite
\/ Al USrc
RegWrite
RegDst
ovf
A T A
Instr[25:211
Inlsltruction - 'ReadR,:ZciI;tlr Read —pAddress
emory Instr{20t1611R0ad Addr 2 Data 1 zero Data .
Read .
> P > Instr[31-0=H 0 File Memory Read Datap—1
Address 1 \Write Addr Rea 0 ALU ry i
»\\Write Data » 0
[Instr(1 : Data 2
\Write D
1] —b[ rite Data ‘
Instri15-01 \\ @ \\
16 @ 32
Instr[5-0]
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Branch Instruction Data/Control Flow

Ad
4 —>
PCSrc
Branch
MemRead
Instr[B1- Control MemioReg
Unit MemVVrite
\_/ AlLUSrc
RegWrite
RegDst
X A
Instr[25:-211
. L »Read Addr 1
Inlsltructlon Reqister Read —Address
emory InSt20:161Read Adyr s Data 1 Dat
ata Ny
» P D Read Instr[31-0= 0 File Memory Read Datar—» 1
Address 1 Write Addr Rea "
»\Write Data » 0
linstr[1 : Data 2
W D
1] —b[ rite Data “
Instr[15-01 \ @ \
16 @ 32
Instr[5-0] \ 1/
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Adding the Jump Operation

Instr[250] /< N\ \ (
i
. 28 32 _
> 26 \eft ro\
PC+4[31-28] |0
Ad > -
>Ad 1
4 —p
7\ ) PCSrc
(I Branch MemRead
Instr[BfL- Control MemioReg
Unit MemVVrite
\_/ AL USrc
RegWrite
RegDst
A O\T/f A
IInstr[25:211
Instruction - -ReadR,chij;tLr Read —pAddress
Memory Instr20M6L|Read Addr 5 Data 1 zero Dat
ata Ny
Read ; .
» P > Instr[31-01-H 0 File Memory Read Datap—1
Address | Pt Addr g, 5 (AU v
»\Write Data >
linstr[1 . Data 2
\Write D
1] —b[ rite Data ‘
Instr[15-01 \ @ \ —>
16 @ 32
Instr[5-0]

AWi-CSE434-RS
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Instruction Times (Critical Paths)

J What is the clock cycle time assuming negligible
delays for muxes, control unit, sign extend, PC access,
shift left 2, wires, setup and hold times except:

® |nstruction and Data Memory (200 ps)
® ALU and adders (200 ps)
® Register File access (reads or writes) (100 ps)

Instr. | | Mem Reg Wr
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Instruction Critical Paths

J What is the clock cycle time assuming negligible
delays for muxes, control unit, sign extend, PC access,
shift left 2, wires, setup and hold times except:

® |nstruction and Data Memory (200 ps)
® ALU and adders (200 ps)
® Register File access (reads or writes) (100 ps)

Reg Rd [ALU Op | D Mem | Reg Wr

R- 200 100 200 100

type I N
800
700

500
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Single Cycle Disadvantages & Advantages

0O Uses the clock cycle inefficiently — the clock cycle must
be timed to accommodate the slowest instruction

® especially problematic for more complex instructions like
floating point multiply

— Cycle 1 - Cycle 2 :
Clk I I s

Iw I SW : Wasté]

O May be wasteful of area since some functional units
(e.g., adders) must be duplicated since they can not be
shared during a clock cycle

but
a Is simple and easy to understand
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How Can We Make It Faster?

0 Start fetching and executing the next instruction before
the current one has completed

® Pipelining — (all?) modern processors are pipelined for
performance

® Remember the performance equation:
CPU time =CPI*CC *IC

4 Under ideal conditions and with a large number of
instructions, the speedup from pipelining is
approximately equal to the number of pipe stages

® A five stage pipeline is nearly five times as fast because the CC
is nearly five times as fast

d Fetch (and execute) more than one instruction at a time

® Superscalar processing — stay tuned
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The Five Stages of Load Instruction

: Cycle 1iCycle 2 | Cycle 3 Cycle 4: Cycle 5

[ I I I

Iw IFetchIDec I Execl Meml WB

Q IFetch: Instruction Fetch and Update PC

0 Dec: Registers Fetch and Instruction Decode

0 Exec: Execute R-type; calculate memory address

0 Mem: Read/write the data from/to the Data Memory

0 WB: Write the result data into the register file
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A Pipelined MIPS Processor

O Start the next instruction before the current one has
completed

® improves throughput - total amount of work done in a given time

® instruction latency (execution time, delay time, response time -
time from the start of an instruction to its completion) is not
reduced

§Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 §Cycle 6 éCycIe 7 éCycIe 8

R I I I I
1w IFetch| Dec | Exec | Mem | WB
cw IFetch] Dec | Exec | Mem | wB
R-type IFetch] Dec | Exec | Mem | wB

- clock cycle (pipeline stage time) is limited by the slowest stage
- for some stages don’t need the whole clock cycle (e.g., WB)

- for some instructions, some stages are wasted cycles (i.e.,
nothing is done during that cycle for that instruction)
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Single Cycle versus Pipeline
Slngle Cycle Implementation (CC 800 ps):

i Cycle 1 : Cycle 2
Clk .| L
1w I sw §Wasteé
Pipeline Implementation (CC = 200 ps): < 400 ps >

1w IFetchI Dec I Exec I Mem I WB

sw IFetchI Dec I Exec I Mem I WB

R-type

IFetchI Dec I Exec I Mem I WB

d To complete an entire instruction in the pipelined case
takes 1000 ps (as compared to 800 ps for the single
cycle case). Why ?

J How long does each take to complete 1,000,000 adds ?
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Pipelining the MIPS ISA

3 What makes it easy

® all instructions are the same length (32 bits)
- can fetch in the 1% stage and decode in the 2" stage

® few instruction formats (three) with symmetry across formats
- can begin reading register file in 2" stage

® memory operations occur only in loads and stores
- can use the execute stage to calculate memory addresses

® each instruction writes at most one result (i.e., changes the
machine state) and does it in the last few pipeline stages (MEM
or WB)

® operands must be aligned in memory so a single data transfer
takes only one data memory access
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MIPS Pipeline Datapath Additions/Mods

0 State registers between each pipeline stage to isolate them

IF:IFetch ID:Dec EX:Execute MEM: WB:
i ) MemAccess WriteBack
_ IF/ID ID/IEX EX/MEM
>Ad >
4 —p . >4-\d MEM/WB
> —>
. »Read Addr 1 e
Instruction Register Read| , \ Data
Memory »Read Addr 2ata 1 Memory
O|] . |Read Fi
& H—> — - ile > ul Read | |
J Address >\Write Addr o ALU —»Address Data '}
Data 2 ; .~
—b[Write Data : »Write Data i

/~sign > \ i
"6 \Extend /' 35
- - L]

System Clock
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MIPS Pipeline Control Path Modifications

A All control signals can be determined during Decode
® and held in the state registers between pipeline stages

|
< PCSrc

< IDIEX
AN ] EX/MEM
Control >

IF/ID -
— | | T~

v
>Ad ‘ e
4—s RegWrite Ad —:>_ |
| ) |
Read Addr 1

Y Y

v

|

B Inlsltructlon Register Read| R Data
emory »Read Addr Pata 1 Memory MemtoReg
v Hp|Read — File ALU|Src address  Read LI L
Address »Write Addr g Data o
- —sWwrie Data Data 2 r>\Write Data —

Sign . | : MemRead |1
* Extend / '
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Pipeline Control

Q I[F Stage: read Instr Memory (always asserted) and write
PC (on System Clock)

a |D Stage: no optional control signals to set

Write | Write
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Graphicall

Representing MIPS Pipeline

Q Can help with answering questions like:
® How many cycles does it take to execute this code?
® What is the ALU doing during cycle 4?

Reg

_l%

‘DM

Reg

® |s there a hazard, why does it occur, and how can it be fixed?
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Whyv Pipeline? For Performance!

Time (clock cycles)

| Inst O
n
? Inst 1
r.
of Inst 2
;
d
el Inst 3
,

Inst 4
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pipéline is full,

i one

IS

instruction
completed

i every cycle, so

CPl =1

Reg

<
«

Timé to fill:ithe pipeline

‘DM
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Can Pipelining Get Us Into Trouble?

Q Yes: Pipeline Hazards

® structural hazards: attempt to use the same resource by two
different instructions at the same time

® data hazards: attempt to use data before it is ready

- An instruction’s source operand(s) are produced by a prior
instruction still in the pipeline

® control hazards: attempt to make a decision about program
control flow before the condition has been evaluated and the
new PC target address calculated

- branch and jump instructions, exceptions

d Can usually resolve hazards by waiting
® pipeline control must detect the hazard
® and take action to resolve hazards
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A Sinagale Memorv Would Be a Structural Hazard

Time (clock cycles)

1w

Inst 1

S~ 0 3> ~

Inst 2

Inst 3

S~ 0O o ~0

Inst 4

tllem EJZRegé_l%

Reg

Reg

Readmg daia from
memory :

‘Mem

Readlng mstruction
froni membry

Vem I.E Regé_I% ‘MemE__ Reqf

Reg

t"e"' F

—{Reg

Q Fix with separate instr and data memories (1$ and D$)

5DV118 20111120 t:04A sl:31

Irwin CSE431 PSU



How About Reqister File Access?

Time (clock cycles)

N Fix reglsterflle
add $1, (v ;J:Regi_lgé of i dccessihazard by

dolng reads in the

Inst 1 J: _% second:half of the
NS M Reg| ‘DM T ReY cycle and writes in
5 : l/ i the first half

Inst 2 M I.[Reg—%j ow E._Regé

add $2,$1, IM JZR DMReg

S~ 0 3> ~

= 0 Q0O
\/

clock edée thaf Contr&)Is
loading of pipeline state
registers and writing iwin CSE431 pSU

Revised sjh 20

clock edge that controls
register reading
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Reqister Usage Can Cause Data Hazards

0 Dependencies backward in time cause hazards

add $1,

sub $4,51,85

S ~ 0 S ~

and $6,51,87

or $8,51,89

S~ 0 Q0O

xor $4,51,8$5

Reg

IM[.[

_I% ‘DM E._ Reg

N

J: Reg|:

)

!

Reg

‘DM E._ Regf

A Read before write data hazard
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Reqister Usage Can Cause Data Hazards

0 Dependencies backward in time cause hazards

add $1,

sub $4,51,85

and $6,51,87

or $8,51,89

xor $4,51,8$5

Reg

A Read before write data hazard
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Loads Can Cause Data Hazards
0 Dependencies backward in time cause hazards

1w $1,4(82)

sub $4,51,85

S ~ 0 S ~

and $6,51,87

or $8,51,89

S~ 0 Q0O

xor $4,51,8$5

d Load-use data hazard
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Branch Instructions Cause Control Hazards

0 Dependencies backward in time cause hazards

beq

1w

S~ 0 3> ~

Inst 3

Inst 4

S~ 0O o ~0
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Other Pipeline Structures Are Possible

0 What about the (slow) multiply operation?
® Make the clock twice as slow or ...

® |et it take two cycles (since it doesn’t use the DM stage)

J What if the data memory access is twice as slow as

MUL

Reg %

P

the instruction memory?
® make the clock twice as slow or ...

‘DM

_‘ Reg

® |et data memory access take two cycles (and keep the same

clock rate)
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Reg
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Other Sample Pipeline Alternatives

0 ARMY7 w
M L[ Red| | EX
PC update decode ALU op
IM access reg DM access
access shift/rotate
commit result
(write back)
0 XScale
M1 || im2 || Reg SHF1|_ =)D -.IT*e%I
— DM
PC update decode DM write
BTB access reg 1 access ALU op reg write
start IM access _
shift/rotate start DM access
IM access reg 2 access exception
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sSummary

3 All modern day processors use pipelining

Q Pipelining doesn’t help latency of single task, it helps
throughput of entire workload

0 Potential speedup: a CPIl of 1 and fast a CC

a Pipeline rate limited by slowest pipeline stage
® Unbalanced pipe stages makes for inefficiencies

® The time to “fill” pipeline and time to “drain” it can impact
speedup for deep pipelines and short code runs

O Must detect and resolve hazards

® Stalling negatively affects CPl (makes CPI less than the ideal
of 1)
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