5DV118
 Computer Organization and Architecture Umeå University Department of Computing Science

Stephen J. Hegner
Topic 3aux: Logic Design

A Ridiculously Brief Overview of Combinational Logic Design

- These slides provide a brief overview of combinational logic.
- They are limited to the ideas absolutely needed for the course.
- For a more detailed presentation consult Appendix C on the CD which comes with the course text.

Types of Logic Circuits

- Combinational logic is used to realize memoryless functions.
- Sequential logic is used to realize functions which have an internal state.
- These slides focus upon combinational logic.

Basic Gates

The AND gate

A	B	C
0	0	0
0	1	0
1	0	0
1	1	1

The Inverter
$A \rightarrow B-B$

A	B
0	1
1	0

The OR gate

A	B	C
0	0	0
0	1	1
1	0	1
1	1	1

The Buffer

A	B
0	0
1	1

Further Gates

The NAND gate

A	B	C
0	0	1
0	1	1
1	0	1
1	1	0

The XOR gate

A	B	C
0	0	0
0	1	1
1	0	1
1	1	0

A	B	C
0	0	1
0	1	0
1	0	0
1	1	0

Compact Representation of Negation

- Negation may be represented as a circle on another gate.
- The following two circuits are equivalent.

The Multiplexer

- A multiplexer selects between two (or more) inputs.
- S is the select line.
- Shown is a two-input multiplexer.

5DV118 t3:aux sl:7 2011-11-16

A One-Bit Half Adder

A	B	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

A One-Bit Full Adder

A	B	$C_{\text {in }}$	S	$C_{\text {out }}$
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

Carry in

Carry out

A Sequential Adder

- An n-bit sequential adder may be realized by gluing n one-bit adders together.
- This is not the best design because the critical path is proportional to n .

Carry out

