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Key to the Slides

 The source of each slide is coded in the footer on the 
right side:
 Irwin CSE331 = slide by Mary Jane Irwin from the course 

CSE331 (Computer Organization and Design) at 
Pennsylvania State University.

 Irwin CSE431 = slide by Mary Jane Irwin from the course 
CSE431 (Computer Architecture) at Pennsylvania State 
University.

 Hegner UU = slide by Stephen J. Hegner at Umeå University.
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Review:  MIPS (RISC) Design Principles

 Simplicity favors regularity
 fixed size instructions

 small number of instruction formats

 opcode always the first 6 bits

 Smaller is faster
 limited instruction set

 limited number of registers in register file

 limited number of addressing modes

 Make the common case fast
 arithmetic operands from the register file (load-store machine)

 allow instructions to contain immediate operands

 Good design demands good compromises
 three instruction formats 
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Review:  MIPS Addressing Modes Illustrated
1. Register addressing

op         rs      rt      rd             funct Register

word operand

op         rs       rt           offset

2. Base (displacement) addressing

base register

Memory

word or byte operand

3. Immediate addressing
op         rs      rt       operand

4. PC-relative addressing
op         rs       rt           offset

Program Counter (PC)

Memory

branch destination instruction

5. Pseudo-direct addressing

op               jump address

Program Counter (PC)

Memory

jump destination instruction||



5DV008 20121119 t:3 sl:5 Irwin CSE331 PSU

 32-bit signed numbers (2’s complement):

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten

0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten

...

0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten

0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten

1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten

1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten

...

1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten

1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

Number Representations

maxint

minint

 Converting <32-bit values into 32-bit values
 copy the most significant bit (the sign bit) into the “empty” bits

0010  -> 0000 0010
1010  -> 1111 1010

 sign extend    versus     zero extend   (lb  vs.  lbu) 

MSB

LSB
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MIPS Arithmetic Logic Unit (ALU)
 Must support the Arithmetic/Logic 

operations of the ISA
add, addi, addiu, addu

sub, subu

mult, multu, div, divu

sqrt

and, andi, nor, or, ori, xor, xori

beq, bne, slt, slti, sltiu, sltu

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

 With special handling for
 sign extend – addi, addiu, slti, sltiu
 zero extend – andi, ori, xori
 overflow detection – add, addi, sub
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Dealing with Overflow

Operation Operand A Operand B Result indicating 
overflow

A + B ≥ 0 ≥ 0 < 0

A + B < 0 < 0 ≥ 0

A - B ≥ 0 < 0 < 0

A - B < 0 ≥ 0 ≥ 0

 Overflow occurs when the result of an operation cannot 
be represented in 32-bits, i.e., when the sign bit contains 
a value bit of the result and not the proper sign bit

 When adding operands with different signs or when subtracting 
operands with the same sign, overflow can never occur

 MIPS signals overflow with an exception (aka interrupt) – 
an unscheduled procedure call where the EPC contains 
the address of the instruction that caused the exception
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A MIPS ALU Implementation

+

A1

B1

result1

less

+

A0

B0

result0

less

+

A31

B31

result31

less

.   .   .

0

0

set

 Enable overflow bit 
setting for signed 
arithmetic (add, addi, 
sub) 

add/subt
op

ovf

zero

. . .

 Zero detect (slt, 
slti, sltiu, sltu, 
beq, bne) 
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But What about Performance?
 Critical path of n-bit ripple-carry adder is n*CP

 Design trick – throw hardware at it (Carry Lookahead)

A0

B0

1-bit
ALU

result0

CarryIn0

CarryOut0

A1

B1

1-bit
ALU

result1

CarryIn1

CarryOut1

A2

B2

1-bit
ALU

result2

CarryIn2

CarryOut2

A3

B3

1-bit
ALU

result3

CarryIn3

CarryOut3
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Multiply

 Binary multiplication is just a bunch of right shifts and 
adds

multiplicand

multiplier

partial
product
array

double precision product 

n

2n

n
can be formed in parallel 
and added in parallel for 
faster multiplication



5DV118 20121119 t:3 sl:11 Irwin CSE431 PSU

Add and Right Shift Multiplier Hardware

multiplicand

32-bit ALU

                   multiplier Control

add
shift
right

product
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Add and Right Shift Multiplier Hardware

multiplicand

32-bit ALU

                   multiplier Control

add
shift
right

product

0 1 1 0       = 6

0 0 0 0         0 1 0 1       = 5
add  0 1 1 0         0 1 0 1

0 0 1 1         0 0 1 0
add  0 0 1 1         0 0 1 0

0 0 0 1         1 0 0 1 
add  0 1 1 1         1 0 0 1

0 0 0 1         1 1 1 0
add  0 0 1 1         1 1 0 0

0 0 1 1         1 1 0 0

= 30
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 Multiply (mult and multu) produces a double 
precision product

mult   $s0, $s1   # hi||lo = $s0 * $s1

 Low-order word of the product is left in processor register  lo 
and the high-order word is left in register hi

 Instructions mfhi rd and mflo rd are provided to move 
the product to (user accessible) registers in the register file

MIPS Multiply Instruction

0              16           17           0            0            0x18

 Multiplies are usually done by fast, dedicated 
hardware and are much more complex (and slower) 
than adders
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59-bit ALU

33-bit ALU33-bit ALU

Fast Multiplication Hardware
 Can build a faster multiplier by using a parallel tree of 

adders with one 32-bit adder for each bit of the multiplier at 
the base

product0

‘ier0*’icand

‘ier1*’icand

‘ier2*’icand
‘ier3*’icand

‘ier4*’icand
‘ier5*’icand

‘ier6*’icand
‘ier7*’icand

‘ier30*’icand

. . .

. . .

. . .

product1product2product3

product63   . . .  product5

product4

32-bit ALU 32-bit ALU 32-bit ALU 32-bit ALU 32-bit ALU

33-bit ALU

36-bit ALU

43-bit ALU
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Division

 Division is just a bunch of quotient digit guesses and left 
shifts and subtracts

dividend = quotient x divisor  +  remainder

dividend
divisor

partial
remainder
array

quotientn
n

remainder

n

0 0 0

0

0

0
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Left Shift and Subtract Division Hardware

   divisor   

32-bit ALU

                    quotient  Control

subtract
shift
left

dividend

remainder
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Left Shift and Subtract Division Hardware

   divisor   

32-bit ALU

                    quotient  Control

subtract
shift
left

dividend

remainder

0 0 1 0       = 2

0 0 0 0         0 1 1 0     = 6
0 0 0 0         1 1 0 0

sub  1 1 1 0         1 1 0 0 rem < 0, so quotient bit = 0
0 0 0 0         1 1 0 0 restore remainder
0 0 0 1         1 0 0 0

sub  1 1 1 1         1 1 0 0 rem < 0, so quoient bit = 0
0 0 0 1         1 0 0 0 restore remainder
0 0 1 1         0 0 0 0

sub  0 0 0 1         0 0 0 1 rem ≥ 0, so quoient bit = 1
0 0 1 0         0 0 1 0

sub  0 0 0 0         0 0 1 1 rem ≥ 0, so quoient bit = 1
= 3 with 0 remainder
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 Divide (div and divu) generates the remainder in hi 
and the quotient in lo

div   $s0, $s1   # lo = $s0 / $s1

  # hi = $s0 mod $s1

 Instructions mfhi rd and mflo rd are provided to move 
the quotient and remainder to (user accessible) registers in the 
register file

MIPS Divide Instruction

 As with multiply, divide ignores overflow so software 
must determine if the quotient is too large.  Software 
must also check the divisor to avoid division by 0.

     0        16           17           0              0        0x1A
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Representing Big (and Small) Numbers
 What if we want to encode the approx. age of the earth?

             4,600,000,000     or    4.6 x 109

    or the weight in kg of one a.m.u. (atomic mass unit)

             0.0000000000000000000000000166    or   1.6 x 10-27

   There is no way we can encode either of the above in a 32-bit 
integer.

 Floating point representation      (-1)sign x  F x 2E

 Still have to fit everything in 32 bits (single precision)

s  E (exponent)                               F (fraction)
1 bit         8 bits                                          23 bits

 The base (2, not 10) is hardwired in the design of the FPALU

 More bits in the fraction (F) or the exponent (E) is a trade-off 
between precision (accuracy of the number) and range (size of 
the number)
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Exception Events in Floating Point
 Overflow (floating point) happens when a positive 

exponent becomes too large to fit in the exponent field

 Underflow (floating point) happens when a negative 
exponent becomes too large to fit in the exponent field

s  E (exponent)                               F (fraction)

1 bit         11 bits                                          20 bits

F (fraction continued)
32 bits

 One way to reduce the chance of underflow or overflow 
is to offer another format that has a larger exponent field
 Double precision – takes two MIPS words

+∞-∞

+ largestE +largestF+ largestE -largestF
- largestE +smallestF- largestE -smallestF
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IEEE 754 FP Standard

 Most (all?) computers these days conform to the IEEE 754 
floating point standard        (-1)sign  x  (1+F)  x  2E-bias

 Formats for both single and double precision
 F is stored in normalized format where the msb in F is 1 (so there is no 

need to store it!) – called the hidden bit
 1+F = significand 
 To simplify sorting FP numbers, E comes before F in the word and E is 

represented in excess (biased) notation where the bias is -127 (-1023 
for double precision) so the most negative is 00000001
 = 21-127  = 2-126 and the most positive is 11111110 = 2254-127 = 2+127

 Examples (in normalized format)
 Smallest+: 0 00000001 1.00000000000000000000000 = 1 x 21-127

 Zero:          0 00000000 00000000000000000000000 = true 0
 Largest+:   0 11111110 1.11111111111111111111111 

                                                                             = 2-2-23 x 2254-127

 1.02 x 2-1 =

 0.7510 x 24 =
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IEEE 754 FP Standard

 Most (all?) computers these days conform to the IEEE 754 
floating point standard        (-1)sign  x  (1+F)  x  2E­bias

 Formats for both single and double precision
 F is stored in normalized format where the msb in F is 1 (so there is no 

need to store it!) – called the hidden bit 
 1+F is called the significand
 To simplify sorting FP numbers, E comes before F in the word and E is 

represented in excess (biased) notation where the bias is -127 (-1023 for 
double precision) so the most negative is 00000001 = 21­127  = 2­126 and 
the most positive is 11111110 = 2254­127 = 2+127

 Examples (in normalized format)
 Smallest+: 0 00000001 1.00000000000000000000000 = 1 x 21­127

 Zero:          0 00000000 00000000000000000000000 = true 0
 Largest+:   0 11111110 1.11111111111111111111111 =  2-2­23 x 2254­127

 1.02 x 2-1 =

 0.7510 x 24 =

0 01111110 1.00000000000000000000000 
0 10000010 1.10000000000000000000000 
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IEEE 754 FP Standard Encoding
 Special encodings are used to represent unusual events

 ± infinity for division by zero
 NaN (not a number) for the results of invalid operations such as 0/0
 True zero is the bit string all zero

Single 
Precision

Double 
Precision

Object 
Represented

E (8) F (23) E (11) F (52)

0000 0000 0 0000 … 0000 0 true zero (0)

0000 0000 nonzero 0000 … 0000 nonzero ± denormalized 
number

0111 1111  
to +127,-126

anything 0111 …1111  
to +1023,-1022

anything ± floating point 
number

1111 1111 + 0 1111 … 1111 - 0 ± infinity

1111 1111 nonzero 1111 … 1111 nonzero not a number 
(NaN)
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Support for Accurate Arithmetic

 Rounding (except for truncation) requires the hardware to 
include extra F bits during calculations
 Guard bit – used to provide one F bit when shifting left to normalize  

a result (e.g., when normalizing F after division or subtraction)
 Round bit – used to improve rounding accuracy
 Sticky bit – used to support Round to nearest even; is set to a 1 

whenever a 1 bit shifts (right) through it (e.g., when aligning F   
during addition/subtraction)

 IEEE 754 FP rounding modes
 Always round up (toward +∞)
 Always round down (toward -∞)
 Truncate
 Round to nearest even (when the Guard || Round || Sticky are 

100) – always creates a 0 in the least significant (kept) bit of F

F  =  1 . xxxxxxxxxxxxxxxxxxxxxxx G R S



5DV118 20121119 t:3 sl:25 Irwin CSE431 PSU

Floating Point Addition

 Addition (and subtraction)

(±F1 ×  2E1) + (±F2 ×  2E2) = ±F3 ×  2E3

 Step 0: Restore the hidden bit in F1 and in F2

 Step 1: Align fractions by right shifting F2 by E1 - E2 positions 
(assuming E1 ≥ E2) keeping track of (three of) the bits shifted out 
in G R and S

 Step 2: Add the resulting F2 to F1 to form F3

 Step 3: Normalize F3 (so it is in the form 1.XXXXX …)
- If F1 and F2 have the same sign → F3 ∈[1,4) → 1 bit right shift F3 

and increment E3 (check for overflow)

- If F1 and F2 have different signs → F3 may require many left shifts 
each time decrementing E3 (check for underflow)

 Step 4: Round F3 and possibly normalize F3 again

 Step 5: Rehide the most significant bit of F3 before storing the 
result 
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Floating Point Addition Example

 Add

(0.5 = 1.0000 × 2-1) + (-0.4375 = -1.1100× 2-2) 

 Step 0: 

 Step 1:

 

 Step 2:

 

 Step 3:

 

 Step 4:

 Step 5:
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Floating Point Addition Example

 Add

(0.5 = 1.0000 × 2-1) + (-0.4375 = -1.1100× 2-2) 

 Step 0: 

 Step 1:

 

 Step 2:

 

 Step 3:

 

 Step 4:

 Step 5:

Hidden bits restored in the representation above

Shift significand with the smaller exponent (1.1100) right 
until its exponent matches the larger exponent (so once)

Add significands
1.0000 + (-0.111) = 1.0000 – 0.111 = 0.001

Normalize the sum, checking for exponent over/underflow
0.001 x 2-1 = 0.010 x 2-2 = .. =  1.000 x 2-4

The sum is already rounded, so we’re done

Rehide the hidden bit before storing
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Floating Point Multiplication

 Multiplication

(±F1 ×  2E1) x (±F2 ×  2E2) = ±F3 ×  2E3

 Step 0: Restore the hidden bit in F1 and in F2

 Step 1: Add the two (biased) exponents and subtract the bias 
from the sum, so E1 + E2 – 127 = E3

    also determine the sign of the product (which depends on the 
sign of the operands (most significant bits))

 Step 2: Multiply F1 by F2 to form a double precision F3

 Step 3: Normalize F3 (so it is in the form 1.XXXXX …)
- Since F1 and F2 come in normalized → F3 ∈[1,4) → 1 bit right shift 

F3 and increment E3

- Check for overflow/underflow

 Step 4: Round F3 and possibly normalize F3 again

 Step 5: Rehide the most significant bit of F3 before storing the 
result 
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Floating Point Multiplication Example

 Multiply

(0.5 = 1.0000 × 2-1) x (-0.4375 = -1.1100× 2-2) 

 Step 0: 

 Step 1:

 

 Step 2:

 

 Step 3:

 

 Step 4:

 Step 5:
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Floating Point Multiplication Example

 Multiply

(0.5 = 1.0000 × 2-1) x (-0.4375 = -1.1100× 2-2) 

 Step 0: 

 Step 1:

 

 Step 2:

 Step 3:

 

 Step 4:

 Step 5:

Hidden bits restored in the representation above

Add the exponents (not in bias would be -1 + (-2) = -3 
and in bias would be (-1+127) + (-2+127) – 127 =     (-1 
-2) + (127+127-127) = -3 + 127 = 124

Multiply the significands
1.0000 x 1.110 = 1.110000

Normalized the product, checking for exp over/underflow
1.110000 x 2-3 is already normalized

The product is already rounded, so we’re done

Rehide the hidden bit before storing
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MIPS Floating Point Instructions

 MIPS has a separate Floating Point Register File          
($f0, $f1, …, $f31) (whose registers are used in 
pairs for double precision values) with special instructions 
to load to and store from them

    lwc1  $f1,54($s2)  #$f1 = Memory[$s2+54]

  swc1  $f1,58($s4)  #Memory[$s4+58] = $f1

 And supports IEEE 754 single
  add.s $f2,$f4,$f6  #$f2 = $f4 + $f6

   and double precision operations
  add.d $f2,$f4,$f6  #$f2||$f3 =

$f4||$f5 + $f6||$f7

   similarly for sub.s, sub.d, mul.s, mul.d, div.s, 
div.d
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MIPS Floating Point Instructions, Con’t

 And floating point single precision comparison operations
  c.x.s $f2,$f4   #if($f2 < $f4) cond=1;

else cond=0

   where x may be eq, neq, lt, le, gt, ge 

   and double precision comparison operations
  c.x.d $f2,$f4      #$f2||$f3 < $f4||$f5 

cond=1; else cond=0

 And floating point branch operations

    bc1t  25  #if(cond==1)
go to PC+4+25

  bc1f  25  #if(cond==0)
go to PC+4+25
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Frequency of Common MIPS Instructions
 Only included those with >3%  and  >1%

SPECint SPECfp

addu 5.2% 3.5%

addiu 9.0% 7.2%

or 4.0% 1.2%

sll 4.4% 1.9%

lui 3.3% 0.5%

lw 18.6% 5.8%

sw 7.6% 2.0%

lbu 3.7% 0.1%

beq 8.6% 2.2%

bne 8.4% 1.4%

slt 9.9% 2.3%

slti 3.1% 0.3%

sltu 3.4% 0.8%

SPECint SPECfp

add.d 0.0% 10.6%

sub.d 0.0% 4.9%

mul.d 0.0% 15.0%

add.s 0.0% 1.5%

sub.s 0.0% 1.8%

mul.s 0.0% 2.4%

l.d 0.0% 17.5%

s.d 0.0% 4.9%

l.s 0.0% 4.2%

s.s 0.0% 1.1%

lhu 1.3% 0.0%


