
5DV118 20121113 t:2C sl:1 Hegner UU

5DV118
Computer Organization and Architecture

Umeå University
Department of Computing Science

These slides are mostly taken verbatim, or with minor
changes, from those prepared by

Mary Jane Irwin (www.cse.psu.edu/~mji)

of The Pennsylvania State University
[Adapted from Computer Organization and Design, 4th Edition,

Patterson & Hennessy, © 2008, MK]

Stephen J. Hegner

Topic 2: Instructions
Part C: Control Flow

http://www.cse.psu.edu/~mji

5DV118 20121113 t:2C sl:2 Hegner UU

Key to the Slides

 The source of each slide is coded in the footer on the
right side:
 Irwin CSE331 = slide by Mary Jane Irwin from the course

CSE331 (Computer Organization and Design) at
Pennsylvania State University.

 Irwin CSE431 = slide by Mary Jane Irwin from the course
CSE431 (Computer Architecture) at Pennsylvania State
University.

 Hegner UU = slide by Stephen J. Hegner at Umeå University.

5DV118 20121113 t:2C sl:3 Hegner UU

 Arithmetic instructions

Review: R Format Instructions

op rs rt rd shamt funct

 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

add $t0, $s1, $s2 sub $t0, $s1, $s2

 0x00 17 18 8 0 0x20

 0x00 17 18 8 0 0x22

 R format

 0x00 17 8 4 0x00

 0x00 17 8 4 0x02

sll
srl

sll $t0, $s1, 4 srl $t0, $s1, 4 sra $t0, $s1, 4

 0x00 17 8 4 0x03 sra

add

sub

 0x00 17 18 8 0 0x24 and

and $t0, $s1, $s2 or $t0, $s1, $s2 nor $t0, $s1, $s2

 0x00 17 18 8 0 0x25 or
 0x00 17 18 8 0 0x27 nor

5DV118 20121113 t:2C sl:4 Irwin CSE331 PSU

 Data transfer instructions

Review: I Format Instructions

 6 bits 5 bits 5 bits 16 bit

lw $t0, 24($s2) sw $t0, 24($s2)

 I format op rs rt two’s compl number

0x23 18 8 24ten

0x2b 18 8 24ten

 Immediate instructions
addi $t0, $s1, 9

0x08 17 8 9ten

lw

sw

 0x0c 17 8 0xff00 andi

andi $t0, $s1, 0xff00 ori $t0, $s1, 0xff00

 0x0d 17 8 0xff00 ori

5DV118 20121113 t:2C sl:5 Irwin CSE331 PSU

 MIPS conditional branch instructions:

bne $s0, $s1, Lbl #go to Lbl if $s0≠$s1
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

 Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1
add $s3, $s0, $s1

Lbl1: ...

MIPS Control Flow Instructions

 Instruction Format (I format):

0x05 16 17 ???

 How is the branch destination address specified?

op rs rt 16-bit value

5DV118 20121113 t:2C sl:6 Irwin CSE331 PSU

Specifying Branch Destinations

 Could use a “base” register and add
to it the 16-bit offset
 which register?

- Instruction Address Register
(PC = program counter) - its use is
automatically implied by branch

- PC gets updated (PC+4) during the
Fetch cycle so that it holds the address
of the next instruction

 limits the branch distance to
-215 to +215-1 instr’s from the (instruction
after the) branch

- but most branches are local anyway

bne $s0,$s1,Lbl1

add $s3,$s0,$s1

...Lbl1:

 Could specify the memory address of the branch target
- but that would require a 32-bit field

PC →

5DV118 20121113 t:2C sl:7 Irwin CSE331 PSU

Disassembling Branch Destinations
 The contents of the updated PC (PC+4) is

 added to the 16 bit branch offset;
 which is converted into a 32-bit value by concatenating two low-order zeros to make it a

word address;
 and then sign-extending those 18 bits from the low order 16 bits of the branch instruction.

 The result is written into the PC if the branch condition is true as part of the
Exec cycle - before the next Fetch cycle

PC
Add

32

32 32
32

32

offset

16

32

00

sign-extend

branch target
address

?
Add

4 32

Fetch
PC = PC+4

DecodeExec

Revised sjh 20121113

5DV118 20121113 t:2C sl:8 Irwin CSE331 PSU

Offset Tradeoffs

 Why not just store the word offset in the low order 16
bits? Then the two low order zeros wouldn’t have to
be concatenated, it would be less confusing, …

 That would limit the branch distance to -213 to +213-1
instructions from the (instruction after the) branch

 And concatenating the two zero bits costs us very little
in additional hardware and has no impact on the clock
cycle time

5DV118 20121113 t:2C sl:9 Irwin CSE331 PSU

 Assembly code
 bne $s0, $s1, Lbl1

add $s3, $s0, $s1
Lbl1: ...

 Machine Format of bne:

Assembling Branches Example

op rs rt 16-bit offset I format

0x05 16 17

 Remember
 After the bne instruction is fetched, the PC is updated

so that it is addressing the add instruction
 The offset (plus 2 low-order zeros) is sign-extended

and added to the (updated) PC

5DV118 20121113 t:2C sl:10 Irwin CSE331 PSU

 Assembly code
 bne $s0, $s1, Lbl1

add $s3, $s0, $s1
Lbl1: ...

 Machine Format of bne:

Assembling Branches Example

op rs rt 16-bit offset I format

0x05 16 17

 Remember
 After the bne instruction is fetched, the PC is updated

so that it is addressing the add instruction
 The offset (plus 2 low-order zeros) is sign-extended

and added to the (updated) PC

0x0001

5DV118 20121113 t:2C sl:11 Irwin CSE331 PSU

 We have beq, bne, but what about other kinds of
branches (e.g., branch-if-less-than)? For this, we need
yet another instruction, slt

 Set on less than instruction:

 slt $t0, $s0, $s1 # if $s0 < $s1 then
$t0 = 1 else
$t0 = 0

 Instruction format (R format):

 Alternate versions of slt
 slti $t0, $s0, 25 # if $s0 < 25 then $t0=1 ...

 sltu $t0, $s0, $s1 # if $s0 < $s1 then $t0=1 ...

 sltiu $t0, $s0, 25 # if $s0 < 25 then $t0=1 ...

In Support of Branch Instructions

 0x00 16 17 8 0x24

5DV118 20121113 t:2C sl:12 Irwin CSE331 PSU

More Branch Instructions
 Can use slt, beq, bne, and the fixed value of 0 in

register $zero to create other conditions
 less than blt $s1, $s2, Label

 less than or equal to ble $s1, $s2, Label

 greater than bgt $s1, $s2, Label

 great than or equal to bge $s1, $s2, Label

 Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the
assembler
 Its why the assembler needs a reserved register ($at)

5DV118 20121113 t:2C sl:13 Irwin CSE331 PSU

More Branch Instructions
 Can use slt, beq, bne, and the fixed value of 0 in

register $zero to create other conditions
 less than blt $s1, $s2, Label

 less than or equal to ble $s1, $s2, Label

 greater than bgt $s1, $s2, Label

 great than or equal to bge $s1, $s2, Label

slt $at, $s1, $s2 #$at set to 1 if

bne $at, $zero, Label #$s1 < $s2

 Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the
assembler
 It is why the assembler needs a reserved register ($at)

5DV118 20121113 t:2C sl:14 Irwin CSE331 PSU

 MIPS also has an unconditional branch instruction or
jump instruction:

 j Lbl #go to Lbl

 Example: if (i!=j)
h=i+j;

else
h=i-j;

beq $s0, $s1, Else
add $s3, $s0, $s1
j Exit

Else: sub $s3, $s0, $s1
Exit: ...

Another Instruction for Changing Flow

5DV118 20121113 t:2C sl:15 Irwin CSE331 PSU

 Instruction:
 j Lbl #go to Lbl

 Machine Format (J format):

Assembling Jumps

op 26-bit address

0x02 ????

 How is the jump destination address specified?
 As an absolute address formed by

- concatenating 00 as the 2 low-order bits to make it a word
address

- concatenating the upper 4 bits of the current PC (now PC+4)

5DV118 20121113 t:2C sl:16 Irwin CSE331 PSU

Disassembling Jump Destinations
 The low-order 26 bits of the jump instruction is converted

into a 32-bit jump destination address by
 concatenating two low-order zeros to create an 28 bit (word)

address and then concatenating the upper 4 bits of the current PC
(now PC+4) to create a 32 bit (word) address

 that is put into the PC prior to the next Fetch cycle

PC4 32

26

32

00

from the low order 26 bits of the jump instruction
Fetch

PC = PC+4

DecodeExec

5DV118 20121113 t:2C sl:17 Irwin CSE331 PSU

Branching Far Away

 What if the branch destination is further away than can
be captured in 16 bits?

 The assembler comes to the rescue – it inserts an
unconditional jump to the branch target and inverts the
condition

beq $s0, $s1, L1

 becomes

bne $s0, $s1, L2
j L1

L2:

5DV118 20121113 t:2C sl:18 Irwin CSE331 PSU

 Assemble the MIPS machine code for the following code
sequence. Assume that the addr of the beq instr is
0x00400020hex

beq $s0, $s1, Else
add $s3, $s0, $s1
j Exit

Else: sub $s3, $s0, $s1
Exit: ...

Assembling Branches and Jumps

5DV118 20121113 t:2C sl:19 Irwin CSE331 PSU

 Assemble the MIPS machine code for the following code
sequence. Assume that the addr of the beq instr is
0x00400020hex

beq $s0, $s1, Else
add $s3, $s0, $s1
j Exit

Else: sub $s3, $s0, $s1
Exit: ...

Assembling Branches and Jumps

0x00400020 4 16 17 2
0x00400024 0 16 17 19 0 0x20
0x00400028 2 0000 0100 0 ... 0 0011 002

0x0040002c 0 16 17 19 0 0x22

0x00400030 ...

jmp dst = (0x0) 0x040003 002(002)

 = 0x00400030

5DV118 20121113 t:2C sl:20 Irwin CSE331 PSU

Compiling While Loops
 Compile the assembly code for the C while loop

where i is in $s0, j is in $s1, and k is in $s2

 while (i!=k)
i=i+j;

 Basic block – A sequence of instructions without
branches (except at the end) and without branch
targets (except at the beginning)

5DV118 20121113 t:2C sl:21 Irwin CSE331 PSU

Compiling While Loops
 Compile the assembly code for the C while loop

where i is in $s0, j is in $s1, and k is in $s2

 while (i!=k)
i=i+j;

Loop: beq $s0, $s2, Exit
add $s0, $s0, $s1
j Loop

Exit: . . .

 Basic block – A sequence of instructions without
branches (except at the end) and without branch
targets (except at the beginning)

5DV118 20121113 t:2C sl:22 Irwin CSE331 PSU

Compiling Another While Loop
 Compile the assembly code for the C while loop where

i is in $s0, k is in $s1, and the base address of the array
save is in $s2

 while (save[i] == k)
i += 1;

5DV118 20121113 t:2C sl:23 Irwin CSE331 PSU

Compiling Another While Loop
 Compile the assembly code for the C while loop where

i is in $s0, k is in $s1, and the base address of the array
save is in $s2

 while (save[i] == k)
i += 1;

Loop: sll $t1, $s0, 2
add $t1, $t1, $s2
lw $t0, 0($t1)
bne $t0, $s1, Exit
addi $s0, $s0, 1
j Loop

Exit: . . .

5DV118 20121113 t:2C sl:24 Irwin CSE331 PSU

 Most higher level languages have case or switch
statements allowing the code to select one of many
alternatives depending on a single value

 Instruction:

jr $t1 #go to address in $t1

 Machine format (R format):

Yet Another Instruction for Changing Flow

op rs funct

 0x00 9 0 0 0 0x08

5DV118 20121113 t:2C sl:25 Irwin CSE331 PSU

Compiling a Case (Switch) Statement
switch (k) {
case 0: h=i+j; break; /*k=0*/
case 1: h=i+h; break; /*k=1*/
case 2: h=i-j; break; /*k=2*/

 Assume three sequential words in memory
starting at the address in $t4 have the
addresses of the labels L0, L1, and L2 and k
is in $s2

add $t1, $s2, $s2 #$t1 = 2*k
add $t1, $t1, $t1 #$t1 = 4*k
add $t1, $t1, $t4 #$t1 = addr of JumpT[k]
lw $t0, 0($t1) #$t0 = JumpT[k]
jr $t0 #jump based on $t0

L0: add $s3, $s0, $s1 #k=0 so h=i+j
j Exit

L1: add $s3, $s0, $s3 #k=1 so h=i+h
j Exit

L2: sub $s3, $s0, $s1 #k=2 so h=i-j

Exit: . . .

$t4→

L2
L1
L0

Memory

5DV118 20121113 t:2C sl:26 Irwin CSE331 PSU

Programming Styles

 Procedures (subroutines, functions) allow the
programmer to structure programs making them
 easier to understand and debug and
 allowing code to be reused

 Procedures allow the programmer to concentrate on
one portion of the code at a time
 parameters act as barriers between the procedure and the

rest of the program and data, allowing the procedure to be
passed values (arguments) and to return values (results)

5DV118 20121113 t:2C sl:27 Irwin CSE331 PSU

Six Steps in Execution of a Procedure

1. Main routine (caller) places parameters in a place
where the procedure (callee) can access them
 $a0 - $a3: four argument registers

2. Caller transfers control to the callee

3. Callee acquires the storage resources needed

4. Callee performs the desired task

5. Callee places the result value in a place where the
caller can access it
 $v0 - $v1: two value registers for result values

6. Callee returns control to the caller
 $ra: one return address register to return to the point of origin

5DV118 20121113 t:2C sl:28 Irwin CSE331 PSU

Review: MIPS Register Naming Convention
Nick

Name
Register
Number

Usage Preserve
on call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$k0 - $k1 26-27 reserved for OS n.a.

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

5DV118 20121113 t:2C sl:29 Irwin CSE331 PSU

 MIPS procedure call instruction:

jal ProcAddress #jump and link

 Saves PC+4 in register $ra as the link to the following
instruction to set up the procedure return

 Machine format (J format):

 Then can do procedure return with just

jr $ra #return

Instruction for Calling a Procedure

op 26 bit address

0x03 ????

5DV118 20121113 t:2C sl:30 Irwin CSE331 PSU

Basic Procedure Flow
 For a procedure that computes the GCD of two values
i (in $t0) and j (in $t1)

gcd(i,j);

 The caller puts the i and j (the parameters values) in
$a0 and $a1 and issues a

jal gcd #jump to routine gcd

 The callee computes the GCD, puts the result in $v0,
and returns control to the caller using

gcd: . . . #code to compute gcd

jr $ra #return

5DV118 20121113 t:2C sl:31 Irwin CSE331 PSU

Spilling Registers
 What if the callee needs to use more registers than

allocated to argument and return values?
 callee uses a stack – a last-in-first-out queue

low addr

high addr

$sp

 One of the general registers, $sp
($29), is used to address the stack
(which “grows” from high address
to low address)

 add data onto the stack – push

 $sp = $sp – 4
 data on stack at new $sp

 remove data from the stack – pop

 data from stack at $sp
 $sp = $sp + 4

top of stack

5DV118 20121113 t:2C sl:32 Irwin CSE331 PSU

Allocating Space on the Stack
 The segment of the stack

containing a procedure’s
saved registers and local
variables is its procedure
frame (aka activation
record)
 The frame pointer ($fp)

points to the first word of the
frame of a procedure –
providing a stable “base”
register for the procedure

 $fp is initialized using $sp
on a call and $sp is restored
using $fp on a return

low addr

high addr

$sp

Saved argument
regs (if any)
Saved return
addrSaved local
regs (if any)
Local arrays &
structures (if
any)

$fp

5DV118 20121113 t:2C sl:33 Irwin CSE331 PSU

Allocating Space on the Heap

 There is a static data
segment area for
storing constants and
other static variables
(e.g., arrays)

 And a dynamic data
segment (aka heap)
area for structures that
grow and shrink (e.g.,
linked lists)
 Allocate space on the

heap with malloc()
and free it with
free()in C

Memory

0x 0000 0000

Text
(Your code)

Reserved

Static data

0x 0040 0000

0x 1000 0000
0x 1000 8000

0x 7f f f f f f c
Stack

Dynamic data
(heap)

$sp

$gp

PC

5DV118 20121113 t:2C sl:34 Irwin CSE331 PSU

Compiling a C Leaf Procedure
 Leaf procedures are ones that do not call other

procedures. Give the MIPS assembler code for
int leaf_ex (int g, int h, int i, int j)

 { int f;
f = (g+h) – (i+j);
return f; }

 where g, h, i, and j are in $a0, $a1, $a2, $a3

5DV118 20121113 t:2C sl:35 Irwin CSE331 PSU

Compiling a C Leaf Procedure
 Leaf procedures are ones that do not call other

procedures. Give the MIPS assembler code for
int leaf_ex (int g, int h, int i, int j)

 { int f;
f = (g+h) – (i+j);
return f; }

 where g, h, i, and j are in $a0, $a1, $a2, $a3

leaf_ex: addi $sp,$sp,-8 #make stack room
 sw $t1,4($sp) #save $t1 on stack
 sw $t0,0($sp) #save $t0 on stack
 add $t0,$a0,$a1
 add $t1,$a2,$a3
 sub $v0,$t0,$t1
 lw $t0,0($sp) #restore $t0
 lw $t1,4($sp) #restore $t1
 addi $sp,$sp,8 #adjust stack ptr
 jr $ra

5DV118 20121113 t:2C sl:36 Irwin CSE331 PSU

Nested Procedures
 What happens to return addresses with nested

procedures?
int rt_1 (int i) {

if (i == 0) return 0;
else return rt_2(i-1); }

caller: jal rt_1
next: . . .

rt_1: bne $a0, $zero, to_2
add $v0, $zero, $zero
jr $ra

to_2: addi $a0, $a0, -1
jal rt_2
jr $ra

rt_2: . . .

5DV118 20121113 t:2C sl:37 Irwin CSE331 PSU

Nested Procedures Outcome
caller: jal rt_1
next: . . .

rt_1: bne $a0, $zero, to_2
add $v0, $zero, $zero
jr $ra

to_2: addi $a0, $a0, -1
jal rt_2
jr $ra

rt_2: . . .

 On the call to rt_1, the return address (next in the
caller routine) gets stored in $ra. What happens to
the value in $ra (when i != 0) when rt_1 makes a
call to rt_2?

5DV118 20121113 t:2C sl:38 Irwin CSE331 PSU

Saving the Return Address, Part 1
 Nested procedures (i passed in $a0, return value in $v0)

 Save the return address (and arguments) on the stack

low addr

high addr

←$sp

$ra

old TOS

rt_1: bne $a0, $zero, to_2
add $v0, $zero, $zero
jr $ra
to_2: addi $sp, $sp, -8
sw $ra, 4($sp)
sw $a0, 0($sp)
addi $a0, $a0, -1
jal rt_2
bk_2: lw $a0, 0($sp)
lw $ra, 4($sp)
addi $sp, $sp, 8
jr $ra

5DV118 20121113 t:2C sl:39 Irwin CSE331 PSU

Saving the Return Address, Part 1
 Nested procedures (i passed in $a0, return value in $v0)

 Save the return address (and arguments) on the stack

caller rt addr

high addr

← $sp

←$sp

low addr

old $a0

$racaller rt addrbk_2

old TOS

$pc →

$pc →
$pc →
$pc →

$pc →

rt_1: bne $a0, $zero, to_2
 add $v0, $zero, $zero
 jr $ra
to_2: addi $sp, $sp, -8
 sw $ra, 4($sp)
 sw $a0, 0($sp)
 addi $a0, $a0, -1
 jal rt_2
bk_2: lw $a0, 0($sp)
 lw $ra, 4($sp)
 addi $sp, $sp, 8
 jr $ra

5DV118 20121113 t:2C sl:40 Irwin CSE331 PSU

Saving the Return Address, Part 2
 Nested procedures (i passed in $a0, return value in $v0)

 Save the return address (and arguments) on the stack

low addr

high addr

←$sp

$ra

old TOS

rt_1: bne $a0, $zero, to_2
 add $v0, $zero, $zero
 jr $ra
to_2: addi $sp, $sp, -8
 sw $ra, 4($sp)
 sw $a0, 0($sp)
 addi $a0, $a0, -1
 jal rt_2
bk_2: lw $a0, 0($sp)
 lw $ra, 4($sp)
 addi $sp, $sp, 8
 jr $ra

5DV118 20121113 t:2C sl:41 Irwin CSE331 PSU

Saving the Return Address, Part 2
 Nested procedures (i passed in $a0, return value in $v0)

 Save the return address (and arguments) on the stack

caller rt addr

high addr

←$sp

← $sp

low addr

old $a0

$rabk_2caller rt addr

old TOS

$pc →
$pc →

rt_1: bne $a0, $zero, to_2
 add $v0, $zero, $zero
 jr $ra
to_2: addi $sp, $sp, -8
 sw $ra, 4($sp)
 sw $a0, 0($sp)
 addi $a0, $a0, -1
 jal rt_2
bk_2: lw $a0, 0($sp)
 lw $ra, 4($sp)
 addi $sp, $sp, 8
 jr $ra

rt_1: bne $a0, $zero, to_2
 add $v0, $zero, $zero
 jr $ra
to_2: addi $sp, $sp, -8
 sw $ra, 4($sp)
 sw $a0, 0($sp)
 addi $a0, $a0, -1
 jal rt_2
bk_2: lw $a0, 0($sp)
 lw $ra, 4($sp)
 addi $sp, $sp, 8
 jr $ra

5DV118 20121113 t:2C sl:42 Irwin CSE331 PSU

Compiling a Recursive Procedure
 A procedure for calculating factorial
int fact (int n) {
if (n < 1) return 1;
else return (n * fact (n-1)); }

 A recursive procedure (one that calls itself!)

fact (0) = 1

fact (1) = 1 * 1 = 1

fact (2) = 2 * 1 * 1 = 2

fact (3) = 3 * 2 * 1 * 1 = 6

fact (4) = 4 * 3 * 2 * 1 * 1 = 24

. . .

 Assume n is passed in $a0; result returned in $v0

5DV118 20121113 t:2C sl:43 Irwin CSE331 PSU

Compiling a Recursive Procedure
fact: addi $sp, $sp, -8 #adjust stack pointer

sw $ra, 4($sp) #save return address
sw $a0, 0($sp) #save argument n
slti $t0, $a0, 1 #test for n < 1
beq $t0, $zero, L1 #if n >=1, go to L1
addi $v0, $zero, 1 #else return 1 in $v0
addi $sp, $sp, 8 #adjust stack pointer
jr $ra #return to caller (1st)

L1: addi $a0, $a0, -1 #n >=1, so decrement n
jal fact #call fact with (n-1)
#this is where fact returns

bk_f: lw $a0, 0($sp) #restore argument n
lw $ra, 4($sp) #restore return address
addi $sp, $sp, 8 #adjust stack pointer
mul $v0, $a0, $v0 #$v0 = n * fact(n-1)
jr $ra #return to caller (2nd)

5DV118 20121113 t:2C sl:44 Irwin CSE331 PSU

A Look at the Stack for $a0 = 2, Part 1

←$sp

$ra

$a0

$v0

old TOS

 Stack state after
execution of the first
encounter with jal
(second call to fact
routine with $a0 now
holding 1)
 saved return address to

caller routine (i.e., location
in the main routine where
first call to fact is made) on
the stack

 saved original value of $a0
on the stack

5DV118 20121113 t:2C sl:45 Irwin CSE331 PSU

A Look at the Stack for $a0 = 2, Part 1

← $sp

$ra

$a0

$v0

←$sp

caller rt addr

caller rt addr

$a0 = 2

21

bk_f

old TOS
 Stack state after

execution of the first
encounter with jal
(second call to fact
routine with $a0 now
holding 1)
 saved return address to

caller routine (i.e., location
in the main routine where
first call to fact is made) on
the stack

 saved original value of $a0
on the stack

5DV118 20121113 t:2C sl:46 Irwin CSE331 PSU

A Look at the Stack for $a0 = 2, Part 2

←$sp

$ra

$a0

$v0

old TOS
 Stack state after

execution of the second
encounter with jal (third
call to fact routine with
$a0 now holding 0)
 save return address of

instruction in caller routine
(instruction after jal) on
the stack

 save previous value of
$a0 on the stack

5DV118 20121113 t:2C sl:47 Irwin CSE331 PSU

A Look at the Stack for $a0 = 2, Part 2

$ra

$a0

$v0

← $sp

caller rt addr

$a0 = 2

10

bk_f

old TOS

←spa0 = 1

bk_f

bk_f

 Stack state after
execution of the second
encounter with jal (third
call to fact routine with
$a0 now holding 0)
 saved return address of

instruction in caller routine
(instruction after jal) on
the stack

 saved previous value of
$a0 on the stack

5DV118 20121113 t:2C sl:48 Irwin CSE331 PSU

A Look at the Stack for $a0 = 2, Part 3

←$sp

$ra

$a0

$v0

old TOS
 Stack state after

execution of the first
encounter with the first jr
($v0 initialized to 1)
 stack pointer updated to

point to third call to fact

5DV118 20121113 t:2C sl:49 Irwin CSE331 PSU

A Look at the Stack for $a0 = 2, Part 3

$ra

$a0

$v0

← $sp
bk_f

$a0 = 1

0

old TOS

← spa0 = 0

bk_f

bk_f

$a0 = 2

caller rt addr

1

←$sp

 Stack state after
execution of the first
encounter with the first jr
($v0 initialized to 1)
 stack pointer updated to

point to third call to fact

5DV118 20121113 t:2C sl:50 Irwin CSE331 PSU

A Look at the Stack for $a0 = 2, Part 4

←$sp

$ra

$a0

$v0

old TOS
 Stack state after execution

of the first encounter with
the second jr (return from
fact routine after updating
$v0 to 1 * 1)
 return address to caller

routine (bk_f in fact routine)
restored to $ra from the
stack

 previous value of $a0
restored from the stack

 stack pointer updated to
point to second call to fact

5DV118 20121113 t:2C sl:51 Irwin CSE331 PSU

A Look at the Stack for $a0 = 2, Part 4

$ra

$a0

$v0

← $sp
bk_f

$a0 = 1

0

old TOS

$a0 = 0

bk_f

$a0 = 2

caller rt addr

1

←$sp

1

bk_f

1 * 1

 Stack state after execution
of the first encounter with
the second jr (return from
fact routine after updating
$v0 to 1 * 1)
 return address to caller

routine (bk_f in fact routine)
restored to $ra from the
stack

 previous value of $a0
restored from the stack

 stack pointer updated to
point to second call to fact

5DV118 20121113 t:2C sl:52 Irwin CSE331 PSU

A Look at the Stack for $a0 = 2, Part 5

←$sp

$ra

$a0

$v0

old TOS
 Stack state after

execution of the second
encounter with the
second jr (return from
fact routine after updating
$v0 to 2 * 1 * 1)
 return address to caller

routine (main routine)
restored to $ra from the
stack

 original value of $a0
restored from the stack

 stack pointer updated to
point to first call to fact

5DV118 20121113 t:2C sl:53 Irwin CSE331 PSU

A Look at the Stack for $a0 = 2, Part 5

$ra

$a0

$v0

← $sp
bk_f

$a0 = 1

1

old TOS

$a0 = 0

bk_f

$a0 = 2

caller rt addr

1 * 1

←$sp

2

bk_f

2 * 1 * 1

 Stack state after
execution of the second
encounter with the
second jr (return from
fact routine after updating
$v0 to 2 * 1 * 1)
 return address to caller

routine (main routine)
restored to $ra from the
stack

 original value of $a0
restored from the stack

 stack pointer updated to
point to first call to fact

caller rt addr

5DV118 20121113 t:2C sl:54 Irwin CSE331 PSU

Review: MIPS Instructions, so far

Category Instr OpC Example Meaning

Arithmetic
(R & I
format)

add 0 & 20 add $s1, $s2, $s3 $s1 = $s2 + $s3

subtract 0 & 22 sub $s1, $s2, $s3 $s1 = $s2 - $s3

add immediate 8 addi $s1, $s2, 4 $s1 = $s2 + 4

shift left logical 0 & 00 sll $s1, $s2, 4 $s1 = $s2 << 4

shift right
logical

0 & 02 srl $s1, $s2, 4 $s1 = $s2 >> 4 (fill with
zeros)

shift right
arithmetic

0 & 03 sra $s1, $s2, 4 $s1 = $s2 >> 4 (fill with
sign bit)

and 0 & 24 and $s1, $s2, $s3 $s1 = $s2 & $s3

or 0 & 25 or $s1, $s2, $s3 $s1 = $s2 | $s3

nor 0 & 27 nor $s1, $s2, $s3 $s1 = not ($s2 | $s3)

and immediate c and $s1, $s2, ff00 $s1 = $s2 & 0xff00

or immediate d or $s1, $s2, ff00 $s1 = $s2 | 0xff00

5DV118 20121113 t:2C sl:55 Irwin CSE331 PSU

Review: MIPS Instructions, so far

Category Instr OpC Example Meaning

Data
transfer
(I format)

load word 23 lw $s1, 100($s2) $s1 = Memory($s2+100)

store word 2b sw $s1, 100($s2) Memory($s2+100) = $s1

Cond.
branch
(I & R
format)

br on equal 4 beq $s1, $s2, L if ($s1==$s2) go to L

br on not
equal

5 bne $s1, $s2, L if ($s1 !=$s2) go to L

set on less
than
immediate

a slti $s1, $s2,
100

if ($s2<100) $s1=1;
else $s1=0

set on less
than

0 & 2a slt $s1, $s2, $s3 if ($s2<$s3) $s1=1;
else $s1=0

Uncond.
jump

jump 2 j 2500 go to 10000

jump register 0 & 08 jr $t1 go to $t1

jump and link 3 jal 2500 go to 10000; $ra=PC+4

5DV118 20121113 t:2C sl:56 Irwin CSE331 PSU

Review: MIPS R3000 ISA
 Instruction Categories

 Load/Store
 Computational
 Jump and Branch
 Floating Point

- coprocessor
 Memory Management
 Special

 3 Instruction Formats: all 32 bits wide

R0 - R31

PC
HI

LO

OP rs rt rd shamt funct

OP rs rt 16 bit number

OP 26 bit jump target

Registers

R format

I format

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

J format

5DV118 20121311 t:02 sl:57 Irwin CSE431 PSU

Atomic Exchange Support

 Need hardware support for synchronization mechanisms
to avoid data races where the results of the program can
change depending on how events happen to occur
 Two memory accesses from different threads to the same

location, and at least one is a write

 Atomic exchange (atomic swap) – interchanges a value
in a register for a value in memory atomically, i.e., as one
operation (instruction)
 Implementing an atomic exchange would require both a memory

read and a memory write in a single, uninterruptable instruction.
An alternative is to have a pair of specially configured
instructions

ll $t1, 0($s1) #load linked

 sc $t0, 0($s1) #store conditional

5DV118 20121311 t:02 sl:58 Irwin CSE431 PSU

Atomic Exchange with ll and sc

 If the contents of the memory location specified by the ll
are changed before the sc to the same address occurs,
the sc fails (returns a zero)

 Swap $s4 and memory($s1):

try: add $t0, $zero, $s4 #$t0=$s4 (exchange value)
ll $t1, 0($s1) #load memory value to $t1
sc $t0, 0($s1) #try to store exchange

#value to memory, if fail
#$t0 will be 0

beq $t0, $zero, try #try again on failure
add $s4, $zero, $t1 #load value in $s4

 If the value in memory between the ll and the sc
instructions changes, then sc returns a 0 in $t0 causing
the code sequence to try again.

5DV118 20121113 t:2C sl:59 Irwin CSE331 PSU

Review: MIPS R3000 ISA
 Instruction Categories

 Load/Store
 Computational
 Jump and Branch
 Floating Point

- coprocessor
 Memory Management
 Special

 3 Instruction Formats: all 32 bits wide

R0 - R31

PC
HI

LO

OP rs rt rd shamt funct

OP rs rt 16 bit number

OP 26 bit jump target

Registers

R format

I format

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

J format

5DV118 20121113 t:2C sl:60 Irwin CSE331 PSU

Addressing Modes Illustrated
1. Register addressing

op rs rt rd funct Register

word operand

op rs rt offset

2. Base (displacement) addressing

base register

Memory

word or byte operand

3. Immediate addressing
op rs rt operand

4. PC-relative addressing
op rs rt offset

Program Counter (PC)

Memory

branch destination instruction

5. Pseudo-direct addressing

op jump address

Program Counter (PC)

Memory

jump destination instruction||

5DV118 20121113 t:2C sl:61 Irwin CSE331 PSU

MIPS Organization So Far

Processor
Memory

32 bits

230

words

read/write
 addr

read data

write data

word address
(binary)

0…0000
0…0100
0…1000
0…1100

1…1100
Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
registers

($zero - $ra)

32

32

32
32

32

32

5

5

5

PC

ALU

32 32

32
32

32

0 1 2 3
7654

byte address
(big Endian)

Fetch
PC = PC+4

DecodeExec

Add
32

32
4

Add
32

32
branch offset

