
5DV118 20111116 t:2A sl:1 Hegner UU

5DV118
Computer Organization and Architecture

Umeå University
Department of Computing Science

These slides are mostly taken verbatim, or with minor changes,
from those prepared by

Mary Jane Irwin (<[:isPlaceholder:]>)

of The Pennsylvania State University
[Adapted from Computer Organization and Design, 4th Edition,

Patterson & Hennessy, © 2008, MK]

Stephen J. Hegner

Topic 2: Instructions
Part A: Basic Concepts

http://www.cse.psu.edu/~mji

5DV118 20111116 t:2A sl:2 Hegner UU

Key to the Slides

 The source of each slide is coded in the footer on the right
side:
 Irwin CSE331 PSU = slide by Mary Jane Irwin from the course

CSE331 (Computer Organization and Design) at Pennsylvania
State University.

 Irwin CSE431 PSU = slide by Mary Jane Irwin from the course
CSE431 (Computer Architecture) at Pennsylvania State University.

 Hegner UU = slide by Stephen J. Hegner at Umeå University.

5DV118 20111116t:2A sl:3 Irwin CSE331 PSU

Computer Organization and Design

 This course is all about how computers work

 But what do we mean by a computer?
 Different types: embedded, laptop, desktop, server, supercomputer

 Different uses: robotics, graphics, finance, genomics,…

 Different manufacturers: Intel, IBM, AMD, ARM, Freescale, Fujitsu,
TI, Sun (Oracle) , MIPS, NEC, …

 Different underlying technologies and different costs !

 Best way to learn:
 Focus on a specific instance and learn how it works

 While learning general principles and historical perspectives

5DV118 20111116t:2A sl:4 Irwin CSE331 PSU

Below the Program

 System software
 Operating system – supervising program that interfaces the user’s

program with the hardware (e.g., Linux, MacOS, Windows)
- Handles basic input and output operations

- Allocates storage and memory

- Provides for protected sharing among multiple applications

 Compiler – translate programs written in a high-level language (e.g., C,
Java) into instructions that the hardware can execute

Systems software

Applications software

Hardware

5DV118 20111116t:2A sl:5 Irwin CSE331 PSU

Advantages of High-Level Languages ?

 Higher-level languages

 As a result, very little programming is done today at the
assembler level

5DV118 20111116t:2A sl:6 Irwin CSE331 PSU

Advantages of High-Level Languages ?

 Higher-level languages

 As a result, very little programming is done today at the
assembler level

 Allow the programmer to think in a more natural language and for
their intended use (Fortran for scientific computation, Cobol for
business programming, Lisp for symbol manipulation, Java for web
programming, …)

 Improve programmer productivity – more understandable code that
is easier to debug and validate

 Improve program maintainability
 Allow programs to be independent of the computer on which they

are developed (compilers and assemblers can translate high-level
language programs to the binary instructions of any machine)

 Emergence of optimizing compilers that produce very efficient
assembly code optimized for the target machine

5DV118 20111116t:2A sl:7 Irwin CSE331 PSU

Machine Organization

 Capabilities and performance characteristics of the principal
Functional Units (FUs)
 e.g., register file, arithmetic-logic unit (ALU), multiplexors,

memories, ...

 The ways those FUs are
interconnected
 e.g., buses

 Logic and means by which
information flow between FUs
is controlled

 The machine’s Instruction Set Architecture (ISA)

5DV118 20111116t:2A sl:8 Irwin CSE331 PSU

Instruction Set Architecture (ISA)

 ISA, or simply architecture – the abstract interface between
the hardware and the lowest level software that
encompasses all the information necessary to write a
machine language program, including instructions, registers,
memory access, I/O, …
 Enables implementations of varying cost and performance to run

identical software

 The combination of the basic (user portion of the) instruction
set (the ISA) and the operating system interface is called the
application binary interface (ABI)
 Defines a standard for binary portability across computers.

5DV118 20111116t:2A sl:9 Irwin CSE331 PSU

Two Key Principles of Machine Design

1. Instructions are represented as numbers and, as such, are
indistinguishable from data

2. Programs are stored in alterable memory (that can be
read or written to) just like data

 Stored-program (von Neumann)
concept
 Programs can be shipped as files of

binary numbers – binary compatibility
 Computers can inherit ready-made

software provided they are compatible
with an existing ISA – leads industry to
align around a small number of ISAs

Accounting prg
(machine code)

C compiler
(machine code)

Payroll data

Source code in C
for Acct program

Memory

5DV118 20111116t:2A sl:10 Irwin CSE331 PSU

Assembly Language Instructions
 The language of the machine

 Want an ISA that makes it easy to build the hardware and the
compiler (whose job it is to translate programs written in a high level
language (like C) to assembly code) while maximizing performance
and minimizing cost

 Our target: the MIPS ISA
 similar to other ISAs developed since the 1980's
 used by Broadcom, Cisco, NEC, Nintendo, Sony, …

Design goals: maximize performance, minimize cost,
reduce design time (time-to-market), minimize power

consumption, maximize reliability

5DV118 20111116t:2A sl:11 Irwin CSE331 PSU

RISC - Reduced Instruction Set Computer

 RISC philosophy
 fixed instruction lengths

 load-store instruction sets

 limited number of addressing modes

 limited number of operations

 MIPS, Sun SPARC, HP PA-RISC, IBM PowerPC …

 Instruction sets are measured by how well compilers can use
them as opposed to how well assembly language
programmers can use them

 CISC (C for complex), e.g., Intel x86

5DV118 20111116t:2A sl:12 Irwin CSE331 PSU

The Four RISC Design Principles

1. Simplicity favors regularity.

2. Smaller is faster.

3. Make the common case fast.

4. Good design demands good compromises.

5DV118 20111116t:2A sl:13 Irwin CSE331 PSU

MIPS (RISC) Design Principles

 Simplicity favors regularity
 fixed size instructions

 small number of instruction formats

 opcode always the first 6 bits

 Smaller is faster
 limited instruction set

 limited number of registers in register file

 limited number of addressing modes

 Make the common case fast
 arithmetic operands from the register file (load-store machine)

 allow instructions to contain immediate operands

 Good design demands good compromises
 three instruction formats

5DV118 20111116t:2A sl:14 Irwin CSE331 PSU

MIPS Arithmetic Instruction

 MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

 Each arithmetic instruction performs only one operation

 Each arithmetic instruction specifies exactly three operands

destination ← source1 op source2

 Operand order is fixed (the destination is specified first)

 The operands are contained in the datapath’s register file
($t0, $s1, $s2)

5DV118 20111116t:2A sl:15 Irwin CSE331 PSU

MIPS Arithmetic Instruction

 MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

 Each arithmetic instruction performs only one operation

 Each arithmetic instruction specifies exactly three operands

destination ← source1 op source2

 Operand order is fixed (the destination is specified first)

 The operands are contained in the datapath’s register file
($t0, $s1, $s2)

5DV118 20111116t:2A sl:16 Irwin CSE331 PSU

Compiling More Complex Statements

 Assuming variable b is stored in register $s1, c is stored in
$s2, and d is stored in $s3 and the result is to be left in
$s0, what is the assembler equivalent to the C statement

h = (b - c) + d

5DV118 20111116t:2A sl:17 Irwin CSE331 PSU

Compiling More Complex Statements

 Assuming variable b is stored in register $s1, c is stored in
$s2, and d is stored in $s3 and the result is to be left in
$s0, what is the assembler equivalent to the C statement

h = (b - c) + d

sub $t0, $s1, $s2

add $s0, $t0, $s3

5DV118 20111116t:2A sl:18 Irwin CSE331 PSU

MIPS Register File
 Operands of arithmetic instructions must be from a limited number

of special locations contained in the datapath’s register file
 Thirty-two 32-bit registers

- Two read ports

- One write port

 Registers are
 Faster than main memory

- Smaller is faster & Make the common case fast

 Easy for a compiler to use
- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order

 Improves code density
- Since register are named with fewer bits than a memory location

 Register addresses are indicated by using $

5DV118 20111116t:2A sl:19 Irwin CSE331 PSU

MIPS Register File
 Operands of arithmetic instructions must be from a limited number

of special locations contained in the datapath’s register file
 Thirty-two 32-bit registers

- Two read ports

- One write port

write

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

Register File 325

32

5

5

32
 Registers are

 Faster than main memory
- Smaller is faster & Make the common case fast

 Easy for a compiler to use
- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order

 Improves code density
- Since register are named with fewer bits than a memory location

 Register addresses are indicated by using $

25 =

5DV118 20111116t:2A sl:20 Irwin CSE331 PSU

MIPS Register Naming Convention
Nick

Name
Register
Number

Usage Preserve
on call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$k0 - $k1 26-27 reserved for OS n.a.

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

5DV118 20111116t:2A sl:21 Irwin CSE331 PSU

Registers vs. Memory
 Arithmetic instructions operands must be in registers

 But only thirty-two registers are provided

 The compiler associates variables with registers

What about programs with lots of variables?

 Processor

Control

Datapath

Memory

Devices

Input

Output

Network

5DV118 20111116t:2A sl:22 Irwin CSE331 PSU

Registers vs. Memory
 Arithmetic instructions operands must be in registers

 But only thirty-two registers are provided

 The compiler associates variables with registers

 Processor

Control

Datapath

Memory

Devices

Input

Output

Network

What about programs with lots of variables?

5DV118 20111116t:2A sl:23 Irwin CSE331 PSU

 Memory is a large, single-dimensional array

 A memory address acts as the index into the memory array

Processor – Memory Interconnections

Processor

Memory

32 bits

?
locations

read addr/
write addr

read data

write data

1111 …1
1011 … 1
1001 … 0

read/write
control

5DV118 20111116t:2A sl:24 Irwin CSE331 PSU

 Memory is a large, single-dimensional array

 A memory address acts as the index into the memory array

Processor – Memory Interconnections

Processor

Memory

32 bits

?
locations

read addr/
write addr
read data

write data

32

32

32
232 Bytes (4 GB)

 → 230

Words (1 GW)

= 4 Bytes = 1 Word

0
4
8

The data stored in
the memory

The word
address of the

data

1111 …1
1011 … 1
1001 … 0

read/write
control

5DV118 20111116t:2A sl:25 Irwin CSE331 PSU

Word Addresses vs Byte Addresses
 Alignment restriction - the memory address of a word must

be on natural word boundaries (a multiple of 4 in MIPS-32)
 But since 8-bit bytes are so useful, most architectures also support

addressing individual bytes in memory

 Big Endian: least-significant byte is word address

 IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

 Little Endian: most-significant byte is word address

Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

msb lsb

3 2 1 0
little endian byte 0

0 1 2 3
big endian byte 0

5DV118 20111116t:2A sl:26 Irwin CSE331 PSU

 MIPS has two basic data transfer instructions for accessing
memory (assume $s3 holds 2410)

lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

 The data transfer instruction must specify
 where in memory to read from (load) or write to (store) – memory

address

 where in the register file to write to (load) or read from (store) – register
destination (source)

 The memory address is formed by summing the constant
portion of the instruction and the contents of the second
register

Accessing Memory

5DV118 20111116t:2A sl:27 Irwin CSE331 PSU

 MIPS has two basic data transfer instructions for accessing
memory (assume $s3 holds 2410)

lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

 The data transfer instruction must specify
 where in memory to read from (load) or write to (store) – memory

address
 where in the register file to write to (load) or read from (store) – register

destination (source)

 The memory address is formed by summing the constant
portion of the instruction and the contents of the second
register

Accessing Memory

2810

3210

5DV118 20111116t:2A sl:28 Irwin CSE331 PSU

MIPS Memory Addressing
 The memory address is formed by summing the constant

portion of the instruction and the contents of the second (base)
register

lw $t0, 4($s3) #what? is loaded into $t0

sw $t0, 8($s3) #$t0 is stored where?

Memory

. . . 0 1 0 0
Data Word Address

0

4

8

12

16

20

24

. . . 1 0 0 0

. . . 0 0 1 0

. . . 0 0 0 1

. . . 1 1 0 0

. . . 0 1 0 1

. . . 0 1 1 0$s3 holds 8

5DV118 20111116t:2A sl:29 Irwin CSE331 PSU

MIPS Memory Addressing
 The memory address is formed by summing the constant

portion of the instruction and the contents of the second (base)
register

lw $t0, 4($s3) #what? is loaded into $t0

sw $t0, 8($s3) #$t0 is stored where?

Memory

. . . 0 1 0 0
32 bit Data Word Address

0

4

8

12

16

20

24

. . . 1 0 0 0

. . . 0 0 1 0

. . . 0 0 0 1

. . . 1 1 0 0

. . . 0 1 0 1

. . . 0 1 1 0$s3 holds 8

in memory location 16

. . . 0001

. . . 0001

5DV118 20111116t:2A sl:30 Irwin CSE331 PSU

Compiling with Loads and Stores

 Assuming variable b is stored in $s2 and that the base
address of array A is in $s3, what is the three statement
MIPS assembly code for the C statement

A[8] = A[2] - b

$s3

$s3+4

$s3+8

$s3+12

. . .

A[2]

A[3]

. . .

A[1]

A[0]

5DV118 20111116t:2A sl:31 Irwin CSE331 PSU

Compiling with Loads and Stores

 Assuming variable b is stored in $s2 and that the base
address of array A is in $s3, what is the three statement
MIPS assembly code for the C statement

A[8] = A[2] - b

$s3

$s3+4

$s3+8

$s3+12

. . .

A[2]

A[3]

. . .

A[1]

A[0]
lw $t0, 8($s3)

sub $t0, $t0, $s2

sw $t0, 32($s3)

5DV118 20111116t:2A sl:32 Irwin CSE331 PSU

Compiling with a Variable Array Index

 Assuming that the base address of array A is
in register $s4, and variables b, c, and i are
in $s1, $s2, and $s3, respectively, complete
the MIPS assembly code for the C statement

c = A[i] - b

add $t1, $s3, $s3 #array index i is in $s3

add $t1, $t1, $t1 #temp reg $t1 holds 4*i

$s4

$s4+4

$s4+8

$s4+12

. . .

A[2]

A[3]

. . .

A[1]

A[0]

5DV118 20111116t:2A sl:33 Irwin CSE331 PSU

Compiling with a Variable Array Index

 Assuming that the base address of array A is
in register $s4, and variables b, c, and i are
in $s1, $s2, and $s3, respectively, complete
the MIPS assembly code for the C statement

c = A[i] - b

add $t1, $s3, $s3 #array index i is in $s3

add $t1, $t1, $t1 #temp reg $t1 holds 4*i

$s4

$s4+4

$s4+8

$s4+12

. . .

A[2]

A[3]

. . .

A[1]

A[0]

add $t1, $t1, $s4 #addr of A[i] now in $t1

lw $t0, 0($t1)

sub $s2, $t0, $s1

5DV118 20111116t:2A sl:34 Irwin CSE331 PSU

 Small constants are used quite frequently (50% of
operands in many common programs)

e.g., A = A + 5;
B = B + 1;
C = C - 18;

 Solutions? Why not?
 Create hard-wired registers (like $zero) for constants like 1, 2, 4,

10, …

 Put “typical constants” in memory and load them

 . . .

Dealing with Constants

 How do we make this work? How do we Make the
common case fast !

5DV118 20111116t:2A sl:35 Irwin CSE331 PSU

 Include constants inside arithmetic instructions
 Much faster than if they have to be loaded from memory (they come

in from memory with the instruction itself)

 MIPS immediate instructions

addi $s3, $s3, 4 #$s3 = $s3 + 4

 And to move (copy) the contents of one register to another in
one instruction

Constant (or Immediate) Operands

There is no subi instruction, can you guess why not?

add $s3, $s2, $zero

5DV118 20111116t:2A sl:36 Irwin CSE331 PSU

MIPS Instructions, so far

Category Instr Example Meaning

Arithmetic add add $s1, $s2, $s3 $s1 = $s2 + $s3

subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3

add
immediate

addi $s1, $s2, 4 $s1 = $s2 + 4

Data
transfer

load word lw $s1, 32($s2) $s1 = Memory($s2+32)

store word sw $s1, 32($s2) Memory($s2+32) = $s1

5DV118 20111116t:2A sl:37 Irwin CSE331 PSU

MIPS Organization, so far

Processor
Memory

32 bits

230

words

read/write
 addr

read data

write data

word address
(binary)

0…0000
0…0100
0…1000
0…1100

1…1100

Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
registers

($zero - $ra)

32

32

32

32

32

32

5

5

5

ALU
32

32

32 0 1 2 3
7654

byte address
(big Endian)

Arithmetic instructions – to/from the register file

Load/store instructions – to/from memory

5DV118 20111116t:2A sl:38 Irwin CSE331 PSU

Review: Unsigned Binary Representation
Hex Binary Decimal

0x00000000 0…0000 0

0x00000001 0…0001 1

0x00000002 0…0010 2

0x00000003 0…0011 3

0x00000004 0…0100 4

0x00000005 0…0101 5

0x00000006 0…0110 6

0x00000007 0…0111 7

0x00000008 0…1000 8

0x00000009 0…1001 9

…

0xFFFFFFFC 1…1100

0xFFFFFFFD 1…1101

0xFFFFFFFE 1…1110

0xFFFFFFFF 1…1111 232 - 1

232 - 2

232 - 3

232 - 4

232 - 1

1 1 1 . . . 1 1 1 1 bit

31 30 29 . . . 3 2 1 0 bit position

231 230 229 . . . 23 22 21 20 bit weight

1 0 0 0 . . . 0 0 0 0 - 1

5DV118 20111116t:2A sl:39 Irwin CSE331 PSU

 Instructions, like registers and words of data, are also 32 bits
long
 Example: add $t0, $s1, $s2

registers have numbers $t0=$8,$s1=$17,$s2=$18

 Instruction Format:

Can you guess what the field names stand for?

Machine Language - Arithmetic Instruction

op rs rt rd shamt funct

000000 10001 10010 01000 00000 100000

5DV118 20111116t:2A sl:40 Irwin CSE331 PSU

 Instructions, like registers and words of data, are also 32 bits
long
 Example: add $t0, $s1, $s2

registers have numbers $t0=$8,$s1=$17,$s2=$18

 Instruction Format:

Machine Language - Arithmetic Instruction

 op rs rt rd shamt funct

000000 10001 10010 01000 00000 100000

Can you guess what the field names stand for?

 0x00 17 18 8 0 0x20

5DV118 20111116t:2A sl:41 Irwin CSE331 PSU

MIPS Instruction Fields

 op

 rs

 rt

 rd

 shamt

 funct

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits = 32 bits

5DV118 20111116t:2A sl:42 Irwin CSE331 PSU

MIPS Instruction Fields

 op

 rs

 rt

 rd

 shamt

 funct

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits = 32 bits

opcode indicating operation to be performed

register file address of the first source operand

register file address of the second source operand

register file address of the result’s destination
shift amount (for shift instructions)

function code that selects the specific variant of the
operation specified in the opcode field

5DV118 20111116t:2A sl:43 Irwin CSE331 PSU

 Consider the load-word and store-word instr’s
 What would the regularity principle have us do?

- But . . . Good design demands compromise

 Introduce a new type of instruction format
 I-type for data transfer instructions (previous format was R-type for

register)

 Example: lw $t0, 24($s2)

Where's the compromise?

Machine Language - Load Instruction

op rs rt 16 bit number

0x23 18 8 2410

 100011 10010 01000 0000000000011000

5DV118 20111116t:2A sl:44 Irwin CSE331 PSU

 Consider the load-word and store-word instr’s
 What would the regularity principle have us do?

- But . . . Good design demands compromise

 Introduce a new type of instruction format
 I-type for data transfer instructions (previous format was R-type for

register)

 Example: lw $t0, 24($s2)

Machine Language - Load Instruction

op rs rt 16 bit number

0x23 18 8 2410

100011 10010 01000 0000000000011000

Where's the compromise?

5DV118 20111116t:2A sl:45 Irwin CSE331 PSU

Memory Address Location

 Example: lw $t0, 24($s2)
Memory

data word address (hex)
0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2 0x12004094

0x00000002

2410 + $s2 =

5DV118 20111116t:2A sl:46 Irwin CSE331 PSU

Memory Address Location

 Example: lw $t0, 24($s2)
Memory

data word address (hex)
0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2 0x12004094

0x00000002

2410 + $s2 =

Note that the offset can
be positive or negative

 . . . 0001 1000
+ . . . 1001 0100
 . . . 1010 1100 =
 0x120040ac

0x120040ac

$t0

5DV118 20111116t:2A sl:47 Irwin CSE331 PSU

Review: Signed Binary Representation
2’sc binary decimal

1000 -8

1001 -7

1010 -6

1011 -5

1100 -4

1101 -3

1110 -2

1111 -1

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 723 - 1 =

-(23 - 1) =

-23 =

1010

complement all the bits

1011

and add a 1

complement all the bits

0101

and add a 1

0110

5DV118 20111116t:2A sl:48 Irwin CSE331 PSU

 Example: sw $t0, 24($s2)

 A 16-bit offset means access is limited to memory locations
within a range of +213-1 to -213 (~8,192) words (+215-1 to -215
(~32,768) bytes) of the address in the base register $s2
 2’s complement (1 sign bit + 15 magnitude bits)

Machine Language - Store Instruction

op rs rt 16 bit number

0x2b 18 8 2410

101011 10010 01000 0000000000011000

5DV118 20111116t:2A sl:49 Irwin CSE331 PSU

 Example: sw $t0, 24($s2)

 A 16-bit offset means access is limited to memory locations
within a range of +213-1 to -213 (~8,192) words (+215-1 to -215
(~32,768) bytes) of the address in the base register $s2
 2’s complement (1 sign bit + 15 magnitude bits)

Machine Language - Store Instruction

op rs rt 16 bit number

0x2b 18 8 2410

101011 10010 01000 0000000000011000

5DV118 20111116t:2A sl:50 Irwin CSE331 PSU

 What instruction format is used for the addi ?
addi $s3, $s3, 4 #$s3 = $s3 + 4

 Machine format:

Machine Language – Immediate Instructions

op rs rt 16 bit immediate I format

8 19 19 4

 The constant is kept inside the instruction itself!
 So must use the I format – Immediate format
 Limits immediate values to the range +215–1 to -215

0x08 19 19 4

5DV118 20111116t:2A sl:51 Irwin CSE331 PSU

 What instruction format is used for the addi ?
addi $s3, $s3, 4 #$s3 = $s3 + 4

 Machine format:

Machine Language – Immediate Instructions

op rs rt 16 bit immediate I format

8 19 19 4

 The constant is kept inside the instruction itself!
 So must use the I format – Immediate format
 Limits immediate values to the range +215–1 to -215

0x08 19 19 4

5DV118 20111116t:2A sl:52 Irwin CSE331 PSU

Instruction Format Encoding, so far

 Can reduce the complexity with multiple formats by keeping
them as similar as possible
 First three fields are the same in R-type and I-type

 Each format has a distinct set of values in the op field

Instr Frmt op rs rt rd shamt funct address

add R 0 reg reg reg 0 32ten NA

sub R 0 reg reg reg 0 34ten NA

addi I 8ten reg reg NA NA NA constant

lw I 35ten reg reg NA NA NA address

sw I 43ten reg reg NA NA NA address

5DV118 20111116t:2A sl:53 Irwin CSE331 PSU

Assembling Code
 Remember the assembler code we compiled last lecture for

the C statement

A[8] = A[2] - b
lw $t0, 8($s3) #load A[2] into $t0
sub $t0, $t0, $s2 #subtract b from A[2]
sw $t0, 32($s3) #store result in A[8]

 Assemble the MIPS object code for these three instructions
(in decimal is fine)

lw

sw

sub

5DV118 20111116t:2A sl:54 Irwin CSE331 PSU

Assembling Code
 Remember the assembler code we compiled last lecture for

the C statement

A[8] = A[2] - b
lw $t0, 8($s3) #load A[2] into $t0
sub $t0, $t0, $s2 #subtract b from A[2]
sw $t0, 32($s3) #store result in A[8]

 Assemble the MIPS object code for these three instructions
(in decimal is fine)

35lw 19 8 8

43sw 19 8 32

0sub 8 18 8 0 34

5DV118 20111116t:2A sl:55 Irwin CSE331 PSU

Review: MIPS Instructions, so far

Category Instr Op
Code

Example Meaning

Arithmetic
(R format)

add 0 &
20hex

add $s1, $s2, $s3 $s1 = $s2 + $s3

subtract 0 &
22hex

sub $s1, $s2, $s3 $s1 = $s2 - $s3

Arithmetic
(I format)

add
immediate

8hex addi $s1, $s2, 4 $s1 = $s2 + 4

Data
transfer
(I format)

load word 23hex lw $s1, 100($s2) $s1 = Memory($s2+100)

store word 2bhex sw $s1, 100($s2) Memory($s2+100) = $s1

5DV118 20111116t:2A sl:56 Irwin CSE331 PSU

Review: Addressing Modes, so far
1. Register addressing

op rs rt rd shamt funct Register
word operand

3. Immediate addressing
op rs rt operand

op rs rt offset

2. Base (displacement) addressing

base register

Memory
word or byte operand

5DV118 20111116t:2A sl:57 Irwin CSE331 PSU

MIPS32 ISA

 Instruction Categories
 Computational
 Load/Store
 Jump and Branch
 Floating Point

- coprocessor

 Memory Management
 Special

R0 - R31

PC
HI

LO

Registers

op

op

op

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

