
5DV118 Fall 2012Computer Organization and Architecture
Obligatory Exercise 1

Due date: December 06, 2012 at 1640 (4:40pm)

1 Overall Task And Goal

In the MIPS architecture, all machine instructions are represented as 32-bit numbers. For example,
consider the 32-bit number 0x71014802. To see whether it represents a valid instruction, first retrieve
the op field, consisting of the leftmost six bits, by dividing by 226. The number obtained is 0x1c,
indicating that it is in a family of instructions which includes madd, maddu, mul, msub, msubbu, clo,
and clz. Those instructions are in R-format, which means that the remaining 26 bits decompose into
the fields rs, rt, id, shamt, and funct, of size 5, 5, 5, 5, and 6 bits, respectively. Computing these
values yields rs=8, rt=1, rd=9, shamt=0, and id=2. (See page 97 of the textbook for the meaning of
these abbreviations.) The decomposed representation of this instruction in hexadecimal format is thus
[0x1c 8 1 9 0 2]. The id field indicates that it is a mul instruction; the mnemonic representation
is mul $t1, $t0, $at.

Similarly, the 32-bit number 0x8c2a0000 represents the instruction lw $t2, 0($at), which is an
I-format instruction with op=0x23, rs=1, rt=0xa, and imm=0. The decomposed representation of
this instruction is thus [0x23 1 0xa 0].

Of course, not all 32-bit number represent instructions. For example, the number 0xffffffff does
not represent any instruction.

Figure B.10.2 on page B-50 of the textbook provides a concise representation of all such codes for
the MIPS instruction set.

The overall task of this assignment is to write a program which determines the MIPS machine instruc-
tion which is associated with a given number.

2 Design and Implementation Requirements

2.1 The Base Assignment

The basic program should read a file with one 32-bit number per line, and generates a MIPS repre-
sentation for that number. The following details apply.

b1. Each number in the input file may be in decimal or hexadecimal format. Both representations
may occur in the same file.

b2. For each number in the input file, the disassembler produces one line of output, which contains:

5DV118, Obligatory Exercise 1, page 2

b2.1 The number from the input file

b2.2 The format of the instruction (R, I, or J).

b2.3 The decomposed representation in decimal.

b2.4 The decomposed representation in hexadecimal.

b2.5 The representation of the instruction in mnemonic format, using register abbreviations
wherever possible (e.g., $t0 instead of $8) and using decimal numbers whenever actual
numbers are necessary.

If the number does not identify an instruction which is known to the program, a message to the
effect Instruction not known should be printed after the number.

b3. For the basic assignment, all instructions of format R, I, and J which are found on pages B-
51 to B-80 of the textbook, except floating-point instructions, must be supported. For the
purposes of this assignment, the floating-point instructions are precisely those with the value
16, 17, or 18 (decimal) in the op field. An instruction is in R-format if its decomposition
is in (6,5,5,5,5,6)-bit format, I-format if its decomposition is in (6,5,5,16)-bit format, and
J-format if its decomposition is in (6,26)-bit format in its description on those pages of the
textbook. Regard instructions with decomposition in (6,5,5,10,6)-bit format with the 10-bit
entry equal to zero as being in R-format. The instructions mult and div are examples. In the
output of the disassembler, such instructions should be represented in (6,5,5,5,5,6)-bit format.
Note that there is a short list of Exception and Interrupt Instructions on page B-80, after the
long list of floating-point instructions, and that of these, nop must be supported by the program.

b4. The output must be formatted in an æsthetically pleasing way, using tabs and column headers.

2.2 Development requirements

d1. The software may be written in C or Java. If C is used, then basic libraries for building GUIs,
such as gtk, may also be used. The final product must compile, load, and runs on the departmen-
tal Linux machine salt. Submissions which require other systems for any of these steps will
not be accepted. Documentation on how to build the executable from source must be included
as part of the user manual. See Section 3 below.

2.3 Grading and Extra Credit

The basic assignment is worth up to 50 points. Up to 25 extra points may be obtained for adding the
following additional features.

xc1. 10 additional points may be obtained by supporting the remaining instructions, exclusive of
pseudoinstructions and those with 16, 17, or 18 (decimal) in the op field. Examples which must
be supported include jr, mfhi, mthi, and syscall. To obtain this credit, these instructions

5DV118, Obligatory Exercise 1, page 3

must be classified succinctly into new formats and each format group must be documented
completely in the user manual. An implementation alone, without full supporting documenta-
tion, will not receive extra credit.

xc2. 15 additional points may be obtained by further classifying input numbers which “partially” but
not totally correspond to valid instructions. There are at least two levels of “partial legality”.
First, the op field may be legal but the funct field does not provide a legal subvalue. For
example, a number with op=0x1c but funct=3 is not legal. Second, a field which must have
a given constant value may have some other value. For example, a number with op=0 and
funct=0x20 must have shamt=0 to be legal. To obtain credit, the information displayed about
the partial legality must be succinct yet informative. Furthermore, the class of instructions
involved must be documented in the user manual.

xc3. No additional points will be awarded for supporting the floating-point instructions, as that
would not add anything new conceptually to this project.

An effective way to check your solution is to feed the mnemonic representations to the SPIM assem-
bler and see whether it produces the original numbers.

3 User Manual

The final submission must include a user manual, written in English, and prepared using a profes-
sional typesetting tool such as LATEX, or else a document processor such as LibreOffice Writer. The
electronic version of the final submission must be in PDF. Word-processor formats such as .doc,
.docx, .odt, .rtf, and the like are not acceptable for the final version, nor is straight ASCII text.

It may be assumed that the reader of the manual has some familiarity with the MIPS instruction set,
but it must otherwise be self contained. In particular, it should not be necessary to study the source
code or to experiment in order to determine how to use the software. It should thus contain step-
by-step instructions, preferably with screenshots or other illustrations, as well as a reference section
which indicates which instructions are supported.

The user manual must also contain a description of how to build the executable from source. This in-
formation should be in a section of the manual which is separate from that which provides information
on how to use the program.

Half of the total quality points will be based upon an evaluation of the user manual.

Clarity is the most important aspect of this manual. It must be easy for a user to see how to use the
software. While perfection in English is not a grading criterion, submissions which are written in a
sloppy fashion, or which have not been run through a spelling checker will lose points.

5DV118, Obligatory Exercise 1, page 4

4 Submission Rules

A printed copy of the user manual must be placed in the appropriate course mailbox on the fourth floor
of MIT-huset. The user-id of each group member for the submission must be indicated clearly on a
cover page of the printed submission. In addition, an electronic copy of the manual (PDF), together
with a file containing the source code, including any necessary make files and the like (all plain
ASCII), must be submitted in the form of a gzipped tarball (.tar.gz) to labs-5dv118@cs.umu.se,
with the user-id of each group member given in the subject line of the message. A submission is not
considered to be complete until both paper and electronic versions have been delivered. (Note that a
printed version of the source code need not be submitted.)

5 Further Guidelines

g1. Solutions may be developed and submitted by groups of up to three individuals.

g2. Late solutions will receive p% of the quality points determined by the grader, where p = 100−
10∗ (number of working days or partial working days late).

g3. Students who have already completed the “laboratory” part of 5DV008 are permitted to submit
this exercise for points only. Please inform the grader if you submit something for points only.

