
Programming Languages, Fall 2008

Assignment 3: SPROL

Contents

1 Aims of this assignment 2

2 The language SPROL 3

3 Existing parts of the implementation 7
3.1 The parser Sprol.jj . 7
3.2 The class Program . 9
3.3 The class Proc . 10
3.4 The class Assignment . 12
3.5 The class ProcCall . 12
3.6 The class Expression . 13
3.7 The class Stack . 13

4 Suggested steps 15

List of Figures

1 Internal representation of a SPROL program 8

1 Aims of this assignment

The aim of this assignment is to become more familiar with the scoping and
parameter passing methods used in imperative programming languages, but
also to train reading descriptions of programming languages and implemen-
tations provided by someone else. For this, you are given an almost complete
implementation of a simple programming language SPROL. What is missing
are the choice and implementation of

• a scoping model,

• a parameter passing model, and

• a primitive data type for which a unary operator ‘~’ and a binary
operator ‘.’ must be provided.

By making these choices and completing the implementation of the SPROL

interpreter (written in Java) accordingly, one obtains a primitive, but nev-
ertheless working programming language. You are asked to make two such

implementations. One of the implementations should use static scoping and
the other should use dynamic scoping. Furthermore, one of the implementa-
tions should implement pass-by-value, and the other pass-by-reference (you
may choose yourself which combinations you implement). Finally, the two
implementations should use two different primitive datatypes. Produce two
different directories lab3a and lab3b, one for each implementation.

In addition, your choices and the way in which these were implemented
shall be described in a short report. The report should discuss all interesting
and important or noteworthy aspects of your work, but omit routine details.
In particular, you should point out the differences between the two imple-
mentations. You should also discuss test programs which are chosen carefully
enough to illustrate how the implemented mechanisms work.

There are a number of restrictions on SPROL (mentioned below)
which are intended to make the implementor’s life (= your life)
easier. You are, of course, highly welcome to drop or weaken some
of these restrictions if you think it makes things more interesting!

In the following section, the programming language SPROL is described in
detail. Afterwards, the already existing parts of the implementation (which
in particular includes a parser) are described. The implementation of these
Java classes should be completed in an appropriate manner (the classes have
been designed in such a way that the assignment can be completed without

2

developing any further classes). Proposed steps in order to arrive at a proper
solution are listed and explained in the last section of this specification.

2 The language SPROL

SPROL (Simple PROgramming Language) is an imperative programming
language which provides the following constructs and concepts:

• nested procedure definitions including parameters and local variables
(nested means that procedures can themselves contain local procedure
definitions which are not visible outside);

• access to nonlocal variables;

• expressions of a single primitive type, in which constants, variables,
and the operations ‘~’ (unary) and ‘.’ (binary) may occur;

• assignment statements of the form X := E, where X is a variable and
E is an expression;

• procedure calls of the form

P(E1,...,En
) if U <> V

where U, V are variables and the if-part is optional; if it is present, the
procedure call is executed only if the values of U and V differ.

Restriction: The arguments E1, . . . , En
of a procedure call

must always be variables.

Identifiers are alphanumeric strings starting with an uppercase letter.
Statements are separated by semicolons, identifier lists by commas. The
following keywords are used:

program introduces the main program,

proc introduces a procedure definition,

var precedes the list of local variables (if present),

begin · · · end enclose the block of statements in a procedure definition,

if is used for conditional procedure calls (see above).

Comments have the form “// 〈text〉” (as in C, C++, Java).
Here is a sample SPROL program. It is a program which I used to test my

different SPROL versions. The constants in expressions have been replaced

3

with the placeholder 〈const〉 in order to hide the primitive type I used.1

program Test

var X, Y, Z

proc Sub1(A, B, C)

var X

proc Sub2()

var X

begin

X := 〈const〉;
Sub3()

end

proc Sub3()

begin

X := (〈const〉 . ((~X) . 〈const〉));
A := (〈const〉 . A);

Sub3() if A <> B

end

begin

X := 〈const〉;
Sub2();

Z := 〈const〉;
C := X;

Z := (Z . (〈const〉 . C))

end

begin

X := 〈const〉;
Y := 〈const〉;
Z := 〈const〉;
Sub1(X,Y,Z)

end

The main program declares three variables X, Y, Z and one procedure
Sub1. Sub1 declares a local variable X (thus, the X in Test is not visible in
Sub1) and two local procedures Sub2, Sub3. Sub1 has formal parameters A,
B, C. Note that Sub2 calls Sub3, which is not local to Sub2. You may try to
figure out how the program behaves under different scoping and parameter
passing models.

1information hiding of a different sort :-)

4

For simplicity, SPROL programs do not take any input. In order to test a
program, you should assign the desired “input” values to its global variables
using assignment statements in the program itself (as is done above with X

and Y before Sub1 is called in Main). In order to test the program for different
input values, you have to change these expressions accordingly and re-run
the program. (Again: Please feel free to extend the syntax and semantics
of SPROL in some way if you want to get rid of this restriction and have an
idea how to accomplish this. For example, a third kind of statement read(X)
which reads a value from the terminal could be implemented and added to
the language rather easily.)

The precise syntax of SPROL is given by the following productions in
EBNF (Extended Backus-Naur-Form, you remember?) notation:

〈program〉 → program 〈ID〉 〈body〉

A program definition consists of the keyword program, followed by an
identifier (the name of the program), followed by its body. Identifiers
belong to the lexical syntax of SPROL and are, as mentioned above,
strings consisting of letters and digits, starting with an uppercase letter.

〈procedure〉 → proc 〈ID〉 (〈identifier_list〉) 〈body〉

A procedure definition consists of the keyword proc, followed by the
procedure’s name, the list of formal parameters in parentheses, and the
body. Note that a simple list of identifiers is sufficient since there is
only one data type and only one parameter passing model.

〈identifier_list〉 → [〈ID〉 { , 〈ID〉 }]

An identifier list consists of an arbitrary number (including zero) of
identifiers with commas in between (recall that [· · ·] denotes something
optional and {· · ·} denotes an arbitrary number of repetitions).

〈body〉 → [var 〈identifier_list〉]
[〈subproc_decls〉]
begin

[〈statement_seq〉]
end

The body of a program or procedure consists of a declaration of local
variables, the definition of local procedures, and a statement sequence
which is enclosed in begin · · · end. Each of the three nonterminal parts
is optional.

5

〈subproc_decls〉 → 〈procedure〉 { 〈procedure〉 }

The definition of local procedures is a sequence of procedure definitions
(without commas, semicolons, or the like in between).

〈statement_seq〉 → 〈statement〉 { ; 〈statement〉 }

A statement sequence is a sequence of statements with semicolons in
between (but not after the last one!).

〈statement〉 → 〈assignment〉 | 〈call〉

A statement is either an assignment or a procedure call (recall that ‘|’
separates alternatives).

〈assignment〉 → 〈ID〉 := 〈expr〉

A assignment consists of an identifier (the variable name) followed by
the symbol := and an expression (the one whose value is to be assigned
to the named variable).

〈call〉 → 〈ID〉(〈identifier_list〉) [if 〈ID〉 <> 〈ID〉]

A procedure call consists of an identifier (the procedure name) followed
by a parenthesis containing the list of parameters (which are variable
names). Optionally, a condition can be added using the keyword ‘if’,
which is followed by two variable names with the symbol <> in be-
tween. The intended semantics is that the call is only executed if the
two variables have different values (or the optional part is left out).

〈expr〉 → 〈const〉
| 〈ID〉
| (˜ 〈expr〉)
| (〈expr〉 . 〈expr〉)

An expression is either a constant (of the type you decide to implement)
or an identifier (the name of a variable), or it has one of the two forms
(~ E) and (E . E ′), where E, E ′ are expressions. Semantically,
the expression (~ E) is meant to denote the application of the unary
operator ‘~’ to (the value of) E. Similarly, (E . E ′) denotes the
application of the binary operator ‘.’ to E and E ′. As mentioned above,
you can (and should) give these operators any meaning you think is
appropriate.

6

3 Existing parts of the implementation and what they do for you

3.1 The parser Sprol.jj

The most important part of the implementation is the SPROL parser. This
parser is defined in a file called Sprol.jj, which mainly describes the context-
free syntax of SPROL by rules similar to those above. The file serves as
input to a rather comfortable parser generator called JavaCC (Java Compiler

Compiler). If the parser generator is applied to this file (“javacc Sprol.jj”)
it generates the source code for a few Java classes, the main one being the
actual parser Sprol.java.

After compilation (“javac Sprol.java”), the resulting parser can be
used to parse and execute a SPROL program. You simply call “java Sprol

〈file〉, where 〈file〉 is the file name of the SPROL program. As a result, the
following happens.

(1) The SPROL program in 〈file〉 is parsed. If no syntax errors are encoun-
tered, the parser produces an internal representation of the SPROL

program, which is an object of the class Program.

(2) The class Program, which is described in more detail below, contains
the method execute(). This method is now called by the parser in
order to interpret the SPROL program.

(3) When (and if) execute() terminates, it prints the final values of the
program variables on the standard output.

The parser does not check any aspects of static semantics. Thus, the use
of undeclared variables, calls of undefined procedures, etc. are not recognized
as errors until runtime. You should make sure that your interpreter reacts
in an appropriate way if such situations are encountered.

The internal representation of a parsed program (see (1) above) consists
of objects which correspond roughly to the SPROL language constructs. For
a small sample program this structure is depicted schematically in Figure 1.
Every box is an object. The class name is indicated in the upper left corner.
Dots with outgoing arrows symbolize references to other objects.

7

program

name: "Example"

static_depth: 0

subproc:

parent: null

local_var:

statement:

"X""Y"

proc

name: "P1"

static_depth: 1

subproc:

parent:

local_var:

statement:

"C"

formal_par: "A" "B"

proc

name: "P2"

static_depth: 1

subproc:

parent:

local_var:

statement:

formal_par: "A"

assignment

left_hand_side: "X"

right_hand_side:

proc_call

name: "P1"

actual_par: "X" "X"

condition_x: null

condition_y: null

assignment

left_hand_side: "C"

right_hand_side:

proc

name: "P3"

static_depth: 2

subproc:

parent:

local_var:

statement:

formal_par:

expression

type: CONSTANT

const_value: "..."

expression

type: DOT_APPLICATION

subexpr:

expression

type: VARIABLE

var_name: "X"

expression

type: TILDE_APPLICATION

subexpr:

expression

type: CONSTANT

const_value: "..."

"Z"

program Example

var Y, X, Z

proc P1(A, B)

var C

begin

C := (〈const〉 . (~X))

end

proc P2(A)

proc P3()

begin

end

begin

end

begin

X := 〈const〉;
P1(X,X)

end

Figure 1: Internal representation of a SPROL program

8

The only thing that you have to do regarding Sprol.jj is to adapt
the parsing of expressions to the type you want to implement, so
that the parser accepts expressions containing constants of that type.
For this, you have to change the line in the definition of expressions
which deals with constants, and which presently reads t = <CONST>.
The nonterminal <CONST> should be replaced by another one. In the
lexical part of the parser, three appropriate nonterminals <STRING>,
<INTEGER>, and <DECIMAL>, are already defined. You may replace the
<CONST> in the definition of expressions with one of these, or choose
another type. In the latter case, you also have to add an appropriate
definition to the lexical part, using a regular expression that defines
the desired lexemes (see the JavaCC documentation or ask one of us
if you have problems with the JavaCC syntax of regular expressions).

Even though it is not necessary for the assignment, it may be interesting
to have a closer look at Sprol.jj. The way in which the parsing of SPROL

works is quite intuitive and proceeds along the context-free rules of the gram-
mar. For each nonterminal, JavaCC generates a method which performs the
parsing. The input file Sprol.jj contains pieces of Java code at appropriate
places in order to construct and initialize Java objects while the parsing pro-
cess proceeds. Notice also the additional method main(String[]) defined
in the beginning of Sprol.jj. It mainly accomplishes what was described
above: creation of a parser object which reads from the given file, invocation
of its parsing method program() (which is one of the methods generated by
JavaCC, based on the rules for this nonterminal further down in the file),
and invocation of the execute() method of the resulting instance.

3.2 The class Program

Nothing needs to be changed here!

This class represents the parsed program. Since a program is merely a
procedure without parameters, it simply extends the class Proc. It overwrites
the method execute() inherited from Proc in order to change it in two
respects. Before executing Proc.execute() it puts a first activation record
onto the runtime stack. When Proc.execute() has terminated the values
of local variables are looked up and printed on the standard output.

9

3.3 The class Proc

This class represents a procedure. Its instance variables contain the infor-
mation gathered by the parser. You should use this information, but there
is no need to change the values of these variables:

String name is the name of the procedure;

Proc parent is the static parent of the procedure;

int static_depth is the static depth of the procedure;

Vector subproc contains the subprocedures of the procedure, all of them
being instances of the class Proc;

Vector local_var contains the names of the locally declared variables, all
of them being instances of the class String;

Vector formal_par contains the names of the formal parameters (in the
correct order, starting with the first one at index 0), all of them being
instances of the class String;

Vector statement contains the sequence of statements of the procedure
(again the first one at index 0), each of them being either an instance
of the class Assignment or of the class ProcCall.

The constructor of Proc is of no importance—it is only used by the parser.
The method execute() is a loop which executes the statements of this pro-
cedure one after another. For each statement, it determines whether it is an
assignment or a procedure call. Accordingly, it invokes execAssignment(· · ·)
or execProcCall(· · ·), which implement the actual execution of the given
statement. These methods take the statement to be executed as a parameter.

Since the evaluation of expressions and the execution of procedure
calls depend on the data type as well as the scope and parameter
passing models, the implementation of execAssignment(· · ·) and
execProcCall(· · ·) is your task! Furthermore, you will have to im-
plement the auxiliary method initRecord(· · ·).

With respect to execAssignment(· · ·), two things need to be done:

(1) Evaluate the expression stored in a.right_hand_side, where a is the
instance of the class assignment representing the assignment statement
to be executed. Note that the result of this evaluation depends on the
values of variables on the stack!

10

To evaluate the expression, a.right_hand_side (which is an instance
of the class Expression) contains the method eval().

(2) On the runtime stack, set the contents of the memory cell to which
a.left_hand_side refers to the evaluation result.

The implementation of execProcCall(· · ·) must do this:

(1) If there is a condition attached to the procedure call, look up the values
of the two variables on the stack. If they are equal, skip the remain-
ing steps. The names of the variables in the condition are stored in
c.condition_x and c.condition_y by the parser (where c is the in-
stance of ProcCall which represents the call statement). If there is no
condition, then c.condition_x and c.condition_y are null.

(2) Search for the instance of Proc within the static scope of the present
procedure whose name equals the name of the procedure to be called
(which is stored in c.name). For this, you first have to search the vector
of direct subprocedures of the present procedure (i.e., in the vector
subproc). If you do not find it there, search the direct subprocedures
of the static parent, and so on. (If the call refers to a procedure which
does not exist in the static scope of the parent you will finally encounter
the static parent null. Make sure that you exit the program gracefully
with an appropriate error message in this case.)

(3) When the procedure P to be called has been found, set up its activation
record using P.initRecord(Vector, int). The first argument should
be the vector of actual parameters of the call (stored in c.actual_par).
The method initRecord(· · ·) should use this in order to bind the
formal parameters to the actual ones given in this vector. The second
parameter is the static depth of the calling procedure. This is needed
by initRecord(· · ·) in order to set up the static link correctly.

(4) Call P.execute() in order to run P.

(5) Remove the activation record from the stack when P.execute() has re-
turned. If your version of the language contains pass-by-result parame-
ters, the corresponding parameter passing actions need to be performed
here, too.

Finally, here is what initRecord(actual, calling_depth) should do:

(1) For each actual parameter (whose names are stored in actual) deter-
mine the corresponding memory cell from the stack. For this, the class
Stack contains the method getCellOf(String).

11

(2) Create and initialize a new activation record using the method stack.

addRecord(int). To set up the correct static link you need to pass
the nesting depth as a parameter. (Recall how the nesting depth is
determined from the static depth of the calling procedure and the static
depth of this procedure, which is the called one.)

(3) For each formal parameter name (whose names are stored in the vector
formal_par), create a variable on the stack and bind it to the corre-
sponding actual parameter given in the vector actual. Depending on
the parameter passing model you have chosen, this should either bind
the variable to the cell determined in step (1) or to a newly created cell
which gets initialized with the contents of the cell determined in step
(1).

(4) For each local variable name (stored in the vector local_var), add a
corresponding variable to the activation record.

3.4 The class Assignment

Nothing needs to be changed here!

This class represents an assignment. It contains two instance variables
called left_hand_side and right_hand_side. The first is the variable name
to the left of ‘:=’ (a String), and the second is the expression on the right-
hand side of the assignment (an instance of the class Expression discussed
below). The constructor of this class is only used by the parser.

3.5 The class ProcCall

Nothing needs to be changed here!

This class represents a procedure call. Again, only its instance variables
are of interest. The first is name, the name of the called procedure, which is a
String. The second is actual_par, containing the actual parameters. This
is simply a vector of strings—recall that all actual parameters are required
to be variables!

Finally, there are two strings condition_x, condition_y. If the repre-
sented procedure call is subject to a condition if X <> Y, then these strings
are the names of the two variables, otherwise they are null.

12

3.6 The class Expression

This class represents SPROL expressions, using the following instance vari-
ables.

int type determines whether the expression is a constant, variable, of the
form (˜ E), or of the form (E.E ′). Accordingly, its value may be
CONSTANT, VARIABLE, TILDE_APPLICATION, or DOT_APPLICATION (which
are constants defined in Expression.java with the obvious meaning);

String const_value contains the string representation of the expression if
it is a constant (i.e., if type equals CONSTANT)

String var_name contains the name of the variable if the expression is a
variable (i.e., if type equals VARIABLE)

Expression[] subexpr is the array of subexpressions in those cases where
type equals TILDE_APPLICATION or type equals DOT_APPLICATION (in
the first case of length 1, in the second of length 2).

There is one usual constructor and there are four static ones (for the four
types of expressions), which are of interest only for the parser.

In addition, there is the method eval() used during the execution
of assignment statements. Since it depends on the chosen data type,
only a skeleton is provided. You have to fill in the details. Here are
some hints:

• Recall that constant_value contains the string representation
of a constant (exactly as the parser reads it). Thus, some con-
version into a more suitable representation is probably useful in
the first case (for example, using Integer.valueOf(String) if
you choose integers as your data type).

• To evaluate a variable, you have to fetch the contents of its
memory cell from the stack.

• The two remaining cases seem to be a situation where the use
of recursion is a good idea ;-).

3.7 The class Stack

This class implements the runtime stack as a vector of activation records.
Activation records are represented by the protected local class ActRecord.
An activation record is a vector of variables. In addition, an activation record

13

contains a static link (represented as an int—the index of the activation
record to which the link points). A variable is represented by the private
local class Variable. It consists of a name (instance variable name) and a
memory cell (instance variable mem_cell). For simplicity, memory cells have
been realized as Object arrays of length 1. The object stored in the array
entry is the contents of the memory cell.

Reflecting the fact that there should be only one runtime stack, all meth-
ods in Stack are static and act on a single private Stack instance called st.
Here is the description of the methods in Stack:

addRecord(int) creates a new activation record, puts it on the top of the
stack, thus making it active. The parameter is the nesting depth of
the calling procedure within the called procedure’s parent. It is used
in order to set up the static link of the record correctly.

This method should be used in proc.initRecord(· · ·) in order to
put a new activation record on the stack when a procedure is called.

deleteRecord() removes the topmost activation record from the stack.

You will probably have to use this method at the end of your im-
plementation of proc.execProcCall(· · ·).

addVariable(String, Object[]) adds a new variable to the currently active
(= topmost) activation record. The first parameter is the variable
name. The second should be an array of length 1 or null. In the first
case it will be bound to the variable as its memory cell. In the second
case a fresh memory cell with a null contents will be allocated and
bound to the variable.

getCellOf(String) returns the memory cell to which the given variable
name refers.

This need to be filled in by you. You will probably have to use
this method in your implementation of proc.execAssignment(· · ·)
and/or proc.execProcCall(· · ·). Note that the implementation
depends on the scope model you use since you do not only have
to search the current activation record but also its dynamic respec-
tively static ancestors if the variable is not local.

getCellContentsOf(String) returns the contents of the memory cell which

14

is bound to the variable. This is just a convenience method which uses
getCellOf(· · ·)) in order to find the memory cell whose contents is
asked for. The method indicates a runtime error and terminates the
program if the cell is uninitialized (i.e. if its contents is null).

You may use this method in your implementation of the method
proc.initRecord(· · ·) if you implement pass-by-value parameters,
and in your implementation of Expression.eval(· · ·).

4 Suggested steps

The following steps should lead to a successful completion of the implemen-
tation:

1. Decide which scope model, parameter passing model, and primitive
data type (including the two operations) you want to use.

2. Adapt the parser to your primitive data type as explained in the de-
scription of Sprol.jj.

3. Complete the implementation of Stack.java.

4. Implement the evaluation method of the class Expression.

5. Implement the missing parts in the methods of Proc.

6. Run some test programs which are simple, but nevertheless cover all
relevant cases, in order to be reasonably sure that your interpreter
works correctly.

If your test programs are not interpreted correctly and you cannot find out
where the problem lies, it may be useful to add a simple tracing mechanism
to Stack.java, which prints the stack (or part of it) whenever something is
changed.

General information

• The assignment is due 9 January, 2009, 10:00.

• The assignment is to be done in pairs.

• A complete report is expected.

15

