
Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Introduction to web development in Java/JSP

Dennis Olsson

Tuesday 31 July

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

1 Composite types

2 Java

Common loops

Output to terminal

3 Example class

Example usage

4 Constructors

5 Polymorphism

Interfaces

Polymorphism

6 Packages

7 Dynamic class loading

8 Error Handling

9 Summary

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Composit types

Composite types are used in nearly every language. Some
examples:

• C – struct

• Pascal – record

• Object Oriented - class

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Accessing data

Composite types are containers for (one or) several other
values.

This is a way to create a hierarchy for data in memory. A basic
example of a set of variables that belong together is:

person age, person fname, person lname

It is possible to join them under a common variable. This way
person has three attributes, namely: age, fname, lname. In
Java these can be accessed via punctation, as:

person.fname + " is " + person.age + " old."

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Objects

The advantage of this is structure. Instead of having
person1 age, person2 age, etc., only person1 and person2
is needed. the rest of the data is hidden inside them.

Since each variable can be seen as an object, as the person
being an object owning it’s age, which is a type of object of
time etc., this is the base for Object Oriented languages.

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Classes

An object is an instance of a class during run time. This is
what the programmer interact with when the program is
executed.

A class is a composite type with devoted functions (methods).
This is the drawing the programmer constructs for the data
handling.

A class is what states that there is an attribute named age. An
object is the chunk of data accually having the attribute’s
value.

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

More comparisons

An object could be compared with a box containing notes
(attributes):

• A note with a primitive value.

• A note with the number of another box (reference).

Not in the scope of this course:

• Another box (inheritance)

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Hierarchy

Each type of class has a set of methods (≈functions) it can
perform.

If the method is unsupported by the class, the method will be
called in the next class in the hierarchy. (More on this subject
later during the course)

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Naming conventions

Naming Convention used by Sun:

• class
• Noun
• Composed words
• All words have initial capital
• E.g. CarEngine

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Naming conventions

Naming Convention used by Sun:

• method
• Composed words
• All words except the first have initial capital
• E.g. doMagic()

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Naming conventions

Common prefixes in a method name:

• isXXX() - return boolean if true

• setXXX(value) - Set value of XXX

• getXXX() - Get value of XXX

Less common/more specific:

• addXXX() - Add a value to some kind of list/set

• removeXXX(value) - Remove an element from a list/set

• doXXX() - Execute a specific task

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Visibility

Visibility modifiers for classes:

• private – only reachable from the same class

• no modifier – also the same package

• protected – also through inheritance

• public – from any class

Only private and public of interest in this course.

The reason why anyone should use for instance private is to
hide accessibility to other classes. This way error handling is
made much easier, since a private method only will be called
from the same class. This also eases re-writing of code. If all
methods were public, the entire program would have to be
checked.

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Java syntax

Java looks and behaves a lot like C/C++. Therefore a lot of
the following examples would be close to identical in the three
languages.

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

while

while(condition) {
// code block

}

Execute the code block iff the condition is true, repeat until
condition is false.

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

do . . . while

do {
// code block

} while(condition);

Execute the code block, then repeat iff the condition is true.

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

for

statement_A;
while(condition) {
// code block
statement_B

}

Could be written as:

for(statement_A ; condition ; statement_B) {
// code block

}

Example:

for(int i = 0 ; i < 100 ; i++) {
// code block

}

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

I/O

For the sake of example creation

Standard output – send text to the console:

System.out.print("Print this");
System.out.println("Print this");

Standard error – send text unbuffered to the console:

System.err.print("Print this");
System.err.println("Print this");

Also, System.in exists, which can be used to read text from
the console.

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

I/O in JSP

In JSP the variable out can be used to send text to the
browser. For instance:

out.println("Hello World!");

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Example class - MyNumber

class MyNumber {
// Member variable, default value = 0
private int number = 0;

// Set the value of the number
public void setNumber(int number) {
this.number = number;

}

// Get the value of the number
public int getNumber() {
return number;

}
}

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Explanation of MyNumber

private int number = 0;

A private variable, which means it’s reachable from within
the class itself, but not from the outside.

The value is set to 0 as soon as the object is created.

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Explanation of MyNumber

public void setNumber(int number) {
this.number = number;

}

A public method, reachable from everywhere were this object
is known.

Will set the number of the member variable (this is used since
there are several variables with the same name) to the given
value.

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Explanation of MyNumber

public int getNumber() {
return number;

}

A public method, reachable from everywhere were this object
is known.

Will get, and return, the number of the member variable.
number.

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

MyNumber

class MyNumber {
// Member variable, default value = 0
private int number = 0;

// Set the value of the number
public void setNumber(int number) {
this.number = number;

}

// Get the value of the number
public int getNumber() {
return number;

}
}

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Using MyNumber(1)

class MyMax {
// Starting value
private MyNumber maxNum = new MyNumber();

// Update the value of the number
public boolean addNumber(MyNumber number) {
if (maxNum.getNumber() < number.getNumber()) {
maxNum.setNumber(number.getNumber());
return true;

}
return false;

}

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Using MyNumber(2)

// Get the value of the number
public int getMaxNumber() {
return maxNum.getNumber();

}
}

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Constructors

A constructor is the method first runned in an object.

When using “new MyNumber()” there were no constructor
defined, and therefore nothing was runned. We can create a
constructor as:

public class Merlin {
public Merlin() {
System.out.println("No arguments");

}
public Merlin(int a) {
System.out.println("Argument given: " + a);

}
}

This enables “new Merlin()” as well as “new Merlin(4)”;

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Overloading

Several methods (for example constructors) can co-exist with
the same name, as long as they have different arguments. This
is called overloading.

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Interfaces

An interface is a content list of required methods. This way
you could know that a certain method is implemented if the
class implements the interface.

Could be compared with a “content”-list on the outside of the
box, guarenteeing some variabler/methods to exist.

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Interfaces – example

public interface Magician {
public void doMagic();

}

public class Merlin implements Magician {
public void printName() {
System.out.println("My name is Merlin");

}

public void doMagic() {
System.out.println("Abracadabra");

}
}

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Polymorphism

A class is, as well as itself, a version of it’s parents and all
interfaces.

Merlin is both Merlin and a Magician.

Therefore we could use Merlin as a Magician only, if we want.

Magician m = new Merlin();
m.doMagic();
m.printName(); //<- Will result in a compile error

// A Magician is not Merlin

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Polymorphism

All objects are at least an Object.

Test any polymorphic match with instanceof.

Object m = new Merlin();

if(m instanceof Magician)
System.out.println("We have a magician!");

if(m instanceof Merlin)
System.out.println("The magician is Merlin.");

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Typecasting

If you are sure a class implements a certain interface you could
typecast it. This will “force” the object to be handled as the
given one.

Typecasting is done by giving the target type within parenthesis
before the variable.

Object m = new Merlin();

if(m instanceof Merlin)
((Merlin)m).printName();

if(m instanceof Magician)
((Magician)m).doMagic();

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Structuring the code

Ten or more classes can lead to problems with colliding names
and differences between classes becoming hard to remember.

There’s a need for structure between classes.

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Packages

Packages is defined with the keyword package, for instance:

package fantacy;

public class Merlin implements Magician {
// ...

}

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Importing

To use an external package or parts from it, use the keyword
import. A trailing wild card will enable usage of all classes in
the package. An alternative is to only define one class.

import fantacy.*;
import java.util.LinkedList;
...
Object m = new Merlin();
LinkedList l = new LinkedList();

This goes for classes as well as interfaces. By convention, a
reversed domain name is used, for instance se.umu.cs.doa.*,
which will enable usage of all classes in “se.umu.cs.doa”
directly.

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Classpath

The packages are searched for in the same order as the
classpath contains them. The Java API comes last.

Classes could also be used by calling them directly, as:

java.util.LinkedList l = new java.util.LinkedList();

If you have a hierarchy in your classpath, each “.” should mean
“a sub directory of”. This means that “se.umu.cs.doa.AClass”
would be placed in: SOMEDIR/se/umu/cs/doa/AClass.java,
the package of AClass should be “se.umu.cs.doa” and
SOMEDIR should be added to your classpath.

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Java ARchives

A set of directories in the base of a classpath (for instance
SOMEDIR in the previous slide) can be packed into a JAR-file
(Java ARchive).

A JAR-file is a special ZIP-file with a Manifest, an explanation
of the archive. The manifest could also include user-specified
fields readable by the application.

These archives can be added to the classpath.

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Dynamic class loading

To load a class in a dynamic way, we use code like:

try {
Class c = getClass();
Object m = c.forName("Merlin").newInstance();

} catch (Exception e) {
e.printStackTrace();

}

Ignore the try. . . catch until the next slide.

This loads the class with the given name, and creates a new
object (instance) of it.

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

try . . . catch

What about try. . . catch?

When something goes wrong, we can throw an exception. It is
a small object used only to identify an error.

If an exception is created and thrown in a method, the parent
(caller) must either handle it, or throw it to it’s parent. If a
method could throw (or pass on) an exception, it must be
specified in the declaration.

public void doMagic()
throws OutOfMagicDustException {
...

}

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Using try . . . catch

If you want to handle a throwed exception you must use
try. . . catch. The try-block will be executed, and as soon as
an exception is thrown, it’s aborted, and the correct handler
(prioritized from the top down) will be runned. The first
polymorphic match will be used.

This means you can have several catch-blocks.

try {
m.doMagic();
anotherObject.setStuff(2);

} catch (OutOfMagicDustException oomde) {
oomde.printStackTrace();

} catch (StuffReadOnlyException sroe) {
sroe.printStackTrace();

}

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Runtime Exceptions

Some exceptions may be thrown without notice. For instance
NullPointerException, which means you didn’t initialize
something properly before using it, or ArithmeticException
when dividing something by zero.

These exceptions can be catched as well.

To catch all exceptions, use their most common polymorphic
form, the interface Throwable.

} catch (Throwable t) {

Introduction
to web

development
in Java/JSP

Dennis Olsson

Today

Composite
types

Java

Common loops

Output to
terminal

Example class

Example usage

Constructors

Polymorphism

Interfaces

Polymorphism

Packages

Dynamic class
loading

Error Handling

Summary

Summary

• What Classes and Objects are.

• Seen some examples of simple classes.

• Talked about constructors.

• How objects can be seen as more general ones with
polymorphism.

• What an interface is, and how (and for what) it can be
used, and its connection to polymorphism.

• Packages, classpath, dynamic class loading.

• Error handling.

	Today
	Composite types
	Java
	Common loops
	Output to terminal

	Example class
	Example usage

	Constructors
	Polymorphism
	Interfaces
	Polymorphism

	Packages
	Dynamic class loading
	Error Handling
	Summary

