
Cell Broadband Engine
Introduction and Communication

Lars Karlsson

April 28, 2009

Resources

(1) IBM DeveloperWorks Cell BE Resources.
http://www.ibm.com/developerworks/power/cell/

In particular,
I Programmer’s Guide
I Programmer’s Tutorial
I Cell BE Architecture Programming Handbook
I C/C++ Language Extensions for Cell BE Architecture
I SPE Runtime Management Library

(2) Programming the Cell Broadband Engine Architecture:
Examples and Best Practices.
http://www.redbooks.ibm.com/redbooks/pdfs/sg247575.pdf

http://www.ibm.com/developerworks/power/cell/
http://www.redbooks.ibm.com/redbooks/pdfs/sg247575.pdf

Header Files and Libraries

I PPU
I Header files:

ppu intrinsics.h
libspe2.h for managing SPUs
pthread.h for OS threads

I Libraries:
-lpthread
-lspe2

I SPU
I Header files:

spu intrinsics.h
spu mfcio.h

Cell BE Architecture

I 1 PPU (PowerPC Processing Unit).

I 8 SPUs (Synergistic Processing Unit).

I Different instruction set architectures (ISAs).
I Each SPU has a 256KB fast local storage (LS).

I Instead of cache.
I Communication to/from main memory via direct memory

access (DMA).
I DMA concurrent with computation: offloaded to memory flow

controller (MFC).

I The PPU has a modern and complex architecture with
out-of-order execution, branch prediction, caching, etc. The
PPU runs the operating system software.

I The SPUs have a SIMD architecture with 128-bit registers
and a less complex architecture.

I In-order execution.
I No (automatic) branch prediction.
I Two pipelines, dual issue.

Communication

I PPU has several levels of cache.

I PPU, memory, SPUs connected by the element interconnect
bus (EIB).

I EIB consists of several ring networks with high bandwidth.
I There are several mechanisms for communication, e.g.,

I DMA – general memory access.
I Mailboxes – 32-bit messages.
I Signals – notifications.
I Events – events external to the SPU.

I The PPU maps parts of an SPU into its address space and
forwards the EA to other SPUs for use in DMA operations.

Compiling and Linking

I Compiling and linking an SPU binary:

spu-gcc -o spu_bin spu.c

I Embedding an SPU binary in a PPU object file:

ppu-embedspu speobjectname spu_bin spu_bin-embed.o

Use ppu32-embedspu for 32-bit PPU binaries.
I Compiling and linking a PPU binary containing an embedded

SPU binary:

ppu-gcc -o ppu_bin ppu.c spu_bin-embed.o -lspe2 -lpthread

Use ppu32-gcc for 32-bit PPU binaries.

Launching SPE Code

I Initial declarations:

spe_context_ptr_t spe_ctx; // SPE context

spe_stop_info_t stop_info; // Status information

uint32_t entry = SPE_DEFAULT_ENTRY; // Entry point

I Create SPE context:

spe_ctx = spe_context_create(0, NULL);

I Load SPE object into the SPE context:

spe_program_load(spe_ctx, &spu_main);

I Run the SPE context until completion:

spe_context_run(spe_ctx, &entry, 0, NULL, NULL, &stop_info);

I Destroy context:

spe_context_destroy(spe_ctx);

Addresses and 32/64-bit Issues

I The PPU binaries use either 32-bit or 64-bit addresses
(depending on the compilation).

I The SPU binaries always use 32-bit addresses.

I A pointer on the SPU can be stored in a 32-bit unsigned
integer, uint32 t (see <stdint.h>).

I A pointer to main memory can always be stored in a
uint64 t.

I The functions mfc ea2l(ea64) and mfc ea2h(ea64) extract
the low and high 32 bits of a 64-bit address.

SPU main

I Declaration of SPU main:

int main(int speid, uint64_t argp, uint64_t envp);

I speid
Numerical identifier of the context.

I argp
Main memory address of “arguments”.

I envp
Main memory address of “environment”.

I Both argp and envp are specified as parameters to
spe context run:

spe_context_run(spe_ctx, &entry, 0, argp, envp, &stop_info);

Therefore, they are simply two arbitrary 64-bit integers passed
from the PPU to an SPU.

SPE-Initiated DMA To/From Main Memory

I Initial declarations:

uint32_t tag; // Tag

uint64_t ea = ...; // Effective address in main memory

volatile char data[256] __attribute__((aligned(128)));

I Reserve tag ID:

tag_id = mfc_tag_reserve();

I Enqueue a DMA GET command:

mfc_get((void*) data, ea, sizeof(data), tag, 0, 0);

I Wait for completion:

mfc_write_tag_mask(1 << tag);

mfc_read_tag_status_all();

I Free tag ID:

mfc_tag_release(tag_id);

DMA Restrictions

I Size must be 1, 2, 4, 8, 16, or a multiple of 16 bytes.

I Requests of size 1, 2, 4, 8, and 16 bytes: naturally aligned.

I Requests of a multiple of 16 bytes: 16 byte aligned.

I Source and destination effective addresses must have same 16
byte offset (same four least significant bits).

I Best performance when 128 byte aligned.

Managing DMA Restrictions: Alignment

I The compiler can be instructed to align variables to specific
boundaries.

I Requesting 16 byte alignment:
char data[256] __attribute__((aligned(16)));

Use for
I variables
I struct members

I Padding the size of a struct:
struct foo {

char a;

} __attribute__((aligned(16)));

// sizeof(struct foo) == 16

I Setting a byte to 1, regardless of alignment:
const char one[16] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1};

uint32_t offset = (uint32_t) (ea & 0xf);

mfc_put((void*) &one[offset], ea, 1, tag, 0, 0);

Managing DMA Restrictions: Odd Sizes and Misalignment

I Odd sized and/or misaligned requests must be reformulated as
a composition of correctly sized requests.

I Code for finding the next larger multiple of 16:

#define ceil16(x) (((x) + 15) & ~15)

I How to PUT a string of any length:

char str[256] __attribute__((aligned(16))) = "Hello Cell!";

mfc_put((void*) str, ..., ceil16(strlen(str)), ...);

DMA Lists

I DMA lists are sequences of DMA commands that reads/writes
segments from/to main memory.

I Segments in main memory can be discontinuous.

I The same restrictions as for basic DMA applies to DMA lists
as well.

I Each local segment is automatically aligned to a 16 byte
boundary.

I List element struct:

typedef struct {

uint64_t notify : 1; // stall-and-notify flag

uint64_t reserved : 16;

uint64_t size : 15; // size in bytes

uint64_t eal : 32; // lower 32-bits of main memory address

} mfc_list_element_t;

Mailboxes: SPU Side

Each SPU has an incoming (4 uint32 t) and an outgoing mailbox
(1 uint32 t).
SPU mailbox functions:

I Read next element in inbound mailbox (stalls if empty).

uint32_t spu_read_in_mbox(void)

I Query the number of waiting elements in inbound mailbox.

uint32_t spu_stat_in_mbox(void)

I Write element to outbound mailbox (stalls if full).

void spu_write_out_mbox(uint32_t data)

I Query the available capacity of the outbound mailbox.

uint32_t spu_stat_ou_mbox(void)

Mailboxes: PPU Side

I Read one or more elements from the SPU (nonblocking).
Returns the number of elements actually read.

int spe_out_mbox_read(spe_context_ptr_t spe, // SPE context

unsigned int *mbox_data, // buffer

int count) // number of elements

I Query the number of available outgoing elements.

int spe_out_mbox_status(spe_context_ptr_t spe)

I Write one or more elements to the SPU. Returns the number
of elements actually written.

int spe_in_mbox_write(spe_context_ptr_t spe, // SPE context

unsigned int *mbox_data, // buffer

int count, // number of elements

unsigned int behavior)

I Query the available capacity on the incoming mailbox.

int spe_in_mbox_status(spe_context_ptr_t spe)

Double Buffering

i = 0;

// Load buffer 0.

mfc_get(buf[i], ..., tag[i], ...);

while(! done) {

// Load next buffer (barrier ensures store has finished).

mfc_getb(buf[i^1], ..., tag[i^1]...);

// Wait for buffer i to finish loading.

wait(tag[i]);

// Compute on buffer i.

// Store buffer i.

mfc_put(buf[i], ..., tag[i], ...);

// Switch buffers.

i ^= 1;

}

// Wait for last buffer to finish loading.

wait(tag[i]);

// Compute on last buffer.

// Store last buffer.

mfc_put(buf[i], ..., tag[i], ...);

// Wait for last store.

wait(tag[i]);

Atomic Operations

I Atomic operations can be implemented using the general
concepts of locked lines and reservations.

I Structure of atomic operation:

1. Load the variable and add reservation.
2. Modify the variable.
3. Store the variable if the reservation was not lost.

I The first and third steps are supported by atomic DMA
commands.

I The second step is application specific which makes the whole
construction very general.

Atomic Operations: Implementation

I Load with reservation:

mfc_getllar((void*) ls, ea, 0, 0); // 128B and 128B aligned

mfc_read_atomic_status();

I Store if reserved (status != 0 means reservation lost):

mfc_putllc((void*) ls, ea, 0, 0);

status = mfc_read_atomic_status() & MFC_PUTLLC_STATUS;

I Store regardless of reservation:

mfc_putlluc((void*) ls, ea, 0, 0);

mfc_read_atomic_status();

Atomic Operations: Skeleton

uint32_t status;

// Loop until successful.

do {

// Load 128B variable and add reservation.

mfc_getllar((void*) ls, ea, 0, 0);

// Wait for completion.

mfc_read_atomic_status();

// Update variable...

// Try to store the variable.

mfc_putllc((void*) ls, ea, 0, 0);

// Wait for completion and check status.

status = mfc_read_atomic_status() & MFC_PUTLLC_STATUS;

} while(status);

High Resolution Timings

I The SPU decrementer can be used as a high resolution timer.
I spu_write_decrementer(0x7fffffff); // initialize decrementer

uint32_t t1 = spu_read_decrementer(); // read initial value

// do work...

uint32_t t2 = spu_read_decrementer(); // read final value

uint32_t diff = t1 - t2; // elapsed time (in ticks)

I Conversion to seconds:

float timebase = 266664960.f; // Machine dependent (ticks / sec).

float sec = diff / timebase;

