
Design principles for Design principles for

parallel algorithmsparallel algorithms

GramaGrama

Introduction to Parallel Computing Introduction to Parallel Computing

Chapter 3Chapter 3

Mikael RännarMikael Rännar

(after material by Robert Granat)(after material by Robert Granat)

Design principles for Design principles for

parallel algorithmsparallel algorithms

GramaGrama et al. et al.

Introduction to Parallel Computing Introduction to Parallel Computing

Chapter 3Chapter 3

Mikael RännarMikael Rännar

(after material by Robert Granat)(after material by Robert Granat)

Basic parallel algorithm design

� Serial algorithm design - sequence of steps to solve a given
problem with the help of a computer, a kind of ”recipe”

� Nontrivial parallel algorithm design
– Identify parts of the work that can be performed in concurrently
– Map the concurrent parts onto multiple processes running in parallel
– Distribute the input, results and intermediate data

Mikael Rännar

– Distribute the input, results and intermediate data
– Managing accesses to data shared by multiple processors
– Synchronizing the processors during execution

� Especially:
– Split the work in smaller pieces
– Assign these pieces to different processors
– Something also may also fall out during the process...

2

Basic parallel algorithm design

sequence of steps to solve a given
problem with the help of a computer, a kind of ”recipe”

parallel algorithm design – extends the serial design:
parts of the work that can be performed in concurrently

the concurrent parts onto multiple processes running in parallel

the input, results and intermediate data

Design och Analys av Algoritmer för Parallelldatorsystem

the input, results and intermediate data

accesses to data shared by multiple processors

the processors during execution

to different processors

Something also may also fall out during the process...

Conceptions in this lecture

� Decomposition

� Tasks

� Dependency Graphs

� Mapping

� Methods for hiding interaction

Mikael Rännar

� Methods for hiding interaction

� Models for parallel algorithms

3

Conceptions in this lecture

Design och Analys av Algoritmer för Parallelldatorsystem

Detailed overview

Decomposition (splitting)

� Recursion

� Data

� Exploratory

� Speculative

� Hybrid

Tasks

Mikael Rännar

Tasks

� Characteristics

� Characteristics of inter-task
interaction

Dependency graphs

Mapping

� Static

� Dynamic

4

Methods for hiding interaction

� Maximize locality

� Minimize bottle necks

� Overlap computations and
communication

� Collective communication operations

� Overlap interactions

� Replicate data

Design och Analys av Algoritmer för Parallelldatorsystem

� Replicate data

� Extra computations

Models for parallel algorithms

� Data parallel

� Task graph

� Work pool

� Master-slave

� Pipeline

Decomposition – different types of splitting

� Solve a problem in parallel ⇒ split

� The decomposition defines the tasks

� The decomposition defines DAG
(Directed, Acyclic Graph, nodes=tasks, edges=dependencies)

� The first (and most important) step in the design of a parallel
algorithm

Mikael Rännar

algorithm

� The choice of the decomposition

Exemple of a dependency graph

5

different types of splitting

split the computations

tasks

The decomposition defines DAG-dependency graph
(Directed, Acyclic Graph, nodes=tasks, edges=dependencies)

The first (and most important) step in the design of a parallel

Design och Analys av Algoritmer för Parallelldatorsystem

decomposition determines later choises

Granularity and parallelism

� The number of tasks from the decomposition and their size
determines the granularity

– Fine-grained vs. Coarse-grained

� Level of parallelism – ”level of concurrency”

– Maximum: maximum number of tasks that can be executed simultaneously

– Average: the average number of tasks that can be executed

Mikael Rännar

– Average: the average number of tasks that can be executed
simultaneously in the whole execution

– Maximum and average degree of concurrency
(normally increases as the granularity becomes finer)

6

Granularity and parallelism

The number of tasks from the decomposition and their size

”level of concurrency”

: maximum number of tasks that can be executed simultaneously

: the average number of tasks that can be executed

Design och Analys av Algoritmer för Parallelldatorsystem

: the average number of tasks that can be executed
simultaneously in the whole execution

degree of concurrency depends on the granularity
(normally increases as the granularity becomes finer)

Granularity and parallelism

� P = ”The critical path” in a dependency graph
between any pair of start and finish nodes.

� L = ”Critical path length”, sum of all work along the critical path

� W = Total amount of work in the parallel algorithm

� A = W / L, gives the average degree of concurrency

Mikael Rännar

� => Short critical path gives higher degree of concurrency

� The granularity can/should not be increased too much

– The problem can have inherent bounds

– Too fine granularity can give other performance problems
� Bad cache-utilization

� Too much interaction between tasks

7

Granularity and parallelism

in a dependency graph – the longest path
between any pair of start and finish nodes.

, sum of all work along the critical path

in the parallel algorithm

A = W / L, gives the average degree of concurrency

Design och Analys av Algoritmer för Parallelldatorsystem

Short critical path gives higher degree of concurrency

can/should not be increased too much

inherent bounds of the granularity

other performance problems

between tasks

Interaction between tasks

� Normally there exists some kind of
in all parallel programs

� Maybe even between tasks that seems to be completely
independent in dependency graph of the program

� The interaction pattern can be described in an
graph (nodes=tasks, edges=interaction)

Mikael Rännar

graph (nodes=tasks, edges=interaction)

8

Interaction between tasks

Normally there exists some kind of interaction between sub-tasks

Maybe even between tasks that seems to be completely
independent in dependency graph of the program

The interaction pattern can be described in an task-interaction
(nodes=tasks, edges=interaction)

Design och Analys av Algoritmer för Parallelldatorsystem

(nodes=tasks, edges=interaction)

Processes and mapping

� Decomposition results in sub-tasks
physical processors

� Mapping is the mechanism that
processes

� Process = more abstract concept for
uses data belonging to a specific task

Mikael Rännar

uses data belonging to a specific task
parallel execution

� Allows for hierarchical mapping
programming paradigms at the same time

– E.g.: Message passing between nodes in a parallel computer, where each
node is a shared-memory machine with >1 CPU:s (e.g., on Akka where
each node is a dual quad core)

9

Processes and mapping

tasks that shall be executed on

is the mechanism that assigns tasks to different

= more abstract concept for unit that executes code and
uses data belonging to a specific task within the frame of the

Design och Analys av Algoritmer för Parallelldatorsystem

uses data belonging to a specific task within the frame of the

of tasks within multiple
at the same time

E.g.: Message passing between nodes in a parallel computer, where each
memory machine with >1 CPU:s (e.g., on Akka where

Processes and mapping

� The normal situation: #processes = #processors

� A good mapping

– Maximize the degree of concurrency

– Minimize the total time for computational work

– Minimize the interaction between processes

� Often a good mapping does not fulfill all of these demands due to

Mikael Rännar

� Often a good mapping does not fulfill all of these demands due to
conflicts, e.g., between parallelism and interaction

10

Processes and mapping

#processes = #processors

concurrency

Minimize the total time for computational work in the parallel program

Minimize the interaction between processes in the parallel execution

Often a good mapping does not fulfill all of these demands due to

Design och Analys av Algoritmer för Parallelldatorsystem

Often a good mapping does not fulfill all of these demands due to
conflicts, e.g., between parallelism and interaction

Recursive decomposition

� To solve the problem means that the
problems of the same kind (divide)

� The solutions to the smaller problems must
solution to the large problem (conquer

� Makes many algorithms simple to express

� Warning! If the conquer step is too large, the overhead may be large

Example of recursion: computing explicit matrix inverses of upper triangular

Mikael Rännar

� Example of recursion: computing explicit matrix inverses of upper triangular
matrices

� Compute-intensive conquer step, but with the same complexity

� Lars Karlssons exjobb: http://www.cs.umu.se/~larsk/




 −
=

−
− 11

1
111

0

AA
A

11

Recursive decomposition

To solve the problem means that the problem is split into several, smaller,

The solutions to the smaller problems must be combined in order to get the
conquer)

to express

Warning! If the conquer step is too large, the overhead may be large

Example of recursion: computing explicit matrix inverses of upper triangular

Design och Analys av Algoritmer för Parallelldatorsystem

Example of recursion: computing explicit matrix inverses of upper triangular

intensive conquer step, but with the same complexity

Lars Karlssons exjobb: http://www.cs.umu.se/~larsk/





−

−−

1
22

1
2212

1
11

A

AA

Recursive decomposition

� Another example of recursive decomposition
conquer step: quicksort

Mikael Rännar

12

Recursive decomposition

Another example of recursive decomposition – with a small

Design och Analys av Algoritmer för Parallelldatorsystem

Data decomposition

In most parallel algorithms it is the large amount of data
significant. Two main steps:

� The data that computations are made on are

� The data partition defines a partition of the

Different kinds:

Mikael Rännar

� Partition output data

– Independent output data? E.g.: matrix multiplication C = A*B

� Partition input data

– How to compute the output data with the help of sub results from partitioned
input data?

� Partition both in- and output data

� Partition on sub results

– Partition based on intermediate sub computation

13

large amount of data that is the most

The data that computations are made on are partitioned

a partition of the computational work

Design och Analys av Algoritmer för Parallelldatorsystem

? E.g.: matrix multiplication C = A*B

with the help of sub results from partitioned

Partition based on intermediate sub computation

Data decomposition

Example of partition
of input data/input

data and output data:

Mikael Rännar

data and output data:
computation of

frequencies of groups
of transactions in a
transactional database

14

Design och Analys av Algoritmer för Parallelldatorsystem

”The owner computes”

� Every data decomposition of input
data and/or output data is also
called the ”owner computes ” rule.

� The idea is that the holder of
certain part if the data also is
resonsible for the comptations that
belongs to that part of the data

Mikael Rännar

belongs to that part of the data

� Example: wave front algorithms for

– The owner of Cij is responsible for

the computation of Xij

– Cij is over-written by Xij

CXBAX =−

15

rule

Design och Analys av Algoritmer för Parallelldatorsystem

Exploratory decomposition

� Used in decomposition of problem whose solution is
computed through a search in a solution space

� Graph problems, game search

� Split the problem area into parts where all results are not

”needed”. The search can be terminated
found a (good enough) solution

Mikael Rännar

found a (good enough) solution

16

Exploratory decomposition

Used in decomposition of problem whose solution is
search in a solution space

Split the problem area into parts where all results are not

terminated when someone has
found a (good enough) solution

Design och Analys av Algoritmer för Parallelldatorsystem

found a (good enough) solution

Exploratory

decomposition

� Uncertain how much better a
parallel algorithm will be: too

much work may be performed

Mikael Rännar

much work may be performed
unnecessary compared to serial

algorithms

� Speed-up close to p only when
you take the mean value of all

test cases

17

Design och Analys av Algoritmer för Parallelldatorsystem

Speculative decomposition

� Start performing calculations even though all
known. E.g.: start evaluating all alternatives in a branch (if,

switch) before the condition for the choice is completely
known (computed)

� Only suitable when the input can have a few different values

� Overhead guaranteed.

Mikael Rännar

� Overhead guaranteed.

18

Speculative decomposition

Start performing calculations even though all inputs are not
. E.g.: start evaluating all alternatives in a branch (if,

switch) before the condition for the choice is completely

Only suitable when the input can have a few different values

Design och Analys av Algoritmer för Parallelldatorsystem

Speculative decomposition

� Other variants: evaluate only the
seems most likely

� Speedup can be significant if there are
speculative decomposition

� Always <p sice there is always unnecessary work

The difference between exploratory and speculative

Mikael Rännar

� The difference between exploratory and speculative
decomposition:

– In exploratory it is the output from multiple tasks from a branch that is
unknown

– In speculative it is the input to a branch that leads to multiple tasks that is
unknown

19

Speculative decomposition

Other variants: evaluate only the alternatives in the branch that

Speedup can be significant if there are several levels of

always unnecessary work done

The difference between exploratory and speculative

Design och Analys av Algoritmer för Parallelldatorsystem

The difference between exploratory and speculative

from multiple tasks from a branch that is

to a branch that leads to multiple tasks that is

Hybrid decompositions

� Different decomposition techniques can be combined

� Example: decomposition of matrix computations on a parallel

machine with SMP-nodes

– Data decomposition of input and/or output between the nodes

– Recursive decomposition of the work between the processors within the
respective SMP-node

Mikael Rännar

respective SMP-node

20

decomposition techniques can be combined

Example: decomposition of matrix computations on a parallel

Data decomposition of input and/or output between the nodes

Recursive decomposition of the work between the processors within the

Design och Analys av Algoritmer för Parallelldatorsystem

Tasks

� The decomposition identifies different

– There can still be some interaction

� The tasks are now to be allocated to different processes

� How are tasks created? Statically

– Static: all tasks known before the execution starts

– Dynamic: all tasks are not known before the execution starts

Mikael Rännar

– Dynamic: all tasks are not known before the execution starts

– Dynamically created tasks requires more care about the load balance
and creates interaction between processes

– Allocation is usually made statically for statically generated tasks and
dynamically for dynamically generated tasks

21

different independent tasks

some interaction

allocated to different processes

Statically or dynamically?

before the execution starts

before the execution starts

Design och Analys av Algoritmer för Parallelldatorsystem

before the execution starts

Dynamically created tasks requires more care about the load balance
and creates interaction between processes

Allocation is usually made statically for statically generated tasks and
dynamically for dynamically generated tasks

Tasks

� (Computational) size of tasks?

– The amount of work needed to finish the task

– Uniform/non uniform – can influence the load balance

� Do we know the task size?

– Can be used in the mapping onto processes

� Size of the data belonging to the task?

Mikael Rännar

� Size of the data belonging to the task?

22

The amount of work needed to finish the task

can influence the load balance

Can be used in the mapping onto processes

belonging to the task?

Design och Analys av Algoritmer för Parallelldatorsystem

belonging to the task?

Interaction between tasks

E.g.: Communication or handling of shared memory

� Static – interaction graph and times known a priori

� Dynamic – interaction graph and times not known a priori

� Regular – interactions follow a given pattern

� Irregular – no given pattern

Mikael Rännar

� Irregular – no given pattern

23

Interaction between tasks

handling of shared memory

interaction graph and times known a priori

interaction graph and times not known a priori

interactions follow a given pattern

Design och Analys av Algoritmer för Parallelldatorsystem

Interaction between tasks

� Only reading of shared data (read

� Reading and writing of shared data (read

� One-way interaction initiated and completed by one task without
any other tasks being involved or interrupted

– Can be handled by ”shared memory”

Two-way – ”producer and consumer”

Mikael Rännar

� Two-way – ”producer and consumer”

– The natural model for ”distributed memory”

– Also used in ”shared memory”

24

Interaction between tasks

of shared data (read-only)

of shared data (read-write)

initiated and completed by one task without
any other tasks being involved or interrupted

Can be handled by ”shared memory”-paradigms

”producer and consumer”-scenario

Design och Analys av Algoritmer för Parallelldatorsystem

”producer and consumer”-scenario

The natural model for ”distributed memory”-paradigms

Mapping techniques for load balancing

� Given a set of tasks, how do we map
minimize overhead?

– Minimize communication (interaction, synchronization)

– Minimize idle time

– These two goals are often in conflict

� Simplification: mapping techniques

Mikael Rännar

� Simplification: mapping techniques

25

Mapping techniques for load balancing

how do we map these onto processes to

(interaction, synchronization)

conflict – find an acceptable compromise

mapping techniques – static or dynamic

Design och Analys av Algoritmer för Parallelldatorsystem

mapping techniques – static or dynamic

Static mapping

� Static mapping distributes tasks
execution

� Static mapping is often combined with
– Block distribution, higher dimension generally gives higher parallelism

� One-dimensional. E.g.: column block mapping of 2

� Multi-dimensional. E.g.: mapping of 2

–

Mikael Rännar

– Block-cyclic distribution, many more blocks than processors
� Good load balance

� Suitable when different parts of the data generates different amount of work,
e.g.: LU

� 2D is used in ScaLAPACK

– Cyclic distribution
� By row or column

� Perfect load balance but lack of locality

26

distributes tasks between processes before

is often combined with data decomposition
, higher dimension generally gives higher parallelism

. E.g.: column block mapping of 2-dim array

. E.g.: mapping of 2-dim array in both row and column block

Design och Analys av Algoritmer för Parallelldatorsystem

, many more blocks than processors

Suitable when different parts of the data generates different amount of work,

Perfect load balance but lack of locality can give lower performance

Static mapping

Mikael Rännar

27

Design och Analys av Algoritmer för Parallelldatorsystem

Static mapping

� Static mapping can also be combined with

– Many more blocks than processes

– The blocks are distributed randomly

– Can be better than e.g. block cyclic on sparse matrices

Mikael Rännar

28

Static mapping can also be combined with random block distribution

Can be better than e.g. block cyclic on sparse matrices

Design och Analys av Algoritmer för Parallelldatorsystem

Static dependency graph partitioning

� Split the data into parts such that the
(=communication) are as small as possible

� The contact areas are e.g. determined by a sparse matrix

� Common in simulations

� Lake Superior

Mikael Rännar

29

Static dependency graph partitioning

into parts such that the contact areas
(=communication) are as small as possible

The contact areas are e.g. determined by a sparse matrix

Design och Analys av Algoritmer för Parallelldatorsystem

� Split the task graph into parts such that the
(=communication) are as small as possible

� E.g.: sparse matrix-vector multiplication

Static task partitioning

Mikael Rännar

30

into parts such that the contact areas
(=communication) are as small as possible

vector multiplication

Design och Analys av Algoritmer för Parallelldatorsystem

Static hierarchical mapping

� Example: use recursive mapping
data partitioning to further partition the ”feta” nodes

Mikael Rännar

31

Static hierarchical mapping

recursive mapping to build a task graph, and
to further partition the ”feta” nodes

Design och Analys av Algoritmer för Parallelldatorsystem

Dynamic mapping

� Necessary when static mapping results in
work load between different processes

� Another name: dynamic load balancing

– Centralized
� Master-Slave, centralized work pool

� Does not scale well: the master processes becomes a bottle neck

Mikael Rännar

� Does not scale well: the master processes becomes a bottle neck

� ”Chunk scheduling” can relieve the pressure

– Distributed
� Which pairs of processes shall exchange work?

� Who takes the initiative? Sender or receiver?

� How much work will be sent in each communication?

� When shall work be exchanged? When there is no more work? When you

want to get rid of some?

� Can be implemented in most paradigms

32

when static mapping results in imbalance of the
between different processes

dynamic load balancing

, centralized work pool

: the master processes becomes a bottle neck

Design och Analys av Algoritmer för Parallelldatorsystem

: the master processes becomes a bottle neck

” can relieve the pressure

shall exchange work?

? Sender or receiver?

will be sent in each communication?

? When there is no more work? When you

most paradigms

Methods for hiding interaction

� Maximize data locality

– Minimize total amount of data-exchange
� Select appropriate decomposition and mapping

� E.g.: distributions of higher dimensions often better

– Minimize frequency of data-exchange
� Restructuring of the parallel algorithm may be necessary

Mikael Rännar

� Restructuring of the parallel algorithm may be necessary

� Communicate larger chunks of data on fewer occasions

� Minimize bottle necks

– Contension

– Communication

– Redesign of the parallel algorithm such that all computations needed for
a block are being done at the same time

33

Methods for hiding interaction

exchange

Select appropriate decomposition and mapping

E.g.: distributions of higher dimensions often better

exchange

Restructuring of the parallel algorithm may be necessary

Design och Analys av Algoritmer för Parallelldatorsystem

Restructuring of the parallel algorithm may be necessary

Communicate larger chunks of data on fewer occasions

Redesign of the parallel algorithm such that all computations needed for
a block are being done at the same time

Methods to hide interaction

� Overlap computation with communication

– Very common in numerical computations

– Disadvantage: decreases the granularity of tasks

– Demands support of lower layer software and/or hardware
� Distributed memory – compute and communicate at the same time

� Shared memory – data prefetching

Mikael Rännar

� Shared memory – data prefetching

� Use collective communication operations

– Broadcast, scatter, reduce, gather, all

– Often highly optimized implementations, e.g.

� Overlap interactions with other interactions

34

Methods to hide interaction

Overlap computation with communication

in numerical computations

Disadvantage: decreases the granularity of tasks

of lower layer software and/or hardware

compute and communicate at the same time

data prefetching

Design och Analys av Algoritmer för Parallelldatorsystem

data prefetching

communication operations

Broadcast, scatter, reduce, gather, all-to-all

Often highly optimized implementations, e.g. recursive doubling

with other interactions

Methods to hide interaction

� Replicate data
– Demands extra memory
– E.g.: matrix-vector y = Ab, all processes have the whole vector b

Mikael Rännar

� Perform extra computations (redundant computing)
– E.g.: ghost cells in compute mesh for time dependant PDE,
– Need to communicate only every other time step

35

Methods to hide interaction

vector y = Ab, all processes have the whole vector b

Design och Analys av Algoritmer för Parallelldatorsystem

(redundant computing)
in compute mesh for time dependant PDE,

Need to communicate only every other time step

Methods to hide interaction, example

� To update values on an inner
border you need values from other
processors

� You can exchange O(n) data points
in each time step...

� You can also choose to exchange
O(2n) data points every other time

Mikael Rännar

O(2n) data points every other time
step and compute the O(n) values
needed for the next step on both
sides of the border

� The extra data is saved in ”ghost
zones” . Saves communication –
performs extra work (often
negligible if the decomposition is
coarse grained)

36

Methods to hide interaction, example

Distributed wave equation with no ghostzones

Design och Analys av Algoritmer för Parallelldatorsystem

Distributed wave equation with ghostzones

Parallel algorithm models

� Data-parallel model

– Identical operations performed in parallel on

– Data- partitioning, static mapping, regular interactions

– E.g.: apply a compute stencil for PDE over a discretized area

– Large problems can be solved efficiently

� Task-parallelism-model

– Partitioning of dependency graph

Mikael Rännar

– Partitioning of dependency graph

– Static/dynamic partitioning and mapping

– E.g.: compile independent subroutines, call independent subroutines

� Work pool model

– Dynamic mapping for good load balance

– Centralized or decentralized (see earlier)

– E.g.: solve game- or graph problems by searching in the solution space

37

Parallel algorithm models

performed in parallel on large data sets

partitioning, static mapping, regular interactions

E.g.: apply a compute stencil for PDE over a discretized area

Large problems can be solved efficiently

Design och Analys av Algoritmer för Parallelldatorsystem

Static/dynamic partitioning and mapping

E.g.: compile independent subroutines, call independent subroutines

for good load balance

Centralized or decentralized (see earlier)

or graph problems by searching in the solution space

Parallel algorithm models

� Master-slave
– One process generates work and distribute to workers
– Task may be generated and distributed statically beforehand if it is possible
– The master can of course became a
– E.g.: distribution of independent iterations of a loop on an SMP

� Pipeline

Mikael Rännar

� Pipeline
– Stream of data passes through different processes
– Different processes do different things
– Chain of producer-consumer
– E.g.: Parallel LU-factorization
– See also the case studie

� Hybrid models
– Different models are applied hierarchically or sequentially on one problem

38

Parallel algorithm models

and distribute to workers

Task may be generated and distributed statically beforehand if it is possible

The master can of course became a bottle neck

E.g.: distribution of independent iterations of a loop on an SMP-machine

Design och Analys av Algoritmer för Parallelldatorsystem

passes through different processes

Different processes do different things with the data in parallel

hierarchically or sequentially on one problem

Case study: MPEG-2 to MPEG

To be performed:

� An MPEG-2-stream shall be transformed into an

� Certain correction of the colors

� The MPEG-1-resolution is half of
– From full TV-resolution to ”junk video”

� Both in and out-format is ”long-

Mikael Rännar

� Both in and out-format is ”long-
– Simplified:
– Every 12th frame is a reference frame
– All other frames are constructed by
frames, significantly less than I-frames, P = prediction)

– In real life there are also B-frames: differences that
the closest I or P or forward to the closest I or P, B = bi
frames makes it possible to even more compression

� Typical storage of the stream: IBBPBBPBBPBBIBBPBBPBBPBBI...

39

2 to MPEG-1 transcoding

shall be transformed into an MPEG-1-stream

correction of the colors should be done

half of the MPEG-2-resolution
resolution to ”junk video”

-GOP” (Group Of Pictures)

Design och Analys av Algoritmer för Parallelldatorsystem

-GOP” (Group Of Pictures)

reference frame (I)

All other frames are constructed by difference from previous I-frame (P-
frames, P = prediction)

frames: differences that points backwards to
to the closest I or P, B = bi-directional. B-

frames makes it possible to even more compression

of the stream: IBBPBBPBBPBBIBBPBBPBBPBBI...

Case study: MPEG-2 to MPEG

Mikael Rännar

40

2 to MPEG-1 transcoding

Design och Analys av Algoritmer för Parallelldatorsystem

Case study: MPEG-2 to MPEG

Decomposition:

� GOP

� Frame

� Block

� Hierarchical

Mikael Rännar

� Hierarchical

� Task

� ...?

41

2 to MPEG-1 transcoding

Design och Analys av Algoritmer för Parallelldatorsystem

Case study: MPEG-2 to MPEG

� Idea to solution:

– Pipeline: all frames streams through the pipeline where different
processers have responsibility for different steps

� Unpacking – construct the picture from I

� Rescaling

� Color correction

Mikael Rännar

� +some other operations (e.g. convert/mix sound)

� Repacking – pull the picture apart into I

– Possibly use several processes in one of the steps if it is too costly
compared to the other steps

� Frames are split up block wise in rectangles (1

– Task-parallelism

– Suitable for SMP or multi(dual/quad)
� Support for both heavy processes (fork) and light weight threads

42

2 to MPEG-1 transcoding

all frames streams through the pipeline where different
processers have responsibility for different steps

construct the picture from I-, P- and B-frames

Design och Analys av Algoritmer för Parallelldatorsystem

+some other operations (e.g. convert/mix sound)

pull the picture apart into I-, P- and B-frames

in one of the steps if it is too costly

Frames are split up block wise in rectangles (1-dim data partitioning)

Suitable for SMP or multi(dual/quad)-core machines

Support for both heavy processes (fork) and light weight threads

Summary – check box

Static:

Static/

dynamic

How create

Recursion

Array/block/Mapping

Regular/

irregular

Interaction
between tasks

SizeTasks

DataDecomposition

Mikael Rännar

Data parallel

Maximize data

locality

Dynamic:

Static:

Task graphModel

Minimize bottle

necks

Deal with
overhead

Centralized

Array/block/

cyclic/random

Mapping

43

Task/GraphArray/block/

Sending/

exchange

Reading/

writing

Regular/

irregular

Size of dataKnowledge about

size

SpeculativeExploratory

Design och Analys av Algoritmer för Parallelldatorsystem

PipelineWork pool/

master-slave

Task graph

Overlap/

group comm.

Replicate

data/comp.

Minimize bottle

DecentralizedCentralized

Task/

hierarchical

GraphArray/block/

cyclic/random

