
Parallel Search Algorithms
for Discrete Optimization Problems

Lars Karlsson

2009-05-12



Part I

Introduction



Discrete Optimization Problems

I Given the tuple (S, f ), where
I S is a finite set of feasible solutions, and
I f : S → R is a cost function,

the discrete optimization problem (DOP) is to find an optimal
solution s ∈ S that minimizes f .

I To use search algorithms we need to reformulate the DOP as a
problem of finding a shortest path (sometimes any path will
do) in a graph from a given starting node to one of possibly
several goal nodes.

I Nodes in the graph are called states.
I The graph is called state space.
I Goal states represent feasible solutions.

I In contrast to search algorithms, iterative improvement
algorithms solve DOPs where the solution is captured by the
state itself, rather than the path from a starting node.



Applications

I Puzzle games
I Towers of Hanoi
I 15-puzzle
I Solitaire

I Traveling Salesman Problem
I Integer Programming
I And more...



State Space and Search Tree

State space
I A very important factor is whether the state space is a graph

or a tree.
I State space trees are far easier to handle but unfortunately

state spaces are often graphs in practice.
Search tree

I The relationship between an expanded state and its successors
defines a search tree.

I Note that a state may be expanded several times and hence
appear in the search tree several times.

I The size of the search tree is often proportional to th time
required by the algorithm.



Why not simply use a Shortest Path Algorithm?

I Idea: explicitly form the state space as a graph and use
Dijkstra’s shortest path algorithm or some other algorithm to
find an optimal solution.

I Problem: the state space is often enormous and can not be
represented explicitly and even if it could it would take too
long just to enumerate all the states.

I The 15-puzzle has around 16! ≈ 1013 possible configurations.
Even using a very compact representation of 64 bits per
configuration, the whole state space would occupy roughly
152TB of memory.

I Solution: state space represented implicitly using a successor
operator which enumerates all successors of a given state.

I Makes it possible to explore the state space.
I Enables explicit storage of selected parts of the state space.



Search Overhead in Parallel Search Algorithms

I W = number of states expanded by serial algorithm.
I Wp = number of states expanded by parallel algorithm.
I The search overhead

Wp

W
describes the overhead due to the order in which states are
expanded.

I For uninformed search it is often possible to observe speedup
anomalies where

Wp

W
< 1

due to the parallel algorithm searching in multiple regions
simultaneously.

I For informed search the situation is reversed and the search
overhead is added on top of the usual parallel overheads.



Cost Function and Heuristics

I The cost function is broken down into two components:

f (s) = g(s) + h(s).

I f (s) is the estimated cost of an optimal solution going through
state s.

I g(s) is the cost of reaching state s.
I h(s) is an estimate (heuristic) of the cost of going from state s

to the closest goal state.
I If h(s) is an understimate it is said to be an admissible

heuristic (which is important for optimality).



Part II

Depth-First Search



Depth-First Search (DFS)
Suitable only for state space trees, since state space graphs are
effectively unrolled with a potentially exponential growth of the
number of expanded states.

I Simple backtracking
I DFS with termination at first feasible solution.
I Does not find optimal solution

I DFS with Branch-and-Bound (DFBB)
I Keeps going after finding a solution.
I Prunes states which can not result in a better solution.
I Finds optimal solution

I Iterative Deepening
I DFS bounded by depth.
I Iterated over increasing depths.
I Does not find optimal solution

I Iterative Deepening A∗

I DFS bounded by the cost f = g + h.
I Iterated over increasing costs.
I Finds optimal solution if h is admissible



DFS and Stack Representations

6

2

12

20

1

3

7

10

13

15

18

21

22

4 5

8 9

11

14

16 17

19

23 24

5

4

9

8

11

14

17

16

19

24

23

5

9

11

14

1

3

7

4

8

10

13 16 17

15 19

18

21 23 24

and their parents

Unexpanded states

Unexpanded states



Load Balancing

I Structure of search tree is often irregular.
I Static distribution of work not an option.
I Dynamic load balancing required.



Dynamic Load Balancing

Initiator
I Receiver-initiated.

I (ARR) Asynchronous Round Robin
Processors request work in a round robin fashion independently.

I (GRR) Global Round Robin
Processors request work in a synchronized round robin fashion.

I (RP) Random Polling
Processors request work randomly and asynchronously.

I Sender-initiated (not discussed here).
Work splitting

I Send node near bottom of stack. Suitable for uniform search
trees since a shallow node is the root of a large subtree.

I Send half of the nodes spread across multiple levels. Suitable
for irregular search trees.



Analyzing DFS

I We can compute neither W nor Tp.
I Express To in terms of W and use pTp = W + To .

Assumptions:
I Communication subsumes idling → quantify number of

requests.
I Work can be divided into pieces as long as it is larger than a

threshold ε.
I The work-splitting strategy is reasonable. Whenever work ω is

split into two parts ψω and (1− ψ)ω, there exists an
arbitrarily small constant 0 < α ≤ 0.5 such that ψω > αω and
(1− ψ)ω > αω. (In effect, the two pieces are not too
imbalanced.)



Analyzing DFS

I Consequence of assumptions: if a processor initially had work
ω, then after one split neither processor can have more than
(1− α)ω work.

I Let V (p) be the total number of work requests before each
process receives at least one work request.

I If the largest piece of work at any time is W , then after V (p)
requests, a process can not have more than (1− α)W work
(i.e., each process has been the subject of a split at least once).

I After 2V (p) requests, no more than (1− α)2W work, and so
on.

I After (log1/(1−α)(W /ε))V (p) requests, no processor has more
work than the threshold ε.

I Conclusion: total number of work requests is

O(V (p) logW )



Analyzing DFS: V (p) for some Load Balancing Schemes

I Asynchronous Round Robin: V (p) = O(p2).
I Global Round Robin: V (p) = O(p).
I Random Polling: Worst case V (p) is unbounded (we analyze

average case instead)



Analyzing DFS: V (p) for Random Polling

I Let F (i , p) be a state in which i of the p processes have
received a request and p − i have not.

I Let f (i , p) be the average number of trials required to change
from state F (i , p) to F (p, p).

I V (p) = f (0, p)

I

f (p, p) = 0,

f (i , p) =
i
p

(1 + f (i , p)) +
p − i

p
(1 + f (i + 1, p)),

p − i
p

f (i , p) = 1 +
p − i

p
f (i + 1, p),

f (i , p) =
p

p − i
+ f (i + 1, p).



Analyzing DFS: V (p) for Random Polling

I Finally, we get

f (0, p) = p
p∑

i=1

1
i

I The harmonic series is roughly 1.69 ln p, so V (p) = O(p log p).



Isoefficiency: ARR

To = O(V (p) logW )

Since
V (p) = O(p2)

it follows that

W = O(p2 logW )

= O(p2 log(p2 logW ))

= O(p2 log p + p2 log logW )

= O(p2 log p)



Isoefficiency: GRR

To = O(V (p) logW )

Since
V (p) = O(p)

it follows that
W = O(p log p)

However, this does not account for the contention at the global
counter. The counter is incremented O(p logW ) times in O(W /p)
time.
This gives

W
p

= O(p logW )

and
W = O(p2 log p)

which is the isoefficiency.



Isoefficiency: RP

To = O(V (p) logW )

Since
V (p) = O(p log p)

it follows that

W = O(p log p logW ) = O(p log2 p)



Summary of Analysis

I ARR has poor performance due to its many requests.
I GRR suffers from contention.
I RP is a suitable compromise.



Dijkstra’s Token Termination Detection

I Processes ordered in logical ring: P0, . . . ,Pp−1.
I When P0 goes idle, it creates a green token and sends it to P1.
I If process Pi sends work to Pj , j < i (backwards in the ring),

then Pi becomes red.
I If process Pi becomes idle and has the token, it sends the

token to Pi+1. Pi
I colors the token red if Pi is colored red.
I leaves the token unchanged if Pi is colored green.

I After Pi sends the token to Pi+1 it becomes green.
I Termination is detected when P0 receives a green token.



Overhead of Dijkstra’s Token Detection

I Assume detection is initiated when everybody is out of work.
I p steps required.
I To = Ω(p2)

I Isoefficiency:
W = KTo = Ω(p2)

I Can we do better?



Tree-based Termination Detection

I Processes ordered in logical binary tree.
I P0, the root, has initially all work and a weight of w = 1.
I Each time work is split, the requested process splits its weight

in two and sends one half with the response.
I When a process goes idle, it returns its weight to its parent.
I Termination detected when P0 has w = 1 and is idle.
I Numerical difficulties: representing the weight in finite

arithmetic requires great care.



Parallel Depth-First Branch-and-Bound

I Very similar to parallel DFS.
I Each process records the best solution found so far which it

uses as local bound.
I When a process finds a new best solution it broadcasts it to

the other processes.
I Stale local bounds only affect efficiency (i.e., increases the

search overhead) and not correctness.



Parallel Iterative Deepening A∗

Two intuitive parallel formulations:
I Common Cost Bound: all processes use the same cost

bound. Parallel DFS used within bound. Might expose too
little concurrency.

I Variable Cost Bound: to increase the available concurrency,
processes work on different cost bounds. When a solution is
found it might not be optimal; all lower cost bounds must be
examined first. Sequential DFS used by each process.



Part III

Best-First Search



Best-First Search

I The major drawback with DFS is that it does not use
heuristics on a global scale and hence searches unintelligently
through the state space.

I Another drawback is that DFS is only suitable for state space
trees.

I Best-first search overcomes both of these limitations at the
expense of using a lot of memory.

I As its name implies, BFS uses heuristics to expand the
currently most promising state.

I A∗ is a well-known instance of BFS.



Best-First Search

I The central data structure in BFS is the OPEN list (typically a
priority queue).

I The OPEN list maintains all known and unexpanded states.
I If the heuristic is admissible, BFS finds an optimal solution.
I For state space graphs, a CLOSED list (typically a hash table) is

also required to avoid re-expansion of states.
I If a newly expanded state exists in any of the lists with a

better heuristic value, it is not inserted in the OPEN list.



Parallel BFS (centralized list)

Shared-Memory Pseudo-Code (state space tree)

1: while not terminated do
2: Lock the OPEN list.
3: Place generated nodes in the list.
4: Pick the best node from the list.
5: Unlock the OPEN list.
6: Expand the node to generate successors.
7: end while



Parallel BFS (centralized list)

I Heavy contention on the OPEN list.
I Let taccess be the time spent accessing the list.
I Let texpand be the time spent expanding a node.
I Sequential runtime: n(taccess + texpand) for n nodes.
I Parallel runtime at least ntaccess due to contention.
I Speedup bounded above by

Sp ≤
taccess + texpand

taccess

I Example: texpand = 9taccess ⇒ Sp ≤ 10.



Parallel BFS: Distributed OPEN Lists

I Contention reduced by having multiple OPEN lists.
I k processes share one list.
I extreme case: one list per process (k = 1).

I The quality of the nodes in the lists may diverge and thus
some processes may spend considerable time expanding
unpromising states.

I Quality equalization strategy required to avoid quality
divergence.

I Random
I Ring-based
I Blackboard
I And more...



Parallel BFS: State Space Graphs

I For state space graphs, the CLOSED list is required, and it need
to be distributed to avoid contention.

I Two-level hashing of states potentially solves the three
problems of

I a distributed CLOSED list,
I quality equalization, and
I load balancing.

I Two-level hashing:
I States hashed to processes with 1st has function
I States hashed in CLOSED list with 2nd has function
I Expanded nodes are sent to owner (1st hash function)
I Owner process checks against its CLOSED list and inserts the

state into its own OPEN list if necessary.



Summary

I Search requires dynamic load balancing.
I Random polling is more scalable than asynchronous round

robin (too many requests) and global round robin (contention).
I Termination detection necessary. Dijkstra’s token detection

scheme. Tree-based detection scheme.
I Depth-first search requires little memory but searches

inefficiently and has a high computational overhead on state
space graphs.

I Best-first search requires much memory but focuses first on
promising states and can handle state space graphs.

I Two-level hashing in BFS solves the contention, load
balancing, and quality equalization problems.



Part IV

Applications



Application: 15-puzzle

I Each state is a configuration.
I A piece move transitions between states.
I The state space is a graph with a large depth, so plain DFS is

not appropriate.
I Heuristics available (e.g., sum of Manhattan distances), so

BFS or IDA∗ would be appropriate.



Application: 0/1 Integer Programming

I Linear programming problem: minimize

f (x) = cT x

where the variables xi ∈ {0, 1}.
I The variables are subject to linear constraints:

Ax ≥ b

I Formulation as search problem:
I Assign values to xi for i = 1, . . . , n.
I Goal states at depth n (all variables assigned) with all

constraints satisfied.
I State space is a tree, so DFS applicable.



Application: 0/1 Integer Programming

I If the subset xa of the variables have been assigned values and
xu have not, we can partition A such that

Âxu ≥ b − Ãxa

I For each constraint

âT
i xu ≥ bi − ãT

i xa,

the LHS is bounded above by the sum of all positive elements
in âi .

I If any such upper bound fails to satisfy its constraint, then the
state can never result in a feasible solution and a subtree of
the search tree can be pruned.

I DFBB can be used in conjunction with this bound.


	Introduction
	Depth-First Search
	Best-First Search
	Applications

