# Parallel Search Algorithms for Discrete Optimization Problems

Lars Karlsson

2009-05-12

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

# Part I

# Introduction

◆□ > < 個 > < E > < E > E の < @</p>

#### Discrete Optimization Problems

- Given the tuple (S, f), where
  - $\blacktriangleright~{\cal S}$  is a finite set of feasible solutions, and
  - $f: \mathcal{S} \to \mathbb{R}$  is a cost function,

the discrete optimization problem (DOP) is to find an optimal solution  $s \in S$  that minimizes f.

- To use search algorithms we need to reformulate the DOP as a problem of finding a shortest path (sometimes *any* path will do) in a graph from a given starting node to one of possibly several goal nodes.
  - Nodes in the graph are called states.
  - The graph is called state space.
  - Goal states represent feasible solutions.
- In contrast to search algorithms, iterative improvement algorithms solve DOPs where the solution is captured by the state itself, rather than the path from a starting node.

#### Applications

- Puzzle games
  - Towers of Hanoi
  - 15-puzzle
  - Solitaire
- Traveling Salesman Problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Integer Programming
- And more...

### State Space and Search Tree

#### State space

- A very important factor is whether the state space is a graph or a tree.
- State space trees are far easier to handle but unfortunately state spaces are often graphs in practice.

#### Search tree

- The relationship between an expanded state and its successors defines a search tree.
- Note that a state may be expanded several times and hence appear in the search tree several times.
- The size of the search tree is often proportional to th time required by the algorithm.

(ロ) (型) (E) (E) (E) (O)

Why not simply use a Shortest Path Algorithm?

- Idea: explicitly form the state space as a graph and use Dijkstra's shortest path algorithm or some other algorithm to find an optimal solution.
- Problem: the state space is often enormous and can not be represented explicitly and even if it could it would take too long just to enumerate all the states.
  - ► The 15-puzzle has around 16! ≈ 10<sup>13</sup> possible configurations. Even using a very compact representation of 64 bits per configuration, the whole state space would occupy roughly 152TB of memory.
- Solution: state space represented implicitly using a successor operator which enumerates all successors of a given state.
  - Makes it possible to explore the state space.
  - Enables explicit storage of selected parts of the state space.

#### Search Overhead in Parallel Search Algorithms

- W = number of states expanded by serial algorithm.
- $W_p$  = number of states expanded by parallel algorithm.
- The search overhead

$$\frac{W_p}{W}$$

describes the overhead due to the order in which states are expanded.

For uninformed search it is often possible to observe speedup anomalies where

$$\frac{W_p}{W} < 1$$

due to the parallel algorithm searching in multiple regions simultaneously.

For informed search the situation is reversed and the search overhead is added on top of the usual parallel overheads.

#### Cost Function and Heuristics

The cost function is broken down into two components:

f(s)=g(s)+h(s).

- ► f(s) is the estimated cost of an optimal solution going through state s.
- ▶ g(s) is the cost of reaching state s.
- h(s) is an estimate (heuristic) of the cost of going from state s to the closest goal state.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 If h(s) is an understimate it is said to be an admissible heuristic (which is important for optimality).

# Part II Depth-First Search

(ロ)、(型)、(E)、(E)、 E) のQで

# Depth-First Search (DFS)

Suitable only for state space trees, since state space graphs are effectively unrolled with a potentially exponential growth of the number of expanded states.

#### Simple backtracking

- DFS with termination at first feasible solution.
- Does not find optimal solution

#### DFS with Branch-and-Bound (DFBB)

- Keeps going after finding a solution.
- Prunes states which can not result in a better solution.
- Finds optimal solution

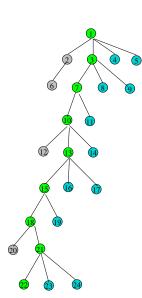
#### Iterative Deepening

- DFS bounded by depth.
- Iterated over increasing depths.
- Does not find optimal solution

#### Iterative Deepening A\*

- DFS bounded by the cost f = g + h.
- Iterated over increasing costs.
- ► Finds optimal solution if *h* is admissible

#### DFS and Stack Representations





▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

#### Load Balancing

- Structure of search tree is often irregular.
- Static distribution of work not an option.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Dynamic load balancing required.

#### Dynamic Load Balancing

#### Initiator

- Receiver-initiated.
  - (ARR) Asynchronous Round Robin
     Processors request work in a round robin fashion independently.
  - (GRR) Global Round Robin
     Processors request work in a synchronized round robin fashion.
  - (RP) Random Polling
     Processors request work randomly and asynchronously.
- Sender-initiated (*not discussed here*).

#### Work splitting

- Send node near bottom of stack. Suitable for uniform search trees since a shallow node is the root of a large subtree.
- Send half of the nodes spread across multiple levels. Suitable for irregular search trees.

#### Analyzing DFS

- We can compute neither W nor  $T_p$ .
- Express  $T_o$  in terms of W and use  $pT_p = W + T_o$ .

Assumptions:

- ► Communication subsumes idling → quantify number of requests.
- ► Work can be divided into pieces as long as it is larger than a threshold *ϵ*.
- ▶ The work-splitting strategy is reasonable. Whenever work  $\omega$  is split into two parts  $\psi\omega$  and  $(1 \psi)\omega$ , there exists an arbitrarily small constant  $0 < \alpha \le 0.5$  such that  $\psi\omega > \alpha\omega$  and  $(1 \psi)\omega > \alpha\omega$ . (In effect, the two pieces are not too imbalanced.)

# Analyzing DFS

- Consequence of assumptions: if a processor initially had work ω, then after one split neither processor can have more than (1 – α)ω work.
- Let V(p) be the total number of work requests before each process receives at least one work request.
- If the largest piece of work at any time is W, then after V(p) requests, a process can not have more than (1 − α)W work (i.e., each process has been the subject of a split at least once).
- After 2V(p) requests, no more than  $(1 \alpha)^2 W$  work, and so on.
- After  $(\log_{1/(1-\alpha)}(W/\epsilon))V(p)$  requests, no processor has more work than the threshold  $\epsilon$ .
- Conclusion: total number of work requests is

 $\mathcal{O}(V(p)\log W)$ 

Analyzing DFS: V(p) for some Load Balancing Schemes

- Asynchronous Round Robin:  $V(p) = O(p^2)$ .
- Global Round Robin: V(p) = O(p).
- Random Polling: Worst case V(p) is unbounded (we analyze average case instead)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

#### Analyzing DFS: V(p) for Random Polling

- ► Let F(i, p) be a state in which i of the p processes have received a request and p - i have not.
- Let f(i, p) be the average number of trials required to change from state F(i, p) to F(p, p).
- $\blacktriangleright V(p) = f(0,p)$

$$f(p, p) = 0,$$
  

$$f(i, p) = \frac{i}{p}(1 + f(i, p)) + \frac{p - i}{p}(1 + f(i + 1, p)),$$
  

$$\frac{p - i}{p}f(i, p) = 1 + \frac{p - i}{p}f(i + 1, p),$$
  

$$f(i, p) = \frac{p}{p - i} + f(i + 1, p).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Analyzing DFS: V(p) for Random Polling

$$f(0,p) = p \sum_{i=1}^{p} \frac{1}{i}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• The harmonic series is roughly 1.69 ln p, so  $V(p) = O(p \log p)$ .

#### Isoefficiency: ARR

$$T_o = \mathcal{O}(V(p) \log W)$$

Since

 $V(p) = \mathcal{O}(p^2)$ 

it follows that

$$W = \mathcal{O}(p^2 \log W)$$
  
=  $\mathcal{O}(p^2 \log(p^2 \log W))$   
=  $\mathcal{O}(p^2 \log p + p^2 \log \log W)$   
=  $\mathcal{O}(p^2 \log p)$ 

◆□ > < 個 > < E > < E > E の < @</p>

### Isoefficiency: GRR

$$T_o = \mathcal{O}(V(p)\log W)$$

Since

 $V(p) = \mathcal{O}(p)$ 

it follows that

 $W = \mathcal{O}(p \log p)$ 

However, this does not account for the contention at the global counter. The counter is incremented  $\mathcal{O}(p \log W)$  times in  $\mathcal{O}(W/p)$  time.

This gives

$$\frac{W}{p} = \mathcal{O}(p \log W)$$

and

 $W = \mathcal{O}(p^2 \log p)$ 

ション ふゆ アメリア メリア しょうくしゃ

which is the isoefficiency.

#### Isoefficiency: RP

$$T_o = \mathcal{O}(V(p)\log W)$$

Since

 $V(p) = \mathcal{O}(p \log p)$ 

it follows that

$$W = \mathcal{O}(p \log p \log W) = \mathcal{O}(p \log^2 p)$$

#### Summary of Analysis

► ARR has poor performance due to its many requests.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- GRR suffers from contention.
- ▶ RP is a suitable compromise.

#### Dijkstra's Token Termination Detection

- ▶ Processes ordered in logical ring:  $P_0, \ldots, P_{p-1}$ .
- When  $P_0$  goes idle, it creates a green token and sends it to  $P_1$ .
- If process P<sub>i</sub> sends work to P<sub>j</sub>, j < i (backwards in the ring), then P<sub>i</sub> becomes red.
- If process P<sub>i</sub> becomes idle and has the token, it sends the token to P<sub>i+1</sub>. P<sub>i</sub>
  - colors the token red if  $P_i$  is colored red.
  - leaves the token unchanged if P<sub>i</sub> is colored green.
- After  $P_i$  sends the token to  $P_{i+1}$  it becomes green.
- Termination is detected when  $P_0$  receives a green token.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ らくぐ

#### Overhead of Dijkstra's Token Detection

- Assume detection is initiated when everybody is out of work.
- p steps required.
- $T_o = \Omega(p^2)$
- Isoefficiency:

$$W = KT_o = \Omega(p^2)$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Can we do better?

#### Tree-based Termination Detection

- Processes ordered in logical binary tree.
- ▶  $P_0$ , the root, has initially all work and a weight of w = 1.
- Each time work is split, the requested process splits its weight in two and sends one half with the response.

うして ふゆう ふほう ふほう うらつ

- When a process goes idle, it returns its weight to its parent.
- Termination detected when  $P_0$  has w = 1 and is idle.
- Numerical difficulties: representing the weight in finite arithmetic requires great care.

#### Parallel Depth-First Branch-and-Bound

- Very similar to parallel DFS.
- Each process records the best solution found so far which it uses as local bound.
- When a process finds a new best solution it broadcasts it to the other processes.
- Stale local bounds only affect efficiency (i.e., increases the search overhead) and not correctness.

ション ふゆ アメリア メリア しょうくしゃ

#### Parallel Iterative Deepening A\*

Two intuitive parallel formulations:

- Common Cost Bound: all processes use the same cost bound. Parallel DFS used within bound. Might expose too little concurrency.
- Variable Cost Bound: to increase the available concurrency, processes work on different cost bounds. When a solution is found it might not be optimal; all lower cost bounds must be examined first. Sequential DFS used by each process.

うして ふゆう ふほう ふほう うらつ

# Part III Best-First Search

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Best-First Search

- The major drawback with DFS is that it does not use heuristics on a global scale and hence searches unintelligently through the state space.
- Another drawback is that DFS is only suitable for state space trees.
- Best-first search overcomes both of these limitations at the expense of using a lot of memory.

うして ふゆう ふほう ふほう うらつ

- As its name implies, BFS uses heuristics to expand the currently most promising state.
- ► A\* is a well-known instance of BFS.

#### Best-First Search

- The central data structure in BFS is the OPEN list (typically a priority queue).
- The OPEN list maintains all known and unexpanded states.
- ► If the heuristic is admissible, BFS finds an optimal solution.
- For state space graphs, a CLOSED list (typically a hash table) is also required to avoid re-expansion of states.

うして ふゆう ふほう ふほう うらつ

If a newly expanded state exists in any of the lists with a better heuristic value, it is not inserted in the OPEN list.

# Parallel BFS (centralized list)

Shared-Memory Pseudo-Code (state space tree)

- 1: while not terminated do
- 2: Lock the OPEN list.
- 3: Place generated nodes in the list.
- 4: Pick the best node from the list.
- 5: Unlock the OPEN list.
- 6: Expand the node to generate successors.

うして ふゆう ふほう ふほう うらつ

7: end while

#### Parallel BFS (centralized list)

- Heavy contention on the OPEN list.
- Let  $t_{\text{access}}$  be the time spent accessing the list.
- Let  $t_{expand}$  be the time spent expanding a node.
- Sequential runtime:  $n(t_{\text{access}} + t_{\text{expand}})$  for *n* nodes.
- ▶ Parallel runtime at least *nt*<sub>access</sub> due to contention.
- Speedup bounded above by

$$S_p \leq rac{t_{
m access} + t_{
m expand}}{t_{
m access}}$$

(日) ( 伊) ( 日) ( 日) ( 日) ( 0) ( 0)

• Example:  $t_{\text{expand}} = 9t_{\text{access}} \Rightarrow S_{p} \leq 10.$ 

#### Parallel BFS: Distributed OPEN Lists

Contention reduced by having multiple OPEN lists.

- ► *k* processes share one list.
- extreme case: one list per process (k = 1).
- The quality of the nodes in the lists may diverge and thus some processes may spend considerable time expanding unpromising states.

うして ふゆう ふほう ふほう うらつ

- Quality equalization strategy required to avoid quality divergence.
  - Random
  - Ring-based
  - Blackboard
  - And more...

#### Parallel BFS: State Space Graphs

- For state space graphs, the CLOSED list is required, and it need to be distributed to avoid contention.
- Two-level hashing of states potentially solves the three problems of
  - ▶ a distributed CLOSED list,
  - quality equalization, and
  - load balancing.
- Two-level hashing:
  - States hashed to processes with 1st has function
  - States hashed in CLOSED list with 2nd has function
  - Expanded nodes are sent to owner (1st hash function)
  - Owner process checks against its CLOSED list and inserts the state into its own OPEN list if necessary.

うして ふゆう ふほう ふほう うらつ

#### Summary

- Search requires dynamic load balancing.
- Random polling is more scalable than asynchronous round robin (too many requests) and global round robin (contention).
- Termination detection necessary. Dijkstra's token detection scheme. Tree-based detection scheme.
- Depth-first search requires little memory but searches inefficiently and has a high computational overhead on state space graphs.
- Best-first search requires much memory but focuses first on promising states and can handle state space graphs.
- Two-level hashing in BFS solves the contention, load balancing, and quality equalization problems.

# Part IV

# Applications

◆□ > < 個 > < E > < E > E の < @</p>

#### Application: 15-puzzle

- Each state is a configuration.
- A piece move transitions between states.
- The state space is a graph with a large depth, so plain DFS is not appropriate.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 Heuristics available (e.g., sum of Manhattan distances), so BFS or IDA\* would be appropriate.

# Application: 0/1 Integer Programming

Linear programming problem: minimize

$$f(x) = c^T x$$

where the variables  $x_i \in \{0, 1\}$ .

> The variables are subject to linear constraints:

$$Ax \ge b$$

Formulation as search problem:

• Assign values to  $x_i$  for  $i = 1, \ldots, n$ .

- Goal states at depth n (all variables assigned) with all constraints satisfied.
- State space is a tree, so DFS applicable.

### Application: 0/1 Integer Programming

If the subset x<sub>a</sub> of the variables have been assigned values and x<sub>u</sub> have not, we can partition A such that

$$\hat{A}x_u \ge b - \tilde{A}x_a$$

For each constraint

$$\hat{a}_i^T x_u \ge b_i - \tilde{a}_i^T x_a,$$

the LHS is bounded above by the sum of all positive elements in  $\hat{a}_i$ .

- If any such upper bound fails to satisfy its constraint, then the state can never result in a feasible solution and a subtree of the search tree can be pruned.
- ► DFBB can be used in conjunction with this bound.