
Cell Broadband Engine
Optimization and Programming Models

Lars Karlsson

May 5, 2009

Part I

Optimization

Things to Think About...

I instruction count

I instruction latencies

I instruction mix

I DMA transfers

I branch mispredictions

I pipeline stalls

Loop Unrolling

I Loop unrolling duplicates the loop body several times.

// Before:

for(int i = 0; i < N; i++) {

a[i] *= 2;

}

// After:

for(int i = 0; i < N; i += 4) {

a[i+0] *= 2;

a[i+1] *= 2;

a[i+2] *= 2;

a[i+3] *= 2;

}

I Care must be used to handle cases when the number of
iterations is not a multiple of the loop unrolling factor.

I Benefits:
I Increases size of loop body.
I Reduces loop branching overhead.

Branch Elimination (1)

I Unrolling: remove loop branching.

// Before:

for(int i = 0; i < 4; i++) {

c[i] = a[i] * b[i];

}

// After:

c[0] = a[0] * b[0];

c[1] = a[1] * b[1];

c[2] = a[2] * b[2];

c[3] = a[3] * b[3];

Branch Elimination (2)

I Inlining: remove function call branching.

// Before:

vector float foo(vector float v) {

return v * spu_splats((float) 2);

}

x = foo(x);

// After:

x = x * spu_splats((float) 2);

Branch Elimination (3)

I Predication: avoid if..then..else by speculative computation.

// Before:

if(a[i] < 0)

a[i] = 0;

else

a[i] *= 2;

// After:

mask = spu_cmpgt(-a, 0); // check condition

res_true = spu_splats((float) 0); // if-clause

res_false = a * spu_splats((float) 2); // else-clause

res = spu_sel(res_false, res_true, mask); // combine results

Loop Peeling

I Loop peeling can be used to move border cases outside a loop.

for(int i = 0; i < N; i++) {

if(i == 0) a[i] += N;

else a[i] -= 1;

}

becomes

if(0 < N) a[0] += N;

for(int i = 1; i < N; i++) {

a[i] -= 1;

}

I Benefits:
I Eliminates branching inside loop.
I Simplifies loop body.

Loop Fusion

I Loop fusion collapses two loops with the same iteration space.

for(int i = 0; i < N; i++) {

a[i] *= 2;

}

for(int i = 0; i < N; i++) {

b[i] -= 5;

}

becomes

for(int i = 0; i < N; i++) {

a[i] *= 2;

b[i] -= 5;

}

I Benefits:
I Reduces loop overhead (fewer loops).
I Increases size of loop body.

Software Pipelining

I Loop body consisting of phases that are sequentially
dependent:

for(int i = 0; i < N; i++) {

A(i);

B(i);

C(i);

}

I Rearrange loop to do A, B, C from different iterations:

A(0);

B(0); A(1);

for(int i = 0; i < N-2; i++) {

C(i+0);

B(i+1);

A(i+2);

}

C(i+0); B(i+1);

C(i+1);

Software Pipelining: Illustration

Body

Body

Epilogue

iterations

 Prologue

Part II

Programming Models

Function-Offload Model

I Also known as the Remote Procedure Call (RPC) Model.

I SPEs accelerate performance critical procedures.

I Quickest way to take advantage of SPEs within existing
application.

I Main application runs on PPE and calls selected procedures
on one or more SPEs.

I Method stubs on PPE and SPE handle data transfers and
synchronization.

Device-Extension Model

I Special case of Function-Offload Model where SPEs act like
I/O devices.

I All I/O devices are memory mapped so the SPEs can interact
with them.

I Usually runs priviliged code which is part of the operating
system.

I E.g., encrypted file system: SPE used to offload
encryption/decryption.

Computation-Acceleration Model

I SPE-centric model which enables finer granularity.

I Speeds up applications that use computation-intensive
mathematical functions.

I Most computation performed by SPEs in parallel.

I Computation partitioned manually.

I PPE acts as control and system management hub.

I Can use either shared memory or message passing to
communicate between SPEs.

Streaming Model

I Each SPE computes on data that streams through it.

I The PPE acts as a stream controller and the SPEs as stream
data processors.

I SPEs organized in pipeline fashion enables effective use of the
high on-chip bandwidth.

I Double buffering hides communication overhead.

Shared-Memory Multiprocessor Model

I DMA transfers are cache-coherent and all units have access to
system memory.

I Shared memory read replaced by DMA to local store followed
by read to register.

I Shared memory store replaced by write to local store followed
by DMA to main memory.

I Synchronization via atomic operations or higher level objects
such as mutexes and condition variables.

Assymetric-Thread Runtime Model

I Thread run on either PPE or SPE.

I Threads interact the same way they do in a conventional
symmetric multiprocessor.

I Flexible model which supports all of the other models.

I This is the fundamental model provided by the SDK.

SPE Overlays

I When code does not fit in an SPEs local store, overlays can
be used.

I Several code sections share the same memory space.

I Stubs load the required code dynamically.

I Linker assists in creating overlays.

	Optimization
	Programming Models

