F1: Performance and Scalability

Lars Karlsson

2009-03-27



Outline

Complexity analysis
Runtime, speedup, efficiency
Amdahl’'s Law and scalability
Cost and overhead

Cost optimality

Iso-efficiency function

vV vV vV VvV VvV Vv Y

Case study: matrix vector product



Complexity Analysis (Upper Bounds)

» Definition: Given a function g(x), f(x) = O(g(x)) if and
only if for any constant ¢ > 0 there exists an xp > 0 such that

f(x) < cg(x)

for all x > xg.



Complexity Analysis (Lower Bounds)

» Definition: Given a function g(x), f(x) = Q(g(x)) if and
only if for any constant ¢ > 0 there exists an xp > 0 such that

cg(x) < f(x)

for all x > xg.



Complexity Analysis (Tight Bounds)

» Definition: Given a function g(x), f(x) = ©(g(x)) if and
only if for any constants c1,c2 > 0 (with ¢ > ¢1) there exists
an xp > 0 such that

ag(x) < f(x) < cg(x)

for all x > xp.



Complexity Analysis: Properties

x? = O(xP) iff a < b.

log,(x) = ©(logy(x)) for all a and b.

a* = O(bX) iff a < b.

For any constant ¢, ¢ = O(1).

If f = 0O(g) then f + g = O(g).

If f =0(g) then f + g = O(g) = O(f).
0(g) iff g = (F).

O(g) iff f =Q(g) and f = O(g).

00 N o O wbhd =



Communication Cost Model

» The cost of sending an m-word message is modeled by
ts + mt,,.
» ts is the startup cost, and

> t,, is the word transfer time (or, inverse bandwidth).

Beware of the units on t,,. It is seconds per word (not byte, in
general). A word is user-defined: if you model a numerical
algorithm you might pick a word to be a double (8 bytes).



Parallel Runtime

» The parallel runtime or parallel execution time is the time that
elapses from the start of the parallel computation to the
moment the last process finishes execution.

» The parallel runtime is denoted by T, and the sequential
runtime (of the best sequential algorithm) is denoted by Ts.

» In particular, for p = 7 processes we use T7 to denote the
parallel runtime.

» Note that T; # Ts, but Ts < Ty (why?).



Speedup

> The speedup S, is defined as
T
S, = —.
P Tp
Often, 0 < S, < p.
» The relative speedup is defined as
Sp=—.
P Tp
Note that :9,, > Sp (hence, an overestimate).
» With S, = p we have linear speedup.

» With S, > p we have superlinear speedup.
» With S, < 1 we have parallel slowdown.



Efficiency

» The efficiency is defined as

S T.
E, === T
p Pip

Often, 0 < E, < 1.

» Similarly, relative efficiency is defined as

. T
E,=22- 2

i— .
p plp

Note that E, > E, (hence, an overestimate).



Remarks on speedup and efficiency

> Relative speedup and efficiency are easy to compute (no need
to find the best sequential algorithm).

» Note that Sp = p does not exclude the possibility of 5, < 1.
> The speedup S, directly tells you something about T,:

Sp > Spy = Tp, < Tpy-

> However, the efficiency does not tell you much about T, for
various p.

» But a constant efficiency translates into a linear speedup
curve with slope < 1:

%

p

E, = C=S,=Cp.



Example of T,, S,, and E,

Assuming
Tp—@%—p, Ts =100
We get
Sp = Lo _ 10300 — 1 : p
p 5 tP Pt im
and s 1 1
Ep = P = = 2




Example of T,, S,, and E,

Parallel runtime
100 T,
Optima ©

80
(0] 60 =]
IS
= /

40

20 \\\\-G%——"”

0

10 20 30 40 50 60



Example of T,, S,, and E,

Speedup

Opti mse’\lp

(o]

10

20

30




Example of T,, S,, and E,

Efficiency

1 Ep T
Optima ©
0.8 \
0.6

X

0.2

10 20 30 40 50 60



Amdahl's Law

v

A famous upper bound on speedup is Amdahl’'s Law.

v

Assume that the work W can be partitioned into sequential
work Ws and (fully) parallel work (W — W).

» Runtimes:
W — W,
TS = W7 Tp = Ws + S.
p
» Speedup:
Ts w w
S, =0—=—-———" < —.
P Wt W
» Example: W =0.1W = S, < 10 no matter how many

processors.



Strong Scalability

» Amdahl's Law applies to a scenario in which a fixed problem
size is solved with increasing number of processors.

» A system which maintains a high speedup in such a scenario is
said to be strongly scalable.

» A fundamental issue is that few applications care about strong
scalability.

» Discussion: find applications for which strong scalability is a
natural evaluation criteria.



(Parallel) Cost and the Overhead Function

v

The (parallel) cost pT, is the number of CPU seconds used
by a parallel computation.

v

(The monetary cost is often based on the parallel cost (e.g., in
USD per CPU hour).)

The overhead function T, is defined as

v

To=pTp,—Ts.

v

Note that E, < 1= Ts < pT, = T, > 0.

We will see soon how T, is related to scalability.

v



Problem Size

» We often use parameters of the problem to specify the size of
the problem:

» The integers m, n, k specify the dimensions of the matrices in
the matrix update
C+ C+AB.

The number of floating point operations is 2mnk.
» The integer n specifies the length of a list to sort. The
complexity of comparison-based sorting is Q(nlog n).

» We need a problem independent definition of problem size.

» The problem size is the number of basic operations in the best
sequential algorithm and is denoted by W'.

» We can normalize hardware parameters so that for all intents
and purposes, W = Ts.



Cost Optimality

» A system is said to be cost optimal if
pT, =O(W).

» In other words, the cost of the parallel computation grows no
faster than the best known sequential algorithm.

» Intuitively, this allows us to compare the complexities of the
parallel and sequential algorithms.

» A non-cost optimal system can easily exhibit very low
efficiency since pT, (the denominator) grows faster than T,
(the nominator).



Implications of Non-Cost Optimality

» Assume a sorting algorithm which sorts a list of n elements on
n processors in time (log, n)?.

» The sequential runtime is T5 = nlog, n.

» The system is not cost optimal:
pT, = nT, = n(log, n)*> # O(nlog, n).

But the factor is only log, n...

» Now assume we execute this algorithm on p < n. The parallel
runtime is
n(log, n)’

T —
P p



Implications of Non-Cost Optimality

» Speedup:

» Efficiency:

Speedup

=
o

O FP N WA OO N 0O

s _Is__p
P T, logyn
R -
P= o iogan

Speedup of non-cost optimal system

Nooh|

200 400 600 800

=

000



Conditional Cost Optimality

» Some systems are cost optimal given a condition on the
problem size and the number of processors.

» Consider a system with

T, =0O(n) Tp:@(Z—i—Iogp).

» lts cost is
pTp=0©(n+plogp).

» The system is cost optimal only if

n = Q(plog p).



Scalability

» Recall:
1

= 5 -
1+ %5

The red term controls the decrease in efficiency.

Ep

> Generally:

Ts Ts 1

E = = = .
PUpT, WA T, 14k

> Question: can we keep E, constant by manipulating the
problem parameters (i.e., the problem size) while we increase
p?

» Answer: yes, sometimes. We define a scalable system as one
for which this is possible. Otherwise, the system is
non-scalable.



Iso-efficiency Function

1

=
1+

We take a closer look at T, and W:

» The problem size W can be increased arbitrarily.
= Increasing the problem size increases the efficiency.

Ep

» The overhead T, is a function of the problem size and the
number of processes p.
= Increasing the number of processes decreases the efficiency.



Iso-efficiency Function

v

Assuming the system is scalable:

E
W=_—_T,
1—-E °

for some constant efficiency E.

v

If we can obtain W as a function of p from the equation
above, we get more knowledge of how scalable a system is.

This function is known as the iso-efficiency function.

v

It tells us how much the problem size must be increased to
maintain efficiency.

v

v

A slow growing iso-efficiency function is good news while a
fast growing function is bad news.



Iso-efficiency Function: Example

» Assume that the overhead function is

T, =2plogp.
> We get

E E
T o= 1 g2Plogp=O(plogp)

» If we on pg processors need problem size W, to get a certain
efficiency, we expect that on p; > pg processors we need
problem size

lo
Wi — p110g p1 W
po log po
to attain the same efficiency.



Iso-efficiency and Complicated Overhead Functions

» For more complicated overhead functions it can be impossible
to express W in terms of p.

» Example:
To _ p3/2 + p3/4w3/4‘

» Using only the first term of T,:
W = Kp3/2 _ @(p3/2)
» Using only the second term of Ty:
W = Kp3/4w3/4
W1/4 — Kp3/4
W = K*p®> = 0(p%)
» Recall that we want to find a function for the numerator

which grows fast enough to balance the denominator.
» Hence, from a term-by-term analysis we take the maximum:

W = ©(max{p*?, p*}) = ©(p°).



Lower Bound on the Iso-efficiency Function

» What is the smallest possible iso-efficiency function (i.e., the
most ideally scalable system)?

» For any system, no more than W processors can be used; the
remaining will be idle.

» We can express this as
W = Q(p).

» Hence, the problem size must grow at least linearly with the
number of processors.



Degree of Concurrency

» The maximum number of processors that can be active at any
one time on a problem of size W is the maximum degree of
concurrency and is denoted by C(W).

» Using more than C(W) processors is pointless since
p — C(W) processors will be idle.

» In general, the degree of concurrency can be the limiting
factor when determining the iso-efficiency function.

> Generally,

p=0(C(W))
C(W) = Q(p)

» Example:
C(W) = VW =Q(p) = W = Q(p°)

which sets a lower bound on the iso-efficiency function to p?.



Analysis of Matrix-Vector Product
» An n X n matrix times an n x 1 vector takes time
Ts = tcnz.

» The parallel runtime is (without going in to detail):

n?
T, = tC; + tslogy, p+ twn.

» Overhead:
To=pTp,— Ts = tsplog, p+ typn.
» Iso-efficiency:
W = Ktsplog, p = W = O(plog; p)
2

K?t2
W = Ktypn = ten = Ktyp = W = Twpz = 0(p?)

c



Analysis of Matrix-Vector Product

Memory constrained scalability.

» The memory available grows linearly with the number of
processors:

m = O(p).
» The memory required is
m = 0(n?).

> Hence, for some constant C,

n® = cp.

> Plug this into Sp:

5 — tecp B
P tec+ tslogy p 4 tw /P

O(vp).



Analysis of Matrix-Vector Product

Memory constrained scalability (small scale).

Speedup of Matrix-Vector product

16 ‘ : :
Speedup

14 + Linear
12

o 10

=]

3 8

& 6
4
2
0




Analysis of Matrix-Vector Product

Memory constrained scalability (large scale).

Speedup of Matrix-Vector product

1200 :
Speedup
1000 Linear ——
800
S
B 600
&
400
200
—
/ /
0
0 200 400 600 800 1000



Analysis of Matrix-Vector Product: Conclusions

» The asymptotic iso-efficiency function for (this version of)
matrix vector product is

W = o(p?).

» The algorithm is scalable.

» However, iso-efficiency scaling requires too much memory.
The memory constrained speedup is only

S, = O(\/p).



