
F1: Performance and Scalability

Lars Karlsson

2009-03-27

Outline

I Complexity analysis

I Runtime, speedup, efficiency

I Amdahl’s Law and scalability

I Cost and overhead

I Cost optimality

I Iso-efficiency function

I Case study: matrix vector product

Complexity Analysis (Upper Bounds)

I Definition: Given a function g(x), f (x) = O(g(x)) if and
only if for any constant c > 0 there exists an x0 > 0 such that

f (x) ≤ cg(x)

for all x ≥ x0.

Complexity Analysis (Lower Bounds)

I Definition: Given a function g(x), f (x) = Ω(g(x)) if and
only if for any constant c > 0 there exists an x0 > 0 such that

cg(x) ≤ f (x)

for all x ≥ x0.

Complexity Analysis (Tight Bounds)

I Definition: Given a function g(x), f (x) = Θ(g(x)) if and
only if for any constants c1, c2 > 0 (with c2 ≥ c1) there exists
an x0 > 0 such that

c1g(x) ≤ f (x) ≤ c2g(x)

for all x ≥ x0.

Complexity Analysis: Properties

1. xa = O(xb) iff a ≤ b.

2. loga(x) = Θ(logb(x)) for all a and b.

3. ax = O(bx) iff a ≤ b.

4. For any constant c, c = O(1).

5. If f = O(g) then f + g = O(g).

6. If f = Θ(g) then f + g = Θ(g) = Θ(f).

7. f = O(g) iff g = Ω(f).

8. f = Θ(g) iff f = Ω(g) and f = O(g).

Communication Cost Model

I The cost of sending an m-word message is modeled by

ts + mtw .

I ts is the startup cost, and

I tw is the word transfer time (or, inverse bandwidth).

Beware of the units on tw . It is seconds per word (not byte, in
general). A word is user-defined: if you model a numerical
algorithm you might pick a word to be a double (8 bytes).

Parallel Runtime

I The parallel runtime or parallel execution time is the time that
elapses from the start of the parallel computation to the
moment the last process finishes execution.

I The parallel runtime is denoted by Tp and the sequential
runtime (of the best sequential algorithm) is denoted by Ts .

I In particular, for p = 7 processes we use T7 to denote the
parallel runtime.

I Note that T1 6= Ts , but Ts ≤ T1 (why?).

Speedup

I The speedup Sp is defined as

Sp =
Ts

Tp
.

Often, 0 < Sp ≤ p.

I The relative speedup is defined as

S̃p =
T1

Tp
.

Note that S̃p ≥ Sp (hence, an overestimate).

I With Sp = p we have linear speedup.

I With Sp > p we have superlinear speedup.

I With Sp < 1 we have parallel slowdown.

Efficiency

I The efficiency is defined as

Ep =
Sp

p
=

Ts

pTp
.

Often, 0 < Ep ≤ 1.

I Similarly, relative efficiency is defined as

Ẽp =
S̃p

p
=

T1

pTp
.

Note that Ẽp ≥ Ep (hence, an overestimate).

Remarks on speedup and efficiency

I Relative speedup and efficiency are easy to compute (no need
to find the best sequential algorithm).

I Note that S̃p = p does not exclude the possibility of Sp < 1.

I The speedup Sp directly tells you something about Tp:

Sp1 > Sp0 ⇒ Tp1 < Tp0 .

I However, the efficiency does not tell you much about Tp for
various p.

I But a constant efficiency translates into a linear speedup
curve with slope ≤ 1:

Ep =
Sp

p
= C ⇒ Sp = Cp.

Example of Tp, Sp, and Ep

Assuming

Tp =
100

p
+ p, Ts = 100.

We get

Sp =
Ts

Tp
=

100
100
p + p

=
1

p−1 + p
100

and

Ep =
Sp

p
=

1

p
(
p−1 + p

100

) =
1

1 + p2

100

.

Example of Tp, Sp, and Ep

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60

T
im

e

p

Parallel runtime

Tp
Optimal

Example of Tp, Sp, and Ep

 0

 1

 2

 3

 4

 5

 6

 10 20 30 40 50 60

p

Speedup

Sp
Optimal

Example of Tp, Sp, and Ep

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60

p

Efficiency

Ep
Optimal

Amdahl’s Law

I A famous upper bound on speedup is Amdahl’s Law.

I Assume that the work W can be partitioned into sequential
work Ws and (fully) parallel work (W −Ws).

I Runtimes:

Ts = W , Tp = Ws +
W −Ws

p
.

I Speedup:

Sp =
Ts

Tp
=

W

Ws + W−Ws
p

≤ W

Ws
.

I Example: Ws = 0.1W ⇒ Sp ≤ 10 no matter how many
processors.

Strong Scalability

I Amdahl’s Law applies to a scenario in which a fixed problem
size is solved with increasing number of processors.

I A system which maintains a high speedup in such a scenario is
said to be strongly scalable.

I A fundamental issue is that few applications care about strong
scalability.

I Discussion: find applications for which strong scalability is a
natural evaluation criteria.

(Parallel) Cost and the Overhead Function

I The (parallel) cost pTp is the number of CPU seconds used
by a parallel computation.

I (The monetary cost is often based on the parallel cost (e.g., in
USD per CPU hour).)

I The overhead function To is defined as

To = pTp − Ts .

I Note that Ep ≤ 1⇒ Ts ≤ pTp ⇒ To ≥ 0.

I We will see soon how To is related to scalability.

Problem Size

I We often use parameters of the problem to specify the size of
the problem:

I The integers m, n, k specify the dimensions of the matrices in
the matrix update

C ← C + AB.

The number of floating point operations is 2mnk .
I The integer n specifies the length of a list to sort. The

complexity of comparison-based sorting is Ω(n log n).

I We need a problem independent definition of problem size.

I The problem size is the number of basic operations in the best
sequential algorithm and is denoted by W .

I We can normalize hardware parameters so that for all intents
and purposes, W = Ts .

Cost Optimality

I A system is said to be cost optimal if

pTp = Θ(W).

I In other words, the cost of the parallel computation grows no
faster than the best known sequential algorithm.

I Intuitively, this allows us to compare the complexities of the
parallel and sequential algorithms.

I A non-cost optimal system can easily exhibit very low
efficiency since pTp (the denominator) grows faster than Ts

(the nominator).

Implications of Non-Cost Optimality

I Assume a sorting algorithm which sorts a list of n elements on
n processors in time (log2 n)2.

I The sequential runtime is Ts = n log2 n.

I The system is not cost optimal:

pTp = nTn = n(log2 n)2 6= Θ(n log2 n).

But the factor is only log2 n...

I Now assume we execute this algorithm on p � n. The parallel
runtime is

Tp =
n(log2 n)2

p
.

Implications of Non-Cost Optimality

I Speedup:

Sp =
Ts

Tp
=

p

log2 n
.

I Efficiency:

Ep =
Sp

p
=

1

log2 n
.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000

Sp
ee

du
p

n

Speedup of non-cost optimal system

p = 4
p = 8

p = 16
p = 32

Conditional Cost Optimality

I Some systems are cost optimal given a condition on the
problem size and the number of processors.

I Consider a system with

Ts = Θ(n) Tp = Θ

(
n

p
+ log p

)
.

I Its cost is
pTp = Θ (n + p log p) .

I The system is cost optimal only if

n = Ω(p log p).

Scalability

I Recall:

Ep =
1

1 + p2

100

.

The red term controls the decrease in efficiency.

I Generally:

Ep =
Ts

pTp
=

Ts

W + To
=

1

1 + To
W

.

I Question: can we keep Ep constant by manipulating the
problem parameters (i.e., the problem size) while we increase
p?

I Answer: yes, sometimes. We define a scalable system as one
for which this is possible. Otherwise, the system is
non-scalable.

Iso-efficiency Function

Ep =
1

1 + To
W

.

We take a closer look at To and W :

I The problem size W can be increased arbitrarily.
⇒ Increasing the problem size increases the efficiency.

I The overhead To is a function of the problem size and the
number of processes p.
⇒ Increasing the number of processes decreases the efficiency.

Iso-efficiency Function

I Assuming the system is scalable:

W =
E

1− E
To

for some constant efficiency E .

I If we can obtain W as a function of p from the equation
above, we get more knowledge of how scalable a system is.

I This function is known as the iso-efficiency function.

I It tells us how much the problem size must be increased to
maintain efficiency.

I A slow growing iso-efficiency function is good news while a
fast growing function is bad news.

Iso-efficiency Function: Example

I Assume that the overhead function is

To = 2p log p.

I We get

W =
E

1− E
To =

E

1− E
2p log p = Θ(p log p).

I If we on p0 processors need problem size W0 to get a certain
efficiency, we expect that on p1 > p0 processors we need
problem size

W1 =
p1 log p1

p0 log p0
W0.

to attain the same efficiency.

Iso-efficiency and Complicated Overhead Functions
I For more complicated overhead functions it can be impossible

to express W in terms of p.
I Example:

To = p3/2 + p3/4W 3/4.

I Using only the first term of To :

W = Kp3/2 = Θ(p3/2).

I Using only the second term of To :

W = Kp3/4W 3/4

W 1/4 = Kp3/4

W = K 4p3 = Θ(p3)

I Recall that we want to find a function for the numerator
which grows fast enough to balance the denominator.

I Hence, from a term-by-term analysis we take the maximum:

W = Θ(max{p2/3, p3}) = Θ(p3).

Lower Bound on the Iso-efficiency Function

I What is the smallest possible iso-efficiency function (i.e., the
most ideally scalable system)?

I For any system, no more than W processors can be used; the
remaining will be idle.

I We can express this as

W = Ω(p).

I Hence, the problem size must grow at least linearly with the
number of processors.

Degree of Concurrency

I The maximum number of processors that can be active at any
one time on a problem of size W is the maximum degree of
concurrency and is denoted by C (W).

I Using more than C (W) processors is pointless since
p − C (W) processors will be idle.

I In general, the degree of concurrency can be the limiting
factor when determining the iso-efficiency function.

I Generally,

p = O(C (W))

C (W) = Ω(p)

I Example:

C (W) =
√

W = Ω(p)⇒W = Ω(p2)

which sets a lower bound on the iso-efficiency function to p2.

Analysis of Matrix-Vector Product

I An n × n matrix times an n × 1 vector takes time

Ts = tcn2.

I The parallel runtime is (without going in to detail):

Tp = tc
n2

p
+ ts log2 p + tw n.

I Overhead:

To = pTp − Ts = tsp log2 p + tw pn.

I Iso-efficiency:

W = Ktsp log2 p ⇒W = Θ(p log2 p)

W = Ktw pn⇒ tcn = Ktw p ⇒W =
K 2t2

w

tc
p2 = Θ(p2)

Analysis of Matrix-Vector Product

Memory constrained scalability.

I The memory available grows linearly with the number of
processors:

m = Θ(p).

I The memory required is

m = Θ(n2).

I Hence, for some constant c ,

n2 = cp.

I Plug this into Sp:

Sp =
tccp

tcc + ts log2 p + tw
√

cp
= O(

√
p).

Analysis of Matrix-Vector Product

Memory constrained scalability (small scale).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

Sp
ee

du
p

p

Speedup of Matrix-Vector product

Speedup
Linear

Analysis of Matrix-Vector Product

Memory constrained scalability (large scale).

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000

Sp
ee

du
p

p

Speedup of Matrix-Vector product

Speedup
Linear

Analysis of Matrix-Vector Product: Conclusions

I The asymptotic iso-efficiency function for (this version of)
matrix vector product is

W = Θ(p2).

I The algorithm is scalable.

I However, iso-efficiency scaling requires too much memory.
The memory constrained speedup is only

Sp = O(
√

p).

