Umeéa University, Dept. of Computing Science April 3, 2009

Assignment 2: SUMMA Matrix Multiplication Algorithm

Lars Karlsson (assistant)
Bo Kéagstrom
Mikael Rénnar

Due date: 2009-04-23 (17.00)

1 Introduction and Theory

Matrix multiplication is a common operation in dense linear algebra algorithms and it is important
to optimize its performance. The aim of this assignment is to get practical experience with the
2D block cyclic data distribution and theoretical as well as experimental analysis of scalability.
Your task is to implement a matrix multiplication algorithm known as SUMMA and evaluate the
potential benefits of overlapping communication with computation.

The Basic Linear Algebra Subprograms (BLAS) is a standardized set of interfaces to common
linear algebra operations. The double precision matrix multiply is a so called level-3 BLAS op-
eration and the routine is called DGEMM (Double precision GEneral Matrix Multiply and add) in
BLAS terminology and performs the set of operations described by

C — aop(A)op(B) + 8C,

where op(X) = X or op(X) = XT and «, 3 are double precision scalars. In other words, this
means that A and/or B may be implicitly transposed.
In this assignment, we limit ourselves to

C — AB +C.

The matrices A, B, and C have dimensions m X k, k X n, and m X n, respectively. The dimension
m is blocked with blocking factor my, n with ny, and k with k,. The matrices are distributed
using a 2D block cyclic distribution and their first elements all map to process (0,0). Formally,
the distribution onto a P, x P, process mesh is described by the following element-to-process
mappings:

A(Za]) = (p7 q)a p= 7:LbJ mod Pm q= {é}J mod Pc;
B(Za])H (p7Q)a b= ka mod Pr, q = {;;J mod PC7
C(Za.]) — (p7 Q)a p= 'n:leJ mOd Pra q = \‘ibJ mod Pc-

See Figure 1 for an example (highlighted blocks are mapped to process (1,1)).

2 Assignment

The SUMMA algorithm (without overlap) is as follows.



Umeéa University, Dept. of Computing Science April 3, 2009

B

Figure 1: Distribution of the matrices on a 2-by-2 process mesh.

for j = 0 to k-1 step kb
blksz = min(kb, k - j)
Broadcast A(:, j:j+blksz-1) along mesh rows into the E buffer
Broadcast B(j:j+blksz-1, :) along mesh columns into the S buffer
Update C = C + E*S using local GEMM from BLAS library

end for

The algorithm steps through the block columns (rows) of A (B) and in each step a block outer
product update on C' is performed.

In Figure 2, we illustrate a snapshot of the algorithm as observed by the (1,1) process. The
local part of C' (light gray) is updated by using parts of the block column of A and block row of B
(dark gray). The local view is for the (1, 1) process only (dimensions of local matrices vary across
the mesh). The relations between the dimensions of A and the dimensions of the S and E buffers
are hopefully apparent from the figure.

Below is a list of some of the things we expect you to do. Remember that your task is to
implement and evaluate the SUMMA algorithm using the concepts taught in the course as well as
your own ideas.

e Implement the basic algorithm as well as a variant that overlaps communication with com-
putation.

e Find T}, Sp, Ep, and the asymptotic iso-efficiency function.
e Perform an experimental analysis of iso-efficiency.

e Is the algorithm scalable? Cost optimal? What is the memory constrained speedup of the
algorithm?

3 Hints

The list below contains some hints to help you with the assignment.

1. On Akka we recommend these modules:

module add mvapich/psc
module add libgoto

To link with GotoBLAS you need to add -1goto to the linker command.



Umea University, Dept. of Computing Science April 3, 2009

GLOBAL VIEW
C

LOCAL VIEW
A
. I E
I I
s

Figure 2: Snapshot of the algorithm at j = 2x%kb.

2. Documentation for DGEMM is available at http://www.netlib.org/blas/dgemm.f.

3. If you call DGEMM from C you should be aware that interfacing Fortran from C is highly
compiler specific. On Akka, this can be assumed:

e the symbol for DGEMM is dgemm_,
e all arguments must be pointers (char#, double*, int*) which in particular means that

you can not pass the scalars «, 8 as literal constants.

4. The MPI v1.1 standard document in HTML format: http://www.mpi-forum.org/docs/
mpi-11-html/mpi-report.html.

5. ScaLAPACK has several auxiliary routines that are useful when working with 2D block
cyclic data layouts. Take a look at the numroc function and the infog2l subroutine at
http://www.netlib.org/scalapack/tools/.



