
BLAS, LAPACK
BLACS, PBLAS, ScaLAPACK

High Performance Portable Libraries for
Dense Linear Algebra

Introduction

• In this lecture we will cover the following topic:
– High performance portable dense linear algebra libraries

• The following libraries will be introduced:
– BLAS
– LAPACK
– BLACS
– PBLAS
– ScaLAPACK

• This will also be covered:
– FORTRAN 77+

The Overall Picture

ScaLAPACK

LAPACK

BLAS BLACS

PBLAS

MPI

NETLIB

• All software discussed in this lecture can be downloaded
free of charge from NETLIB (repository for freely
distributable numerical software)
– http://www.netlib.org/

• Collection of all NETLIB links mentioned in the notes:
– http://www.netlib.org/blas/
– http://www.netlib.org/atlas/
– http://www.netlib.org/blas/gemm_based/
– http://www.netlib.org/lapack/
– http://www.netlib.org/blacs/
– http://www.netlib.org/scalapack/ (includes PBLAS)

Crash Course: FORTRAN 77+

• FORTRAN 77+ is used in these notes to refer to the
dialect of FORTRAN 77 used by LAPACK and
ScaLAPACK developers.
– Straight FORTRAN 77 is quite arcane and most compilers have

implemented a set of extensions.

• FORTRAN has been the language of choice for scientific
and engineering for a long time, partly because it:
– Has an extensive compiler support for multi-dimensional arrays
– Has restrictions in the language to allow aggressive compiler

optimizations
– Has language support (in FORTRAN 90 and onwards) for

dynamic memory management, derived types, object orientation,
operator overloading, generic interfaces, array expressions,
distributed arrays (co-arrays), etc

Fixed Source Format

• FORTRAN 77+ has a strict source format known as the
”fixed source format” (removed in later standards)

• Columns are used for different things:
– 1: Comment column
– 2-5: Label columns
– 6: Continuation column
– 7-72: Statement columns
– 73-: Truncated (silently)

Comment

Label

Continuation

Statements Truncated

Set your editor to expand
tabs to spaces.

Use 3 as tabstop (two tabs takes
you to colunm 7)

IF-THEN-ELSE

• IF-statement:
– IF(<logical expression>) <statement>

• IF-construct:
• IF(<logical expression>) THEN

<block>
[ELSE IF(<logical expression>) THEN

<block>]
[ELSE

<block>]
END IF

GO TO, CONTINUE and Labels

• Labels
– Integers from 1 to 9999

– Placed in columns 2 to 5
– Used as targets for GO TO statements and in DO loops

• GO TO-statement:
– GO TO <label>

– Transfers control to statement labeled with <label>

• CONTINUE-statement:
– CONTINUE

– A do-nothing statement often used as target statement and DO
loop end statement.

•

DO

• DO-construct:
– DO<label> <var> = <low>, <high>[, <step>]

<block>
<label> CONTINUE

– Example:
• DO 10 J = 1, M, 2

...
10 CONTINUE

– New syntax:
• DO J = 1, M, 2

...
END DO

PROGRAM

• In FORTRAN you do not have a special function called
MAIN, instead you have the PROGRAM construct:
– PROGRAM [name]

<declarations>
<statements>

END [PROGRAM name]

SUBROUTINEs and FUNCTIONs

• SUBROUTINEs (think of C functions returning void)
– CALL mysub(<arglist>)

• FUNCTIONs (think of C functions returning non-void)
– <lval> = myfunc(<arglist>)

• Declaring a SUBROUTINE:
– SUBROUTINE<name>(<dummy arglist>)

<dummy argument type declarations>
END [SUBROUTINE name]

• Declaring a FUNCTION:
– <type> FUNCTION<name>(<dummy arglist>)

<dummy argument type declarations>
END [FUNCTION name]

– Example:
• INTEGER FUNCTION MAX(a, b)

INTEGER a, b
MAX = a
IF(b .GT. a) MAX = b

END

Arithmetic Operators

++N/A

+=N/A

N/A**

//

**

--

++

C/JavaFORTRAN

Logical Operators

&&.AND.

||.OR.

!.NOT.

!=

(exclusive or)

.NE.

.NEQV. (logical)

==.EQ.

.EQV. (logical)

>=.GE.

<=.LE.

<.LT.

>.GT.

C/JavaFORTRAN

Data Types

• INTEGER

– Signed 32-bit (usually) integer
• LOGICAL

– .TRUE. or .FALSE.

• CHARACTER(<length>) or CHARACTER(just one character)
– ’ string’ or ” string”

• REAL

– Single precision IEEE (usually) floating point f = 5E+0

• DOUBLE PRECISION

– Double precision IEEE (usually) floating point d = 5D+0

• COMPLEX

– Single precision IEEE (usually) complex number c = (r, i)

• COMPLEX*16

– Double precision IEEE (usually) complex number c = (r, i)

Arrays (Matrices and Vectors)

• Declaring a vector of 50 INTEGERs
– INTEGER vec(50)

• Declaring a 25x47 matrix of 50 INTEGERs
– INTEGER mtx(25, 47)

• Indexing starts from 1 (unless explicitly stated in the
declaration)

• Indexing top left element in matrix:
– mtx(1, 1)

• Indexing bottom right index in matrix:
– mtx(25, 47)

Automatic Arrays

• Size of array is either known at compile time or
determined by dummy arguments and the array is not a
dummy argument itself.

• Storage will be allocated (think of it as being allocated on
the stack) at runtime and deallocated automatically when
variable falls out of scope.
– Example:

• SUBROUTINE auto(N)
INTEGER A(N)

END

Assumed Shape Array

• The shape (extent of all dimensions) need not be known
at compile time.

• An array where the extent of one or more dimension is
determined by dummy arguments is referred to as an
assumed shape array.
– Useful for passing arrays as arguments to subroutines.
– Example:

• SUBROUTINE mysub(A, LDA, M, N)
INTEGER LDA, M, N
REAL A(LDA, N)

END

Assumed Size Arrays

• Extent of last dimension in FORTRAN arrays need not
be known at compile time (or at runtime for that matter)
to generate indexing code (first dimension in the case of
C).

• An array declared with unknown last dimension extent is
referred to as an assumed size array.
– REAL A(LDA, *)

• Indexing code:
A(i, j) ���� A + (i-1) + (j-1)*LDA

Comments

• Comment lines are created by putting (almost) any
character (usually * or c) in the first column:
– Example:

• c This is a comment
* This is also a comment

A = 1 c This is not a comment

Continuation (long statements)

• Long statements (going beyond column 72) can be
broken into several lines by placing (almost) any
character (usually numbers, $, &, +) in the continuation
column (column 6)
– Example:

• A(1, 2) = longvariablename +
$ anotherlongvariable

FORTRAN 77+/C ”Interoperability”

• Calling FORTRAN 77+ from C:
– These are usual type relationships:

• LOGICAL (?)
INTEGER int
CHARACTER char
REAL float
DOUBLE PRECISION double
COMPLEX float[2]
COMPLEX*16 double[2]

– Everything in FORTRAN is passed by reference
• This is usually implemented by passing a pointer.
• INTEGER int*

DOUBLE PRECISION double*
CHARACTER char*

– Symbols are usually lower case with added underscore:
• SUBROUTINE MySUB(...) mysub_

– Symbols with underscore sometimes get extra underscore:
• SUBROUTINE My_SUB(...) my_sub__

Other things to know about FORTRAN

• FORTRAN is case insensitive
• FORTRAN passes everything by reference
• FORTRAN 77 has no type checking of arguments
• FORTRAN 77 has no support for recursive subroutines

or functions

Storage Formats used by the Libraries

• General matrices:
– Column Major

• Symmetric and triangular matrices
– Column Major Column Packed

• Band matrices
– Diagonal Storage

• Tridiagonal matrices
– Diagonal Storage

Full Storage Format

11 12 13 14 15 16 17 18 19
21 22 23 24 25 26 27 28 29
31 32 33 34 35 36 37 38 39
41 42 43 44 45 46 47 48 49
51 52 53 54 55 56 57 58 59
61 62 63 64 65 66 67 68 69
71 72 73 74 75 76 77 78 79
81 82 83 84 85 86 87 88 89
91 92 93 94 95 96 97 98 99

0 9 18 27 36 45 54 63 72
1 10 19 28 37 46 55 64 73
2 11 20 29 38 47 56 65 74
3 12 21 30 39 48 57 66 75
4 13 22 31 40 49 58 67 76
5 14 23 32 41 50 59 68 77
6 15 24 33 42 51 60 69 78
7 16 25 34 43 52 61 70 79
8 17 26 35 44 53 62 71 80

Matrix Indices Memory Placement

Standard Packed Storage Format

11 * * * * * * * *
21 22 * * * * * * *
31 32 33 * * * * * *
41 42 43 44 * * * * *
51 52 53 54 55 * * * *
61 62 63 64 65 66 * * *
71 72 73 74 75 76 77 * *
81 82 83 84 85 86 87 88 *
91 92 93 94 95 96 97 98 99

0 * * * * * * * *
1 9 * * * * * * *
2 10 17 * * * * * *
3 11 18 24 * * * * *
4 12 19 25 30 * * * *
5 13 20 26 31 35 * * *
6 14 21 27 32 36 39 * *
7 15 22 28 33 37 40 42 *
8 16 23 29 34 38 41 43 44

Matrix Indices Memory Placement

Rectangular Full Packed Storage Format

11 66 76 86 96
21 22 77 87 97
31 32 33 88 98
41 42 43 44 99
51 52 53 54 55
61 62 63 64 65
71 72 73 74 75
81 82 83 84 85
91 92 93 94 95

0 9 18 27 36
1 10 19 28 37
2 11 20 29 38
3 12 21 30 39
4 13 22 31 40
5 14 23 32 41
6 15 24 33 42
7 16 25 34 43
8 17 26 35 44

Matrix Indices Memory Placement

Banded Storage Format

* 12 23 34 45 56 67 78 89
11 22 33 44 55 66 77 88 99
21 32 43 54 65 76 87 98 *
31 42 53 64 75 86 97 * *

0 9 18 27 36 45 54 63 72
1 10 19 28 37 46 55 64 73
2 11 20 29 38 47 56 65 74
3 12 21 30 39 48 57 66 75

Matrix Indices Memory Placement

11 12 * * * * * * *
21 22 23 * * * * * *
31 32 33 34 * * * * *

* 42 43 44 45 * * * *
* * 53 54 55 56 * * *
* * * 64 65 66 67 * *
* * * * 75 76 77 78 *
* * * * * 86 87 88 89
* * * * * * 97 98 99

Full Matrix Indices

BLAS

• Basic Linear Algebra Subroutines (BLAS)
– http://www.netlib.org/blas/ Reference implementation
– http://www.netlib.org/atlas/ Auto-tuning HPC impl.
– http://www.netlib.org/blas/gemm_based/

GEMM-based BLAS by
Kågström et. al.

– http://www.tacc.utexas.edu/resources/software/
GotoBLAS

• Interfaces:
– FORTRAN (official)
– C, C++, Java, ... (unofficial)

• Language:
– C, assembler, FORTRAN, ... (depends on vendor)

BLAS - Content

• BLAS contains subroutines and functions for a number
of basic linear algebra operations.
– Dot product
– Givens rotation generation and application
– Vector updates
– Matrix-vector product update
– Triangular system solve (with single or multiple right hand sides)
– Matrix-matrix product update
– ...

• The routines operate on various storage formats and on
four data types (single, double, complex, double
complex).

Coding Conventions
• _XXYY

– _: Data type

• S, D, C, or Z
– XX: Type of matrix

• GE, GB: GEneral, General Banded

• HE, HB, HP: HErmitian, Hermitian Banded, Hermitian Packed

• SY, SB, SP: SYmmetric, Symmetric Banded, Symmetric Packed

• TR, TB, TP: TRiangular, Triangular Banded, Triangular Packed

– YY: Operation

• S: ”Solve”

• M: ”Matrix”

• V: ”Vector”

• R: Rank-1

• R2: Rank-2

• RK: Rank-k

• R2K: Rank-2k

• Example:
– DTRSM:

• Double precision
• TRiangular
• Solve
• Multiple right hand sides

Memory Traffic - Limitations

• Memory bandwidth and latency can not match the high
performance of floating point computations on the chip.

• Solution:
– Exploit caches by data locality in space and time

• Solution requires:
– An operation that has much inherent locality

• Metric for estimating inherent locality in linear algebra:
– Number of floating point operations

--
Number of memory locations referenced

– i.e., flop/memref

Locality - Examples

• Example of poor inherent locality: AXPY (a*x + y)

– 2 vector loads (x, y)
– 1 vector store (y)
– 2 vector operations (*, +)
– flop/memref = 2/3

• Example of good inherent locality: GEMM (a*A*B + b*C)

– ~2*N^3 flops
– ~3*N^2 loads
– ~1*N^2 stores
– flop/memref ~ N/2

Level 1, 2, 3

• Level-1 BLAS: Vector operations (~1 flop/memref)
– _dot

_axpy
_swap
_copy
_scal
...

• Level-2 BLAS: Matrix-Vector operations (~1 flop/memref)
– _gemv

_symv
_trsv
...

• Level-3 BLAS: Matrix-Matrix operations (~N flop/memref)
– _gemm

_syrk
_trsm
...

LAPACK

• Linear Algebra PACKage (LAPACK)
– http://www.netlib.org/lapack/ Official LAPACK releases
– http://www.netlib.org/lapack/lanws/

Publications related to
LAPACK and DLA

• Some vendors provide their own optimized LAPACK routines as well
as BLAS routines:
– IBM: ESSL (Proprietary)
– AMD: ACML (Free?)
– Intel: MKL (Proprietary?)
– Cray: libsci (Proprietary?)

• Interfaces:
– FORTRAN (official)
– C, C++, Java, ... (unofficial)

• Language:
– FORTRAN 77+

LAPACK - Content

• Compared with BLAS, the high level algorithms and
tricky numerical algorithms go into LAPACK.
– Factorizing matrices

• LU, Cholesky, QR, QL, RQ, LQ, ...

– Applying factored-form orthogonal matrices
– Solving linear equations
– Solving linear least squares problems
– Decomposing matrices

• SVD, Schur, ...

– Computing eigenvalues and eigenvectors
• Symmetric, non-symmetric, ...

– Error bounds, condition estimation

Workspace Management

• Many routines in LAPACK require auxilliary workspace
to function and/or run faster.

• Users must provide this storage.
• Routines take workspace via their arguments, typically:

– WORK: Workspace
– LWORK: Length of workspace

• Routines requiring workspace allow workspace queries.
– Workspace query:

LWORK = -1

WORK(1) contains required workspace
Cast to INTEGER: INT(WORK(1))

– If you do a workspace query the routine will not modify any of its
arguments.

Error Reporting

• LAPACK routines have an extra INTEGERargument at the
end of their argument lists: INFO

– The value of INFO tells what went wrong (if anything):
• 0: Success

• < 0 : Argument number –INFO contained an illegal value (fatal,
programming error)

• > 0 : Something went wrong during computation (exact
interpretation is routine specific)

– Example: DGETRF(LU factorization)
INFO > 0 : U(INFO, INFO) is exactly zero

LAPACK - Examples

• Solving a linear system after LU factorization
– DGETRS(TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO)

• Computing QR factorization
– DGEQRF(M, N, A, LDA, TAU, WORK, LWORK, INFO)

BLACS

• Basic Linear Algebra Communication Subroutines
– http://www.netlib.org/blacs/ Official BLACS releases

• Purpose:
– Communication of submatrices appropriate for dense linear

algebra algorithms (e.g., ScaLAPACK)

• Objection:
– ”I know MPI inside out, why should I learn BLACS?”

• Answer:
– It will hopefully be apparent at the end of this segment.

• Interfaces:
– FORTRAN, C (official)

• Language:
– C

2D-Grid, Scope, Context

• Processes are arranged in a logical 2D-grid.
• Each process is a member of three scopes:

– ’All’: All processes in the grid
– ’Row’: All processes on the same row of the grid
– ’Column’: All processes on the same column of the grid

• BLACS communication is tied to a context (think of MPI
communicators) which is an integer.

Submatrix Communication

• The BLACS unit of communication is a submatrix of
some specified size and shape.

• Two types of submatrices:
– General submatrices:

• Parameters: M, N, A, LDA

– Trapezoidal submatrices (generalization of triangular):
• Parameters: M, N, A, LDA, UPLO, DIAG

• Packing of matrices hidden from user
• Types supported:

– I : Integer
– S: Single precision
– D: Double precision
– C: Complex single precision
– Z: Complex double precision

Point-to-Point

• Send:
– xGESD2D(CTXT, M, N, A, LDA, RDST, CDST)

– xTRSD2D(CTXT, UPLO, DIAG, M, N, A, LDA, RDST, CDST)

• Receive:
– xGERV2D(CTXT, M, N, A, LDA, RSRC, CSRC)

– xTRRV2D(CTXT, UPLO, DIAG, M, N, A, LDA, RSRC, CSRC)

Collectives

• Broadcast (send):
– xGEBS2D(CTXT, SCOPE, TOP, M, N, A, LDA)

– xTRBS2D(CTXT, SCOPE, TOP, UPLO, DIAG, M, N, A, LDA)

• Broadcast (receive):
– xGEBR2D(CTXT, SCOPE, TOP, M, N, A, LDA,

RSRC, CSRC)

– xTRBR2D(CTXT, SCOPE, TOP, UPLO, DIAG, M, N, A, LDA,
RSRC, CSRC)

• Combine operations (SUM, MAX, MIN):
– xGSUM2D(CTXT, SCOPE, TOP, M, N, A, LDA, RDST, CDST)

– xGAMX2D(CTXT, SCOPE, TOP, M, N, A, LDA, RA, CA,
RCFLAG, RDST, CDST)

– xGAMN2D(CTXT, SCOPE, TOP, M, N, A, LDA, RA, CA,
RCFLAG, RDST, CDST)

Collectives: Topology

• Topologies (TOP) specify the communication pattern.
– ’I’: Increasing ring
– ’D’: Decreasing ring
– ’S’: Split ring
– ’M’: Multi-ring
– ’1’: 1-tree
– ’B’: Bidirectional exchange
– ’ ’: Default (may use MPI_Bcast)

BLACS – Setup (FORTRAN)

• Initializing BLACS:
– CALL BLACS_PINFO(ME, NP)

• Initializing context:
– CALL BLACS_GET(0, 0, CTXT)

CALL BLACS_GRIDINIT(CTXT, 'Row', P, Q)
CALL BLACS_GRIDINFO(CTXT, P, Q, MYROW, MYCOL)

• Getting someones rank from coordinates
– RANK = BLACS_PNUM(CTXT, ROW, COL)

• Getting someones coordinates from rank
– CALL BLACS_PCOORD(CTXT, RANK, ROW, COL)

• Exiting BLACS
– CALL BLACS_EXIT(0)

PBLAS

• Parallel BLAS
– http://www.netlib.org/scalapack/ PBLAS reference impl.

is part of ScaLAPACK

• Interfaces:
– FORTRAN
– C?

• Language:
– C

2D Block Cyclic Distribution

• PBLAS operates on data distributed using the 2D block
cyclic distribution.

• Recall:

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55

11 12 15 13 14
21 22 25 23 24
51 52 55 53 54
31 32 35 33 34
41 42 45 43 44

5 x 5 matrix, 2 x 2 blocks 2 x 2 process grid point of view

0 1

1

0

Matrix Descriptors

• Descriptors are used in PBLAS and ScaLAPACK to
encapsulate information on a distributed matrix.

• A descriptor is a 9-item integer vector:
– INTEGER DESCA(9)

– DESCA(1): (DTYPE) 1
DESCA(2): (CTXT) BLACS context
DESCA(3): (M) Number of rows in global matrix
DESCA(4): (N) Number of columns in global matrix
DESCA(5): (MB) Row blocking factor
DESCA(6): (NB) Column blocking factor
DESCA(7): (RSRC) Row index of owner of A(1, 1)
DESCA(8): (CSRC) Column index of owner of A(1, 1)
DESCA(9): (LLD) Leading dimension of the local matrix

PBLAS - Example

• Parallel version of DGEMM

– CALL PDGEMM(TRANSA, TRANSB,
M, N, K,
ALPHA, A, IA, JA, DESC_A,

B, IB, JB, DESC_B,

BETA, C, IC, JC, DESC_C)

• Notice:
– PBLAS has interfaces that take descriptions of submatrices
– BLAS, on the other hand, takes submatrices implicitly

ScaLAPACK

• SCAlable LAPACK (distributed memory)
– http://www.netlib.org/scalapack/ Official ScaLAPACK releases

ScaLAPACK - Content

• Most of LAPACK
• No support for band and packed matrices
• Missing some more advanced algorithms

– SVD and QR w/ pivoting least squares
– Generalized least squares
– Non-symmetric eigenvalue problems
– D&C SVD
– ...

ScaLAPACK – Coding Conventions

• Symbols are similar to LAPACK (just add P)

• Submatrices are referenced explicitly in interface:
– A(I, J), LDA LAPACK submatrix reference
– A, I, J, DESCA ScaLAPACK submatrix reference

Utilities: DESCINIT

• SUBROUTINE DESCINIT(DESC, M, N, MB, NB, RSRC, CSRC,
CTXT, LLD, INFO)

• Initializes all elements of a descriptor.
• Arguments:

– DESC Descriptor to initialize (output)
– M, N Size of global matrix
– MB, NB Blocking factors
– RSRC, CSRC Coordinates of owner of (1, 1) matrix element
– CTXT BLACS context
– LLD Leading dimension of local matrix (use NUMROC

to find)
– INFO Error reporting, 0: success (output)

Utilities: NUMROC

• INTEGER FUNCTION NUMROC(N, NB, ME, SRC, NP)

• Finds the number of rows (or columns) mapped to a
specific grid row (or column).

• Arguments:
– N Extent of matrix dimension
– NB Blocking factor in matrix dimension
– ME Row (or column) index of processor of interest
– SRC Row (or column) index of source
– NP Number of processes in grid dimension

Utilities: INFOG2L

• SUBROUTINE INFOG2L(GRINDX, GCINDX, DESC, NPROW, NPC OL,
MYROW, MYCOL, LRINDX, LCINDX, RSRC, CSRC)

• Given a global matrix element (GRINDX, GCINDX), returns
the corresponding local matrix element (LRINDX, LCINDX)

and coordinates of processor that owns that element
(RSRC, CSRC).

• Arguments:
– GRINDX, GCINDX Global matrix element
– DESC Descriptor of matrix
– NPROW, NPCOL Grid size
– MYROW, MYCOL My coordinates
– LRINDX, LCINDX Local matrix element (output)
– RSRC, CSRC Owner of element (output)

