Blocked In-Place Rectangular Transpose

Fred Gustavson

Assisted by Lars Karlsson
F13-part2: Design \& Analysis of
Algorithms for HPC Systems;
Umeå University, Sweden
May 20, 2008

Main Idea

- Combine Cache Blocking with Point InPlace Transpose on a very tiny matrix
\square use of RB Format is the key idea
$\square \mathrm{CM}$-> RB -> RB ${ }^{\top}$-> CM
$\square S B$ is special case of RB
- Block In-Place Transpose is Very Fast relative to Point In-Place Transpose
- CM <-> RB uses fast vector In-Place Alg.

Summary or Overview

- A is M by N.
- $\mathrm{M}=\mathrm{m}^{*} \mathrm{MB}$ \& $\mathrm{N}=\mathrm{n}$ *NB
- CM -> RB by vector IP transpose
- RB <-> RB ${ }^{\top}$ by block IP transpose
\square use point IP transpose on m by n A1= SB A
- RB' -> CM by vector IP transpose

Vector In-Place Xpose or CM<->SB

- Let A be M by NB with $\mathrm{M}=\mathrm{m}^{*} \mathrm{MB}$
- View A as m by NB A1 with each a1(i,j) being a column vector of size NB
- Apply point IP transpose to A1 to get A2
- A2 is m order NB SB's concatenated
- Apply above subroutine $\mathrm{n}=\mathrm{N} / \mathrm{NB}$ times

Where does the Speed Come From

- Data moved in blocks and vectors gives a 10 to 100 times performance gain
\square uses stride one processing; every line gets fully used when it enters L1 and streaming by algorithmic / automatic pre-fetching works
- SMP parallelism is easy to implement
\square disjoint cycle structure
\square long cycles can be broken into pieces

Other Matrix Layouts

- Can block transform (in-place) any permutation that can be described by a compact functional description
\square includes all common matrix data layouts
- standard CM / RM rectangular arrays
- standard CM / RM triangular arrays
- standard packed format

An Example of CM to RB

- A is $\mathrm{M}=500$ by $\mathrm{NB}=4$
$\square M=m * M B$ with $M B=100$ and $m=5$
- A1 is $m=5$ by NB = 4; each element of A1 is a vector of length $M B=100$
- Both A and A1 are identical in storage and occupy M*NB = 2000 contiguous locations

Picture of the Previous slide

0	0	50010001500		
	0	1	2	3
	00	01	02	03
100	10	11	12	13
200	20	21	22	23
300	30	31	32	33
400	40	41	42	43

	0		400	800	1200
	0	1	2	3	4
0	00	10	20	30	40
100	01	11	21	31	41
200	02	12	22	32	42
300	03	13	23	33	43

Previous slide shows CM to RB is vector in place transpose

- The left matrix A1 is a $m=5$ by NB $=4$ matrix whose elements are vectors of length $M B=100$. This matrix is in standard CM format.
- The right matrix is the NB=4 by $m=5$ vector transpose of A1. It is in RB format consisting of $m=5$ RB's of size $M B=100$ by $\mathrm{NB}=4$.

Details of vector in place transpose

- 0 and $\mathrm{m}^{*} \mathrm{n}-1=10$ are singleton cycles
- 19 is prime and \# d=2;1\&19
- $\mathrm{q}=\mathrm{m}^{*} \mathrm{n}-1=19$ is the mod value
- For problem 19, phi = 18 \& cl = 9; leaders are 1, 2
- For problem 1, phi = $1 \& \mathrm{cl}=1$ at 19
- Further details follow

More Details continued

- cycle one $=1,4,16,7,9,17,11,6,5,1$
- cycle two $=2,8,13,14,18,15,3,12,10,2$
- cycle three $=19$
- cycle four $=0$
- These four cycles cover all of A1's twenty vectors of length MB = 100
- These four cycles cover all 2000 elements of A and transform A from CM format to RB format

A1 layout of A; see slide \# 8

	$0 \quad 5 \quad 10 \quad 15$			
	0	1	2	3
0	00	01	02	03
1	10	11	12	13
2	20	21	22	23
3	30	31	32	33
4	40	41	42	43

				$\begin{gathered} 12 \\ 3 \end{gathered}$	16 4
0	00	10	20	30	40
1	01	11	21	31	41
2	02	12	22	32	42
3	03	13	23	33	43

In Place Transpose Mapping

$$
(i, j) \underset{\mathrm{F}^{-1}}{\stackrel{\mathrm{~F}}{\leftrightarrows}} i j \quad \text { (Old) }
$$

M

$$
\begin{aligned}
& F(i, j) \mapsto i+m \cdot j \\
& F^{-1}(i j) \mapsto\left(\bmod (i j, m),\left\lfloor\frac{i j}{m}\right\rfloor\right) \\
& F T(i, j) \mapsto j+n \cdot i \\
& M(i j) \mapsto \bmod (n \cdot i j, q)
\end{aligned}
$$

$$
\mathrm{M}=\mathrm{FT}^{\circ} \circ \mathrm{F}^{-1}
$$

Mapping $(1,3)$ to $(2,1)$

Picture of the 4 cycles of slide \# 11

0	8	8	5
0	7	6	2
0	3	7	5
6	1	2	4
1	4	3	0

A is 500 by 700 in CM order

- CM A has LDA = 500
- A has 7 column swaths: 500 by 100 each
- A1 is 5 by 100 matrix of vectors
- In-place transpose with q = 499
- repeat above 6 more times
- A is now in SB format of size 5 by 7

Details of CM to SB Vector

- 0 and $\mathrm{m}^{*} \mathrm{n}-1=499$ are singleton cycles
- 499 is prime and \# d=2;1\&499
- $q=m * n-1$ is the mod value
- for problem 499, phi = $498 \& \mathrm{cl}=249$; leaders are 1, 2
- for problem 1, phi = $1 \& \mathrm{cl}=1$ at 499

Details of SB to SB^{\top}

- $q=5^{*} 7-1=34=2 * 17$
- q = sum over divisors of phi
$\square \# d=4 ; 34,17,2,1$; phi's $=16,16,1,1$
- \#d problems gives cycles of length 16, 16, 1,1 starting at $1,2,17,34$

Cycles for SB to SB ${ }^{\top}$

- $\operatorname{Map}(\mathrm{ij})=\bmod \left(\mathrm{ij}{ }^{*} \mathrm{n}, \mathrm{q}\right) ; \mathrm{m}=5, \mathrm{n}=7$, $q=m * n-1=34$
- cycle one: $1,7,15,3,21,11,9,29,33$, 27, 19, 31, 13, 23, 25, 5, 1
- cycle two : $2,14,30,6,8,22,18,24,32$, $20,4,28,26,12,16,10,2$
- cycles at 17,34 , and 0 are singletons

Picture of Map on slide \# 19

0	15	15	2	9	14	2
0	3	5	14	4	12	11
0	1	13	0	5	9	8
3	4	12	6	13	11	8
10	6	1	10	7	7	0

Details of SB^{\top} to CM

- m = 100, $\mathrm{n}=7, \mathrm{q}=699=3^{*} 233$

■ \# d = 4; 699, 233, 3, 1; phi's 464, 232, 2, 1

- cl's are 166, 166, 1, 1
- leaders are 1, 2, 5, 10; 3, 9; 233, 466; 699

The 500 by 700 A as a point matrix

- $\mathrm{q}=\mathrm{m} * \mathrm{n}-1=349,999=13^{* *} \mathbf{2}^{*} 19^{*} 109$
- \# d's = 3*2*2 = 12:
- sum of phi(d) = q

■ twelve phi's are 303264, 23328, 16848, 2808, 1944, 1296, 216, 156, 108, 18, 12, 1

- twelve cl's are $468,36,156,468,18,12,36$, 156, 6, 9, 12, 1
■ ratio's give \# of leaders: 648, 648, 108, 6,108, 108, 6, 1, 18, 2, 1, 1: sum = 1655

500 by 700 A as point matrix

- hand-out has cycle of length 12 at $\mathrm{ij}=247$
$\square \mathrm{ij}$ is $(247,0)$ element of A; next element in cycle is $\bmod \left(247^{*} 700\right.$, q); 247 | q so we get cycle is $\mathrm{i}<-\bmod \left(700^{*} \mathrm{i}, 1417\right)$:
$\square 247^{*}(1,700,1135,980,172,1372,1091$, $1354,1244,762,608,500,1) \bmod (q)$

