1, 2, 3 \& Higher Dimensions

Fred Gustavson

F13-part1: Design and Analysis of Algorithms for HPC Systems; Umeå University, Umeå, Sweden May 20, 2008

Popular Explanation

- Line has one dimension: length
- Surface; e.g., a piece of paper has two dimensions: length and width
- Space: e.g., a box has three dimensions: length, width and height
- Simple, clear and inadequate

Problems

- Line is okay
- Plane is okay if it is a rectangle; what about circles and ovals?
\square diameter is one dimensional; ellipses have variable diameters; yet these are 2-D
- Solid such as box is okay; what about a sphere?
\square one radius; yet it is called 3-D

Vague Definitions are Inadequate

- Study 2-D before going further
- Chess board
- City Maps

More on Chess

- Can play without board
- Need to visualize moves
- Label board horizontally and vertically

More on Maps

- Need to be able to identify your location
- Again a rectangle of squares labeled like a Chess board is in common use
- Tourist living in a hotel in Umeå
\square finds his square
\square can easily walk to neighboring squares

Key Concept is a Neighborhood

- Does a labeling satisfy the neighborhood property of closeness?
- It will turn out that this notion can be made mathematically correct
- Hence, we will be able to define dimension in a satisfactory manner

Other labeling's

- Try natural Numbers: 1, 2, 3, ...
- Examples on a Chess Board follow
- Notice: some neighboring squares are widely separated with this single labeling
- Same thing occurs for city maps
- Is this true for all single labeling's?

Five different labels follow

- CM or column major
- RM or row major
- Morton Z or recursive
- Integer to rational number mapping
- Two labels showing satisfaction of the neighborhood property

$\mathbf{8}$	$\mathbf{1}$	2	3	4	5	6	7	8	$\mathbf{8}$
$\mathbf{7}$	9	10	11	12	13	14	15	16	$\mathbf{7}$
$\mathbf{6}$	17	18	19	20	21	22	23	24	$\mathbf{6}$
$\mathbf{5}$	25	26	27	28	29	30	31	32	$\mathbf{5}$
$\mathbf{4}$	33	34	35	36	37	38	39	40	$\mathbf{4}$
$\mathbf{3}$	41	42	43	44	45	46	47	48	$\mathbf{3}$
$\mathbf{2}$	49	50	51	52	53	54	55	56	$\mathbf{2}$
$\mathbf{1}$	$\mathbf{5 7}$	58	59	60	61	62	63	64	$\mathbf{1}$
	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{h}	

	1	3	9	11	33	35	41	43	$\mathbf{8}$
$\mathbf{7}$	2	4	10	12	34	36	42	44	$\mathbf{7}$
$\mathbf{6}$	5	7	13	15	37	39	45	47	$\mathbf{6}$
$\mathbf{5}$	6	8	14	16	38	40	46	48	$\mathbf{5}$
$\mathbf{4}$	17	19	25	27	49	51	57	59	$\mathbf{4}$
$\mathbf{3}$	18	20	26	28	50	52	58	60	$\mathbf{3}$
$\mathbf{2}$	21	23	29	31	53	55	61	63	$\mathbf{2}$
$\mathbf{1}$	22	24	30	32	54	56	62	64	$\mathbf{1}$
	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{h}	

8	36	37	49	50	58	59	63	64	8
7	22	35	38	48	51	57	60	62	7
6	21	23	34	39	47	52	56	61	6
5	11	20	24	33	40	46	53	55	5
4	10	12	19	25	32	41	45	54	4
3	4	9	13	18	26	31	42	44	3
2	3	5	8	14	17	27	30	43	2
1	1	2	6	7	15	16	28	29	1
		b							

A metric for a Neighborhood

- Use a one norm: let $p=(u, v)$ and $q=(x, y)$ be two points
- $\operatorname{Norm}(p, q)=\operatorname{sum}|u-v|+|x-y|$

Cases where Natural Numbers

 suffice- Years
- Temperature
- Milestones on a road

Mathematical Essence of

Dimension

- Indexing with single numbers, or simple enumeration is applicable only to those cases where the objects have the character of a sequence
- Simple, single indexing must obey the neighborhood property. These objects are therefore labeled one dimensional

Two Dimensions

- Maps, Chessboards, etc. cannot be labeled by a simple sequential order
- Reason: the neighborhood property is violated
- However, two simple sequences suffice

2-D Labeling

- Rectangle: use Cartesian coordinates; x, y
- Circle: use polar coordinates; r, θ
- Surface of a torus: use two diameters
- Surface of a sphere: latitude and longitude
- Daily temperature in Umeå: time and temperature

3-D Labeling

- Need three simple sequences
- Box: use Cartesian coordinates
- Solid Sphere: use spherical coordinate; r, θ, φ
- 3-D Chess

Dimension Number of a Domain

- Dimension: Number of numbers (symbols) to suitably characterize the elements of the domain
- Number of the numbers (symbols) give the dimension of the domain
\square line is 1-D, circle is 2-D, solid sphere is 3-D

Nature of Dimension

- Erroneous Notion: Rectangle has more points than a line; solid has more points than a rectangle
- Problem was corrected: All domains have the same number of points
- A problem remained: Is it possible to label a domain with two different labelings that both obey the neighborhood principle (higher to lower)
\square example: 2-D to 1-D

Theorem: Not possible

- LEJ Brouwer stated and proved this result in 1913.
- Some of Brouwer's methods were anticipated by Poincare

Next Talk

- Apply Dimension Theory to matrices in the Fortran and C programming languages
- Layouts are 1 D; matrices are 2 D
\square Cannot maintain locality of reference
- Fortran and C now has a bad standard
- NDS is an attempt to fix this deficiency

