
The Relevance of New Data Structures for The Relevance of New Data Structures for 

Dense Linear Algebra in the new MultiDense Linear Algebra in the new Multi--Core / Core / 

Many Core EnvironmentsMany Core Environments

Fred Gustavson

IBM T.J. Watson Rearch Center

Yorktown Heights, NY  

E-mail: fg2@us.ibm.com

F11: Design and Analysis of Algorithms for HPC SystemsF11: Design and Analysis of Algorithms for HPC Systems

UmeaUmea University, Sweden University, Sweden 

May 7, 2008May 7, 2008

Fundamental "Triangle"Fundamental "Triangle"

A

H C

A: Algorithms

H: Hardware

C: Compilers



Algorithm and ArchitectureAlgorithm and Architecture

The key to performance is to understand the 

algorithm and architecture interaction.

A significant improvement in performance can 

be obtained by matching the algorithm to the 
architecture or vice-versa.

A cost-effective way of providing a given level of 

performance.

Multi-core puts more of the burden on the 

algorithm part of the triangle

Especially hard for the designers of Library 

Software

ArchitectureArchitecture

ƒ Floating point arithmetic is done in the L0 cache

ƒ 2-D Fortran and C arrays do NOT map well into 
the L1 and L0 caches (this combo is a core)

� The best case happens when the array is    

contiguous and aligned properly

� Need at least a 3 way set associative L1 cache

ƒ Floating point data must be in the L0 cache for 
peak performance to occur

� Multiple reuse amortizes the cost of bringing 

an operand to the L1 / L0 caches or core / FPU

� Multiple reuse only happens well when all 

operands map well into L1 / L0 or core / FPU



Dense Linear AlgebraDense Linear Algebra

ƒ Some scalar a(i,j) algorithms have square 
submatrix A(I:I+NB-1,J:J+NB-1) algorithms

� LAPACK library 

� Golub and Van Loan’s book

ƒ Some square submatrices are both contiguous 
and fit into a L1 cache or core

ƒ Dense Matrix factorization is a level 3 
computation

� Series of submatrix computations

� All submatrix computations are level 3

� In level 3 computations each matrix operand is 

used multiple times

Basic Algorithm ChangeBasic Algorithm Change

ƒ Map the input Fortran / C 2-D array ( matrix A) 
to a set of contiguous submatrices that each fit 
into a L1 cache or core

ƒNew Data Structures

ƒ Apply the appropriate submatrix algorithm

�A series of level 3 computations whose 

operands are contiguous submatrices each 

fitting into the L1 cache and able to enter L0 or 

core and FPU in an optimal seamless manner



FMA InstructionFMA Instruction

Basic Instruction of Engineering/Scientific 

Computation

ƒ D = C + A * B

ƒ Basic instruction of Linear Algebra

ƒ Elementary operations and the concept of 
equivalence

�Key concept of linear algebra

�Adding a multiple of one row (column) to another 
row (column) or SIMD vector FMA

�Ax = b  if and only if Ux = L-1 b

�Above is a series of independent FMAs

BlockingBlocking

ƒ TLB Blocking -- minimize TLB misses

ƒ Cache Blocking -- minimize cache misses

ƒ Register Blocking -- minimize load/stores

����������	�
�������	���
���
�������������
������
���������
�����������������

��������
����	�
�	���
������������������
�����������������
������������

Cache Blocking -- Reduces traffic between memory and cache

Register Blocking -- Reduces traffic between cache and CPU

TLB Blocking – Covers the current working set of a problem



Some Facts on Cache BlockingSome Facts on Cache Blocking

ƒ A very important algorithmic technique

ƒ First used by ESSL and the Cedar Project

ƒ Cray 2 was impetus for Level 3 BLAS

ƒ Multi-core may modify the L3 BLAS standard

ƒ The gap between memory speed and many 

fast cores is too great to allow the current 

standard to be viable

Standard Fortran and C MatricesStandard Fortran and C Matrices

• A has size M rows by N cols with LDA >= M

– Cols are stride one and rows are LDA

– This is a one dimensional layout whereas A is 2-D

• AT has size N rows by M cols with LDAT >= N

– Rows are stride one and cols are LDAT

– This is a one dimensional layout whereas AT is 2-D

• Both A & AT contain the same information

– However, two copies are necessary



Standard Fortran and C MatricesStandard Fortran and C Matrices

• Can not transpose a sub matrix A(r:s,u:v) in 

place

– Image,  A(r:s,u:v)T , does not map onto A(r:s,u:v)

• This is why transpose is currently out-of-place

• Can transpose A in place if LDA = M

• We will return to this subject later

Generalization of Standard FormatGeneralization of Standard Format

• Each a(i,j) is now a rectangular or square sub 

matrix A(I:I+MB-1,J:J+NB-1)

– All sub matrices are contiguous; LDA = MB

– Simple and non-simple layouts

• Left over blocks are full; size MB*NB

– Very important

• Can transpose rectangular or square sub matrices 

in place



Block Column Major OrderBlock Column Major Order

0         5       10      15      20      25      30

1         6       11      16 21 26      31

2         7       12      17      22 27      32

3        8       13      18      23 28      33

4        9       14      19 24 29 34

A =

ƒ A has 500 rows and 700 columns

ƒ Each block i, 0 <= i < 35 has size 100 by 100

ƒ Block i is located at 10000 i

Standard Packed Matrix ArraysStandard Packed Matrix Arrays

• Used for symmetric and triangular matrices to 

conserve storage

• N vectors concatenated together

– Lower and upper formats

– a11, a21, a31, a22, a32, a33 is lower for n=3

– a11, a12, a22, a13, a23, a33 is upper for n=3

• Saves storage but is very slow

– No level 3 packed BLAS



Generalization of Packed Matrix ArraysGeneralization of Packed Matrix Arrays

• Used for symmetric and triangular matrices to 

conserve storage

• N vectors of sub matrices concatenated together

– Lower and upper blocked formats

– A11, A21, A31, A22, A32, A33 is lower for N=3NB

– A11, A12, A22, A13, A23, A33 is upper for N=3NB

• Saves storage and is very fast

– Use level 3 BLAS or better still kernel BLAS

Square Blocked Lower Packed FormatSquare Blocked Lower Packed Format

0

1    8

2    9   15

3   10  16  21

4   11  17  22  26

5   12  18  23  27  30

6   13  19  24  28  31  33

7   14  20  25  29  32  34  35

A =

ƒ A is symmetric and has order 800

ƒ Each block i, 0 <= i < 36 has order 100 by 100

ƒ Block i is located at 10000 i



Blocked MatBlocked Mat--Mult is OptimalMult is Optimal

Theorem: 

Any algorithm that computes 

a (i, k) * b (k, j) for all 0<i, j, k< n+1 

must transfer between memory and an M-

word cache Ω(n3 /  M ) words if M < n2 / 5.

IBM Thomas J. Watson Research Center

Yorktown Heights, New York

• Principle of Equivalence in Linear Algebra

• Instead of performing Gaussian Elimination 

do the same thing :  perform N linear 

transformations on A to get an equivalent 

matrix U. 

• Conclude: Instead of a collection of 

Factorization Algorithms one now has a single 

procedure of just applying linear 
transformations.

Ax = b if and only if Ax = b if and only if UxUx = L= L--11bb

IBM Thomas J. Watson Research Center

Yorktown Heights, New York



Matrix Multiplication is PervasiveMatrix Multiplication is Pervasive

�Let R and S be linear transformations

�Let T = S (R) be linear

�Let R and S have basis vectors

�The basis for T, in terms of R and S bases, 

defines matrix multiplication

�The definition is due to Arthur Cayley the man 

who invented matrices

IBM Thomas J. Watson Research Center

Yorktown Heights, New York

Summary of Last Three SlidesSummary of Last Three Slides

� Sketch of a proof that matrix factorization is 

almost all matrix multiplication

a) Perform n = N/NB rank NB linear 

transformations on A to get say U; here 

PA=LU

b) Each of these n composed NB linear 
transformations is matrix multiply by definition

c) These n transformations preserve the 

solution properties of Ax = b if and only if Ux

= L-1b by the principle of equivalent matrices  
IBM Thomas J. Watson Research Center

Yorktown Heights, New York



Blocked Based Algorithms a la LAPACKBlocked Based Algorithms a la LAPACK

�N coordinate transformations represented as n = 
N/NB composed rank NB coordinate transformations

�View as a series of kernel algorithms
ƒ c(i, j)=c(i, j) - a(i, k)*b(k, j) : GEMM, SYRK : C=C-A*B

ƒ b(i, j)=b(i, j)/a(j, j) : TRSM : B = B*A-1

ƒ L*U=P*A : Factor Kernel

ƒ L*LT=A :          Cholesky Kernel

ƒ Q*R=A : QR Kernel

�LAPACK treats factor kernels as a series of NB level 
two operations

�Factor kernels can be written as level 3 kernels
ƒ Recursion is helpful

ƒ Register based programming

Square Blocked Packed Cholesky vs. DPOTRF

Run on 200 MHz Power3 (Peak 800 Mflops)

10
1

10
2

10
3

0

100

200

300

400

500

600

700

800

matrix order N

M
F

lo
p

s

[Square Blocked Packed Cholesky , DPOTRF] vs.N



Blocked Hybrid Cholesky vs. DPOTRF and DPPTRF

Run on 200 MHz Power3 (Peak 800 Mflops)

10
1

10
2

10
3

0

100

200

300

400

500

600

700

800

 matrix order N 

 M
F

lo
p

s
 

[ BHC , BHC + data transformation , DPOTRF , DPPTRF ] vs. N 

Challenge of Machine Independent Design of Challenge of Machine Independent Design of 
Dense Linear Algebra Codes via the BLASDense Linear Algebra Codes via the BLAS

Currently done via the BLAS

ƒ Computer manufacturers supply high performance 
BLAS

ƒ A dense linear algebra algorithm and its calls to BLAS 
are related

Examples

ƒ Cholesky; all matrix operands to DTRSM, DSYRK, 
and hence DGEMM are submatrices of A.

ƒ General Matrix Factor, QR factor,..., : the same is true 
as for Cholesky.

These examples suggest a general pattern.



Challenge of Machine Independent Design of Challenge of Machine Independent Design of 
Dense Linear Algebra Codes via the BLASDense Linear Algebra Codes via the BLAS

Every Dense Linear Algebra Algorithm calls the 

BLAS several times. Every one of the multiple 

BLAS calls has all of its matrix operands equal to 

the submatrices of the matrices, A, B, ... of the 
dense linear algebra algorithm.

Can this apparent general truth be exploited?

Can We Exploit This General Relationship?Can We Exploit This General Relationship?

What do the current BLAS do?

ƒ They try to exploit architecture design while 
maintaining functionality of the BLAS

Take Level 3 BLAS:

ƒ Factorization algorithms are level 3 algorithms

ƒ Data operands are copied to achieve cache 
blocking with minimal L1, L2 and TLB misses

ƒ Reason for level 3 BLAS

Repeated calls to BLAS 3 require that multiple 

data copying be done

ƒ On operands that are related



Can We Exploit This General Relationship?Can We Exploit This General Relationship?

An answer: change the data structure of the 

input matrices!

Change must reflect what the BLAS does 

repetitively.

ƒ Store matrix as aligned contiguous BLOCKS

How are the BLOCKS to be stored?

ƒ BLOCK ROW

ƒ BLOCK COLUMN

ƒ other but still contiguous

ChangesChanges

ƒ Dense Linear Algorithm Code Change

�Changes are minor

�Current codes are currently blocked based

ƒ BLAS Code Changes

�No data copy

�Codes become simpler

�Higher performance

ƒ Overall performance of Dense Linear Algorithm 

Codes improve.



ChangesChanges are happening noware happening now

ƒ Multi-core is forcing this change

�New codes are using two D layouts

�Provably Allows better scaling

ƒ BLAS Code Changes

�No data copy

�Codes are now kernel BLAS

�Can overlap communication and computation

ƒ A programming price is being paid by algorithm 

designers.

Application of LU=PA on CellApplication of LU=PA on Cell

ƒ Apply the Algorithm and Architecture Approach

� Fast single precision unit

� Use iterative refinement

� Work of Jack Dongarra’s team at Univ. Tenn.

� Linpack Benchmark LU = PA

� Iterative refinement is O(N2)

� Factorization is O(N3)

� Use extra storage of a factor of 1.5 times 2

� Use of BDL was deemed crucial 

ƒ Overlapping computation with communication is 

an architectural feature of the Cell processor



Look ahead Idea for FactorizationLook ahead Idea for Factorization

ƒ Overlap Schur Complement Update aka matrix 

multiplication with the previous factor step

ƒ PA = (L1U1)(L2U2)…Ln = L1(U1L2)…(Un-1Ln)

ƒ L part is factor and scale and U part is SC update 

� factor step provide the A and B operands of the 
update GEMM part

� with this use of the associative law the A & B of 
parts of GEMM is done early aka lookahead

� factorization is almost 100% Update  

� makes factorization almost perfectly parallel 

Block Data LayoutBlock Data Layout

ƒ Block Data Layout is another name for Square 

Block Format which we described in this talk

ƒ Design of LU = PA for the Cell processor

ƒ Quotes from Jack Dongarra’s et. al. paper 

� “most important one is block layout”

� “unlikely that data layout can be hidden within 
the BLAS”

� “how should block layout be exposed to the 
user”



Matrices A and AMatrices A and ATT in Storagein Storage

• Let A be an n x n matrix

• AT is an n x n matrix

• When A is symmetric only half of A need

be stored as A = AT

• Full storage is used as packed storage

gives very poor performance in LAPACK

• Half the storage is wasted by LAPACK full 

symmetric and triangular routine

Triangular Matrices in StorageTriangular Matrices in Storage

Let A be an order N symmetric matrix

Fact: A can be represented by either an

an upper or lower triangular matrix



A Triangular Matrix A as a full A Triangular Matrix A as a full 
Rectangular Matrix AFRectangular Matrix AF

Let A be an upper or lower triangular matrix of

order N 

If N = 2*k then A is also a N+1 by k rectangular 

matrix AF. If N = 2*k+1 then A is also a N by 

k+1 rectangular matrix AF.
Packed matrices in LAPACK can represent-

ed as full matrices. This means that packed 

LAPACK routines can be Level 3 routines 

and also use the same minimal storage as 

packed storage uses. 

Representing a Triangular Matrix an order N = 5 Representing a Triangular Matrix an order N = 5 
as a Rectangular Matrixas a Rectangular Matrix

orA=

AF=
or



Packed or Full LAPACK Packed or Full LAPACK 
Algorithms for a Triangular MatrixAlgorithms for a Triangular Matrix

• Both these Algorithms can be replaced by

a single new simply related algorithm using the

AF rectangular array. The new code is

obtained from existing Lapack code.

• Any Lapack Algorithm for a Triangular

Matrix has two sub-algorithms, 'U' and 'L'

• Conclude: Four algorithms reduce to a single

algorithm. There are eight cases

Simply Related AlgorithmSimply Related Algorithm

1 Lapack Algorithm on A00

2 A10 = BLAS (A00,A10)

3 A10 = BLAS (A10,A11)

4 Lapack Algorithm on A11

A00  \ A11
A =   

A10



Example Cholesky ('U')Example Cholesky ('U')

DPPTRF and DPOTRF

Must use DPOTRF

1 DPOTRF (‘L’,A00)

2 DTRSM (‘L’,‘L’,‘N’,‘N’, A00,A01)

3 DSYRK (‘U’,‘T’,A01,A11)

4 DPOTRF (‘U’,A11)

IBM Thomas J. Watson Research Center

Yorktown Heights, New York

Thank You!Thank You!


