
Programming the
Cell BE

Part 2

Aim of this lecture
• The aim of this lecture is to...

– ...get familiar with the Cell Broadband Engine,
– ...understand SIMD concepts and programming,
– ...learn common loop optimizations,
– ...learn how to use the QS21 Cell blades at HPC2N,
– ...introduce Assignment 4.

• The aim of this lecture is to...
– ...introduce the MFC and communication,
– ...learn how to use a static performance analysis tool,
– ...introduce the SoA / AoS storage formats,
– ...discuss programming models.

Mailboxes
Small unidirectional communication

Mailboxes

SPE

Inbound

Outbound

Outbound
interrupt

Mailboxes
• Mailboxes are used for uni-directional communication of

32-bit unsigned data.
• Each SPE has 2 outgoing mailboxes and 1 incoming

– Incoming:
• SPE Inbound mailbox (4 entries)

– Outgoing:
• SPE Outgoing mailbox (1 entry)
• SPE Outgoing interrupt mailbox (1 entry)

• Mailboxes can be read and written via intrinsics.

• Useful for instructing SPU what to do
– Send application op-code for example (RPC implementation)

• No alignment restrictions

Using Mailboxes

// On the PPE (writing to SPE)
unsigned int data = 123;
spe_in_mbox_read(spe_ctxt, &data, 1, SPE_MBOX_ALL_BLOCKING);

// On the PPE (reading from SPE)
while(!spe_out_mbox_status(spe_ctxt))

; // Busy wait
spe_out_mbox_read(spe_ctxt, &data, 1);

// On the SPE (reading)
unsigned int data;
data = spu_read_in_mbox();

// On the SPE (writing)
spu_write_out_mbox(data);

DMA Transfers
Asynchronous bulk transfers

DMA
• SPEs access main memory via an explicitly managed

DMA engine that runs independently of the SPU (the
MFC).

• Two directions:
– get (memory to Local Store)
– put (Local Store to memory)

• Two forms:
– simple
– list (suffix: l)

DMA Tag groups and synchronization
• Each DMA transfer can be tagged with a tag from 0 to 31
• MFC commands can be issued to wait for any or all of

any specified set of tags (set is referred to as tag mask)
– mfc_write_tag_mask(tag_mask); // Specify set of tags

– mfc_read_tag_status_any(); // Wait for any DMA within group(s)

– mfc_read_tag_status_all(); // Wait for all DMA within group(s)

• There are many many different commands, check docs.

Simple DMA

Main memory

Local Store

Effective Address (64-bit)

Local Store
Address (32-bit)

Length (bytes)

�Effective Address (64-bit main memory address)
�Local Store Address (32-bit)
�Length (bytes)
�Tag (0-31)

Limitations
• Maximum of 16KB per transfer.
• Length must be 1, 2, 4, 8, or n*16 bytes
• For 1, 2, 4, 8 bytes:

– Source (and destination) must be naturally aligned (address
divisible by length).

– Source and destination addresses must have the same
quadword offset (the four least significant bits are equal).

• For n*16 bytes:
– Source and destination must be quadword aligned.

Simple DMA Example

// Get (from main memory to local store)
mfc_get(ptr, ea, size, tag, 0, 0);
mfc_write_tag_mask(1 << tag);
mfc_read_tag_status_any();

// Put (from local store to main memory)
mfc_put(ptr, ea, size, tag, 0, 0);
mfc_write_tag_mask(1 << tag);
mfc_read_tag_status_any();

DMA List

Main memory

Local Store

Effective Address (64-bit)

LS Starting
Address (32-bit)

List Transfer Size (bytes)
One per item

List Size (bytes)
(16 * n), n = 4

DMA List
�Effective Address (high 32 bits)
�LS Starting Address (32-bit)
�LS Address of LIST (32-bit)
�Size (bytes) of LIST
�Tag (0-31)

Limitations
• Maximum 16KB per list item.
• Maximum 2048 list items.
• List specification must be aligned on 8-byte boundary.
• Local Store address of each item is automatically aligned

to quadword boundary.

DMA List Example
mfc_list_element_t list[16] __attribute__((aligned(8)));

// Transfer possibly more than 16 KB with one transfer
void large_transfer(void *LS, unsigned long long EA, unsigned int nbytes) {

unsigned int i = 0;
unsigned int tagid = 0;
unsigned int listsize;
unsigned int sz;
unsigned int ealow = mfc_ea2l(EA);

while(nbytes > 0) {
sz = (nbytes < 16384) ? Nbytes : 16384;
list[i].size = sz;
list[i].eal = ealow;
nbytes -= sz;
ealow += sz;
i++;

}

listsize = i * sizeof(mfc_list_item_t);
mfc_getl(dst, EA, list, listsize, tagid, 0, 0);
mfc_write_tag_mask(1 << tagid);
mfc_read_tag_status_any();

}

Memory Order
• DMA Transfers are not ordered.
• Memory ordering (when needed) must be enforced by

programmer.
• GET and PUT commands have two variants each:

– GETF, PUTF
• GET or PUT with FENCE

– ”This command is locally ordered with respect to all previously issued
commands within the same tag group and command queue.”

– GETB, PUTB
• GET or PUT with BARRIER

– ”This command and all subsequent commands with the same tag
and command queue are locally ordered with respect to all previously
issued commands within the same tag group and command queue.”

FENCE Example

BUFFER

PUT last result

GET next input

FENCED GET of next input
ensures the PUT of the last
result is finished.

SPE to SPE communication
• SPEs can communicate via DMA without leaving the EIB
• Looks identical to main memory DMA but the EA refers

to special addresses which map to local stores.
• General procedure:

– PPE creates SPE contexts
– PPE maps local stores into PPE address space
– PPE communicates the EA of the local stores to the SPEs
– SPEs uses DMA to surgically put data in other SPEs local stores

or get data from other SPEs local stores.
– Synchronization is important.

SPE to SPE communication
• Mapping a local store into PPE address space:

– void *spe_ls_area_get(spe_ctxt);

• Communicate the 64-bit EA (the void*) to an SPE.
• SPE must know the Local Store offset to calculate

remote address.
– Special case: if all SPEs run the same image, offset information

of static data is local.
Static Analysis

Assembler and the spu_timing tool

Static Analysis
• Since the SPU and LS are predictable when all data is

local (no MFC interaction) it is possible to get accurate
information on pipeline states from assembler code.

• The SDK provides a tool – spu_timinig – to annotate
assembler code with pipeline state information.

• Very useful to understand performance issues.
• We will look at how to use spu_timing to inspect the

performance of the vmul example implementations.

Using the spu_timing tool

Produce assembler code (vmul.s)
spu-gcc -O3 -S vmul.c

Annotate assembler code (vmul.s.timing)
/opt/cell/sdk/usr/bin/spu_timing -running-count vmul.s

Brief Assembler Tutorial
• Labels (targets of branches):

– .L4

• Registers
– $14

• Branches
– brnz rt, lbl // Branch to lbl if rt == 0

• Loads, stores
– lqx rt, ra, rb // rt = *(ra + rb) Load with offset
– stqx rc, ra, rb // *(ra + rb) = rc Store with offset

• Floating Point
– fm rt, ra, rb // rt = ra * rb
– fma rt, ra, rb, rc // rt = ra * rb + rc (Fused Multiply Add)

• Fixed Point
– a rt, ra, rb // rt = ra + rb SIMD int add
– ai rt, ra, s10 // rt = ra + s10 SIMD int add constant (immediate)

• Data Movement
– cwx rt, ra, rb // Make pattern (for shufb) to insert word into EA ra+rb
– rotqby rt, ra, rb // Rotate ra left by rb BYTES and store in rt
– shufb rt, ra, rb, rc // rt = spu_shuffle(ra, rb, rc) Shuffle bytes

• Comparison
– cgt rt, ra, rb // rt = (ra > rb) SIMD int compare greater than

spu_timing Output Format
000000 0D 01 cgti $2,$3,0
000000 1D 0123 shlqbyi $12,$4,0
000001 0D 12 ori $11,$5,0
000001 1D 1234 shlqbyi $10,$6,0
000002 0D 2 nop 127
000002 1D 2345 biz $2,$lr
000003 0D 34 ori $9,$3,0
000003 1D 345678901234567 hbrr .L8,.L4
000004 0D 45 il $8,0
000004 1D 4 lnop

.L4:
000006 0D -67 a $17,$8,$12
000006 1D 678901 lqx $16,$8,$12
000007 0D 78 a $6,$8,$11
000007 1D 789012 lqx $15,$8,$11
000008 0D 89 ai $9,$9,-1
000008 1D 890123 lqx $13,$8,$10
000009 1 9012 cwx $7,$8,$10
000012 1 --2345 rotqby $14,$16,$17
000013 1 3456 rotqby $3,$15,$6
000017 0 ---789012 fm $5,$14,$3
000023 1 -----3456 shufb $4,$5,$13,$7
000027 1 ---789012 stqx $4,$8,$10
000028 0D 89 ai $8,$8,4

.L8:
000028 1D 8901 brnz $9,.L4
000029 1 9012 bi $lr

Cycle counter
Pipeline and Dual issue

Instruction timing details Assembler code

Inspecting vmul0 (slowest variant)
000000 0D 01 cgti $2,$3,0
000000 1D 0123 shlqbyi $12,$4,0
000001 0D 12 ori $11,$5,0
000001 1D 1234 shlqbyi $10,$6,0
000002 0D 2 nop 127
000002 1D 2345 biz $2,$lr
000003 0D 34 ori $9,$3,0
000003 1D 345678901234567 hbrr .L8,.L4
000004 0D 45 il $8,0
000004 1D 4 lnop

.L4:
000006 0D -67 a $17,$8,$12
000006 1D 678901 lqx $16,$8,$12
000007 0D 78 a $6,$8,$11
000007 1D 789012 lqx $15,$8,$11
000008 0D 89 ai $9,$9,-1
000008 1D 890123 lqx $13,$8,$10
000009 1 9012 cwx $7,$8,$10
000012 1 --2345 rotqby $14,$16,$17
000013 1 3456 rotqby $3,$15,$6
000017 0 ---789012 fm $5,$14,$3
000023 1 -----3456 shufb $4,$5,$13,$7
000027 1 ---789012 stqx $4,$8,$10
000028 0D 89 ai $8,$8,4

.L8:
000028 1D 8901 brnz $9,.L4
000029 1 9012 bi $lr

Inspecting vmul4 (SW pipelining)
000427 1 -7890 brz $2,.L43
000428 0 89 il $8,0
000429 0D 90 ai $4,$12,-2
000429 1D 9 lnop

.L45:
000430 0D 01 a $14,$11,$8
000430 1D 012345 stqx $9,$8,$6
000431 0D 12 a $13,$5,$8
000431 1D 1 lnop
000432 0D 234567 fm $9,$10,$7
000432 1D 234567 lqd $10,32($14)
000433 0D 34 ai $4,$4,-1
000433 1D 345678 lqd $7,32($13)
000434 0d 45 ai $8,$8,16

.L48:
000435 1d -5678 brnz $4,.L45

.L43:
000439 0 ---901234 fm $11,$10,$7
000440 0 0123 shli $15,$12,4
000444 0d ---45 a $5,$6,$15
000446 1d 01 --6789 stqd $11,-16($5)
000447 1 012 789 stqd $9,-32($5)
000448 1 01 89 bi $lr

Inspecting vmul6 (fastest variant)
000341 0D 12 ori $4,$9,0
000341 1D 012345 123456789 hbrr .L34,.L30
000342 0D 23 ori $3,$6,0
000342 1D 2345 fsmbi $9,0

.L30:
000346 0D ---67 ai $9,$9,2
000346 1D 01 6789 stqd $8,0($3)
000347 0D 012 789 fm $8,$13,$11
000347 1D 012 789 stqd $7,16($3)
000348 0D 0123 89 fm $7,$12,$10
000348 1D 0123 89 lqd $13,64($4)
000349 0D 0 9 cgt $16,$14,$9
000349 1D 01234 9 lqd $11,64($5)
000350 0D 01 ai $3,$3,32
000350 1D 012345 lqd $12,80($4)
000351 0D 12 ai $4,$4,32
000351 1D 123456 lqd $10,80($5)
000352 0D 23 ai $5,$5,32

.L34:
000352 1D 2345 brnz $16,.L30

.L28:
000353 1 345678 hbr .L33,$lr
000355 0 -567890 fm $9,$13,$11
000357 0 -789012 fm $13,$12,$10
000358 0 8901 shli $12,$15,4

AoS || SoA
Storage Formats and Their Implications for SIMD’zation

Example: Euler Particle Simulation

Constant Force Field
F

�Particles with different masses
�3D Position (pos)
�3D Velocity (vel)
�1/mass (inv_mass)
�Constant force field on particles
�Forward Euler scheme:

�Time step (dt)
�vel = vel + F * inv_mass * dt
�pos = pos + vel * dt

Basic Code
typedef struct {

float x, y, z, w;
} vec4D;

typedef struct {
vec4D pos;
vec4D vel;
float inv_mass;

} Particle;

Particle p[PARTICLES];
float dt;
vec4D F;

for(time = 0; time < END_TIME; time += dt) {
for(i = 0; i < PARTICLES; i++) {

p[i].pos.x = p[i].pos.x + p[i].vel.x * dt;
p[i].pos.y = p[i].pos.y + p[i].vel.y * dt;
p[i].pos.z = p[i].pos.z + p[i].vel.z * dt;
p[i].vel.x = p[i].vel.x + F.x * p[i].inv_mass * dt;
p[i].vel.y = p[i].vel.y + F.y * p[i].inv_mass * dt;
p[i].vel.z = p[i].vel.z + F.z * p[i].inv_mass * dt;

}
}

Array of Structures (AoS)
• Representation of one particle

– Define a struct for the vector quantities (pos, vel, F)
– Define a struct for the particle quantities (pos, vel,
inv_mass)

• Representation of a collection of particles
– Array of structs (AoS) defined above

• Positive:
– Natural representation
– Good encapsulation

• Negative:
– Cumbersome to SIMD’ize
– Suboptimal performance of SIMD’ized code

SIMD’zation of AoS
vector float *pos_v, *vel_v, *F_v;
vector float dt_v, F_inv_mass_v;
vector unsigned int pat = (vector unsigned int) {0xFFFFFFFF,

0xFFFFFFFF,
0xFFFFFFFF,
0x00000000};

F_v = (vector float *) &F;
dt_v = spu_and(spu_splats(dt), pat);

for(time = 0; time < END_TIME; time += dt) {
for(i = 0; i < PARTICLES; i++) {

F_inv_mass_v = spu_mul(spu_and(spu_splats(p[i].inv_mass), pat), *F_v);
pos_v = (vector float *) &p[i].pos;
vel_v = (vector float *) &p[i].vel;
*pos_v = spu_madd(*vel_v, dt_v, *pos_v);
*vel_v = spu_madd(F_inv_mass_v, dt_v, *vel_v);

}
}

Structure of Arrays (SoA)
• Different approach starts with the collection
• Representation of a collection of particles

– One array per scalar component
• pos_x, pos_y, pos_z

• vel_x, vel_y, vel_z

• inv_mass
– One array index corresponds to one logical particle

• Positive:
– Easy to SIMD’ize via loop unrolling (x4)
– Good performance

• Negative:
– Unnatural representation
– Poor encapsulation
– Input/output format often difficult to change

SIMD’zation of SoA
• SIMD’zation of SoA is simple since parallellization is

across iterations instead of within an iteration as in AoS.
• Code can be made visually similar to scalar code but

compute on four iterations simultaneously.
• Loop unrolling (x4) of the particle-loop (inner) is the key.

• Details left for you to fill in.

Programming
Models

Function Offload
Computation-Acceleration

Streaming
Shared Memory

Function Offload
• Functions are moved to SPE.
• PPE interface oblivious of where code executes.
• In effect, an RPC implementation.

foo()

PPE
SPE

foo() impl.Stub

Invoke

Skeleton

Computation-Acceleration
• PPE uses SPEs to accelerate compute-intensive

portions of the code.
• Example: Video Editing

– PPE handles
• Control logic

• GUI

• Input/output

– SPE handles
• Encoding

• Decoding
• Transcoding

Streaming
• Data is ”streamed through ” an SPE.

– Typically using multibuffering.
– Kernel operates on data as it is streamed.

• Common programming model on GPUs
• Graphics codes often match this model well.
• Example: Audio Decoding

– Input stream: Compressed audio
– Kernel: Decode
– Output stream: PCM audio

Shared Memory
• Threads on PPE and SPEs communicate via main

memory.
• Mutexes, condition variables, semaphores, etc. can be

implemented on the CELL.
• Difficult to take advantage of high bandwidth inter-SPE

communication.

Further Information

• Official IBM Documentation library
– http://www.ibm.com/developerworks/power/cell/documents.html

• C/C++ Language Extensions for Cell Broadband Engine Architecture
– Here you will find information about the intrinsic functions

• SPE Runtime Management Library 2.2
– How to manage SPEs from the PPE (load programs, open images, run contexts)

• Cell Broadband Engine Programmer’s Tutorial (Handbook, Guide)
– A more descriptive source (see also Handbook and Guide)

• Cell Broadband Engine Architecture (click on Hardware)
– Answers your hardware related questions

• Google
– Beware that the Cell programming APIs change rapidly and information you find

on google is often stale and/or incorrect.

• Linux on your PS3
– If you have access to a PS3, check out

• http://www.ibm.com/developerworks/power/library/pa-linuxps3-1/

