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Theme: Roundoff and population modeling
Part I

Study the theory (the lecture notes and relevant sections in the book), Part I below, and complete
the preparatory exercises before the start of the lab. Provide answers to the preparatory exercises
on the same answer sheet as used for reporting the computer exercise. General rules for the
preparatory exercises and the computer exercises:

• Each student should hand in individually completed solutions. (Note that the exam will
likely contain questions on the preparatory exercises and the lab material!)

• You may discuss the problem among fellow students. If you receive considerable help
from someone, say so in your solutions.

• Do not copy solutions or code from others. Do not lend your solution or code to other
students.

The logistic map
Suppose we want to model the population of an animal species. Each year the population
increases by a factor R, the growth rate. In other words, if the number of animals is Nn in year
n, then it will be RNn in year n +1, that is,

Nn+1 = RNn . (1)

To make the model more realistic, we allow the growth rate to be a function of the population
size, that is, R = R(Nn). We assume that there is a maximum number of animals that sustainably
can be maintained by the environment. This number, the carrying capacity of the environment,
is denoted by Nmax. Moreover, we expect the growth rate to approach zero as the population
reaches the carrying capacity, that is, R(Nn) → 0 as Nn → Nmax. A simple function that satisfies
this criterion is

R(Nn) = r

(
1− Nn

Nmax

)
,

where r is a constant. Substituting this formula into (1), we obtain

Nn+1 = r

(
1− Nn

Nmax

)
Nn . (2)

To simplify (2), we divide by the carrying capacity Nmax and set xn = Nn/Nmax, so that

xn+1 = r xn(1−xn) (3)

with xn ∈ [0,1]. The graph of f (x) = r x(1− x) is a parabola with a maximum value of r /4 at
x = 1/2. We restrict the parameter r to the range [0,4] so that f maps the interval [0,1] into
itself; this function, depicted in Figure 1, is called the logistic map.

Sequences x0, x1, . . . , generated by recursion formulas such as (3) are called orbits. The char-
acter of the orbits generated by the logistic map depends strongly on the value of r . Recursion
formula (3) is a particularly simple example of a system that can show a chaotic behavior; for
particular values of r , the orbits will be aperiodic (or irregular) and highly sensitive to changes
in the initial conditions, that is, slight variations in the initial population yields dramatically
different evolution of the species.1

1Steven H. Strogatz, Nonlinear dynamics and chaos, Perseus Books, 1994.
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Figure 1: Graph of the logistic map f (x) = r x(1−x) for r = 3.5

Preparatory exercises
1. A point x∗ is called a fixed point of a function f if f (x∗) = x∗. The fixed points of the

logistic map for r = 3.5 are marked with dots in Figure 1. Find all fixed points of the
logistic map for arbitrary r . What is the significance of the fixed points of f for the orbits
generated by recursion formula (3)?

2. Explain why the divergent infinite series

∞∑
n=1

1

n

has a finite sum in floating point arithmetic.
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