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Solutions to review exercises for Themes 4 and 5

1 Theme 4
1. False. The condition for stability is that the solution curves for different initial conditions

should not diverge as t →+∞.

2. A scalar, linear ODE written on the form y ′ =λy+ f (t ) is stable when Re(λ) ≤ 0, asymptot-
ically stable when Re(λ) < 0, and unstable when Re(λ) > 0. Thus, (a) and (b) are unstable,
(c) is asymptotically stable, and (d) is stable.

3. (a) Introduce z = y ′, and write as the system(
y
z

)′
=

(
z

γsinωt −δz −σ(y3 − y)

)
(b) Introduce g = f ′, h = g ′(= f ′′), and write f

g
h

′

=
 g

h
− 1

2 f h


(c) Introduce z = y ′, and write (

y
z

)′
=

(
z

z(1− y2)+ y

)
.

4. (a) An equation, typically nonlinear, has to be solved at each time step for an implicit
method. No equation has to be solved for the explicit method.

(b) The truncation error is the difference between the numerical and exact solution
after one time step.

(c) The method has the order of accuracy p if the truncation error is O(∆t p+1).

5. True, by definition.

6. An implicit method requires generally much more floating-point operations at each time
step, compared to an explicit method, due to the need to solve equations. An explicit
method is thus more efficient as long as the time step required for stability is not too
small (that is, much smaller than the time step required for sufficient accuracy).

7. (a) Forward Euler (Euler framåt), Backward Euler (Euler bakåt), and the trapezoidal
method (trapetsmetoden).

(b) Substitute yk = y(tk ), where y is the solution to y ′ = f (t , y), and compute LHS−RHS
of the scheme:

y(tk+1)− y(tk )−∆t
[
α f (tk+1, y(tk+1))+ (1−α) f (tk , y(tk ))

]
= y(tk+1)− y(tk )−∆t

[
αy ′(tk+1)+ (1−α)y ′(tk )

]= [Taylor expansion]

= y(tk )+ y ′(tk )∆t + y ′′(tk )
∆t 2

2
+ y ′′′(tk )

∆t 3

6
+O(∆t 4)− y(tk )

−∆t

[
α

(
y ′(tk )+ y ′′(tk )∆t + y ′′′(tk )

∆t 2

2
+O(∆t 3)

)
+ (1−α)y ′(tk )

]
= y ′′(tk )

(
1

2
−α

)
∆t 2 − y ′′′(tk )

(
1

6
− α

2

)
∆t 3 +O(∆t 4).

Thus, we have the order of accuracy 2 for α= 1/2 and 1 otherwise.



(c) Applying the scheme on the model problem yields

yk+1 = yk +∆t
(
αλyk+1 + (1−α)λyk

)
,

that is,
(1−α∆tλ)yk+1 = [1+∆t (1−α)λ] yk .

Stability requires |yk+1| ≤ |yk |, which holds if and only if∣∣1+∆t (1−α)λ
∣∣

|1−α∆tλ| ≤ 1. (1)

Since λ < 0, we write λ = −|λ| and multiply both sides of (??) with |1−α∆tλ| =
1+α∆t |λ| ≥ 0, to obtain ∣∣1−∆t (1−α)|λ|∣∣≤ 1+α∆t |λ|,
that is,

−1−α∆t |λ| ≤ 1−∆t (1−α)|λ| ≤ 1+α∆t |λ|.
The right inequality is always satisfied, whereas the left inequality yields that

∆t (1−2α)|λ| ≤ 2,

which always is satisfied for 1/2 ≤α≤ 1. Thus, the scheme is unconditionally stable
(ovillkorligt stabil) for 1/2 ≤ α ≤ 1. However, for 0 ≤ α < 1/2, we get the stability
condition

∆t |λ| ≤ 2

1−2α
.

(d) Choosing α = 1/2 and substituting f (tn+1, yn+1) with f (tn+1,κ)), where κ = yn +
∆t f (tn , yn) (forward Euler extrapolation), we obtain Heun’s method.
the forward Euler estimate

8. (a) The scheme is explicit.

(b) Substitute yk = y(tk ), where y is the solution to y ′ = f (y, t), into the scheme and
compute LHS−RHS:

y(tk+1)− y(tk )− ∆t

2

[
3 f (tk , y(tk ))− f (tk−1, yk−1)

]
= y(tk+1)− y(tk )−∆t

[
3

2
y ′(tk )− 1

2
y ′(tk−1)

]
= [Taylor expansion]

= y(tk )+ y ′(tk )∆t + y ′′(tk )
∆t 2

2
+ y ′′′(tk )

∆t 3

6
+O(∆t 4)− y(tk )

−∆t

[
3

2
y ′(tk )− 1

2

(
y ′(tk )− y ′′(tk )∆t + y ′′′(tk )

∆t 2

2
+O(∆t 3)

)]
= y ′′′(tk )

∆t 3

6
+ y ′′′(tk )

∆t 3

4
+O(∆t 4) = 5

12
y ′′′(tk )∆t 3 +O(∆t 4).

The order of accuracy is thus 2.

9. A stiff system is one where there are vastly different time scales, such as for a system of
ODEs u′ = Au in which the real parts of the eigenvalues of matrix A are of vastly different
size.

Time step restrictions for explicit methods are dictated by the fastest time scales (the
largest real port of the eigenvalues of A), which means that many time steps will be
needed to capture the slow scales when using explicit methods. If the main interest is
in the slow time scales, it may be much more computationally efficient to use implicit
methods.
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2 Theme 5
1. (a) The point set can always be interpolated with polynomials if all xi are distinct.

(b) Interpolation with high-order polynomials yield often strong oscillations between
the interpolation points.

2. Cubic splines are well suited for the task. An entirely inappropriate method is to use a
polynomial of degree 24.

3. (a) The maximum occurs somewhere in the interval (0.5,0.7). By interpolate at the
points 0.5, 0.6, and 0.7 with a parabola we can use its maximum to estimate the
maximum of the underlying function.

(b) xmax ≈ 0.609

4. Make an equidistant division of the unit square (0,1)×0,1 into n intervals of size h = 1/n
in each direction and let xk = kh, yl = lh, k, l = 0, . . . , n. Applying the trapezoidal rule
first in the y- and then in the x-direction yields

∫ 1

0

∫ 1

0
f (x, y)dy dx ≈ h

2

n−1∑
l=0

∫ 1

0

[
f (x, yl )+ f (x, yl+1)

]
dx

≈ h2

4

n−1∑
l=0

n−1∑
k=0

[
f (xk , yl )+ f (xk , yl+1)+ f (xk+1, yl )+ f (xk+1, yl+1)

]
.

5. The trapezoidal rule yields

T =
∫ 7800

0

1

v(x)
dx

≈ 1300

2

(
1

750
+ 2

680
+ 2

630
+ 2

640
+ 2

690
+ 2

760
+ 1

830

)
= 11.25089. . . .

The Simpson rule can also be used, of course. The estimate will then be

T =
∫ 7800

0

1

v(x)
dx

≈ 1300

3

(
1

750
+ 4

680
+ 2

630
+ 4

640
+ 2

690
+ 4

760
+ 1

830

)
= 11.26962. . . .

Thus, with both methods we get an approximate flight time of 11 hours and 15 minutes.
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