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Initial value problems for ordinary differential equations

Example 1:

yWR ! R, ˛ 2 R,

y
0 D ˛y t > 0;

y.0/ D y0
(1)
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%

&

α > 0α < 0

t

I The solution is y.t/ D e˛t
y0. Numerical solution not needed!

I Models e.g. microbial growth (˛ > 0), radioactive radiation (˛ < 0),
chemical reactions
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Initial value problems for ordinary differential equations
Example 2: More realistic microbial growth

The logistic equation (Theme 1) in
continuous time:

y
0 D ˛

�
1 � y

M

�
y t > 0;

y.0/ D y0

0 5 10 15
t

I The growth rate decreases as y increases
I The growth rate vanishes at y D M , due to nutritional depletion e.g.
I A nonlinear ordinary differential equation (ODE). “Linear”, “nonlinear”

refers to functions y, y
0 (not t e.g.). Example 1 linear.

I The equation can be solved “analytically” (it is separable)
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Initial value problems for ODEs, examples

Example 3: Population modeling in continuous time

(
h

0 D
�
c1

�
1 � h

M

�
� d1r

�
h; t > 0

r
0 D .�c2 C d2h/ r; t > 0

(
h.0/ D h0

r.0/ D r0

I h: hares. Growth rate inhibited by nutritional depletion and by being
preyed on by foxes

I r : foxes. Growth rate increasing with hare population. Population
shrinking by natural death

I A system of nonlinear equations
I Cannot be solved “analytically”!
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Initial value problems for ODEs, examples

Example 4: Oscillating phenomena, modeled by equation (1), but with
˛ 2 C.

yWR ! R, ˛ 2 C,

y
0 D ˛y t > 0;

y.0/ D y0

Solution:

y.t/ D e˛t
y0 D e.˛r Ci ˛i /t

y0 D e˛r t ei˛i t

D e˛r t
.cos ˛i t C i sin ˛i t /

! " # $ % &!
!&

!!'(

!

!'(

&

α r < 0

I ˛r : exponential growth/decay of amplitude
I ˛i : angular frequency
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Initial value problems for ODEs, examples

Example 5: Rigid body mechanics. Newton’s second law for the center of
mass:

mx
00 D bx.x; y; z; x

0
; y

0
; z

0
/

my
00 D by.x; y; z; x

0
; y

0
; z

0
/

mz
00 D bz.x; y; z; x

0
; y

0
; z

0
/

t > 0

x.0/ D 0; y.0/ D 0; z.0/ D 0

x
0
.0/ D 0; y

0
.0/ D 0; z

0
.0/ D 0

b

I b D .bx; by ; bz/ represents the forces on body (gravitation, air
resistance)

I System of ODEs of second order

I Nonlinear if b depends nonlinearly on x, y, z, x
0, y

0, z
0. Linear

otherwise
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Initial value problems for ODEs, standard form

I Plenty of “canned” software for solving initial-value problems for ODEs
I Matlab: ode23, ode45, ode113, ode15s, ode23s, ode23t,

ode23tb
I Need to write all problems in a uniform way to use standard software.
I The standard form for initial value problems:

u0 D f.t; u/ t > 0

u.0/ D u.0/
(2)

I Note: u, f are vectors!
I u W R ! Rn; a function from time into n-vectors
I f W R � Rn ! Rn; a function of time and of the “state” u (an n-vector)
I For a linear ODE: f D Au � b, where A (matrix), b (vector)

independent of u
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Initial value problems for ODEs, standard form

Examples 1, 2, and 4 already in standard form.

Example 3:

�
h

r

�0
D
 h

c1

�
1 � h

M

�
� d1r

i
h

.�c2 C d2h/ r

!
t > 0

�
h.0/

r.0/

�
D

�
h0

r0

�

In standard form (2) for

u D
�

h

r

�
; f D

 h
c1

�
1 � h

M

�
� d1r

i
h

.�c2 C d2h/ r

!
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Initial value problems for ODEs, standard form

Example 5:

First, the x-component equation mx
00 D bx . Let p D mx

0 (component of
momentum, rörelsemängd in x direction). Then

�
x

p

�0
D

�
p=m

bx

�
D

�
0 1=m

0 0

� �
x

p

�
C

�
0

bx

�

For all three components:
0

BBBBBB@

x

y

z

p

q

r

1

CCCCCCA

0

„ƒ‚…
u0

D

0

BBBBBB@

0 0 0 1=m 0 0

0 0 0 0 1=m 0

0 0 0 0 0 1=m

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1

CCCCCCA

„ ƒ‚ …
A

0

BBBBBB@

x

y

z

p

q

r

1

CCCCCCA

„ƒ‚…
u

C

0

BBBBBB@

0

0

0

bx

by

bz

1

CCCCCCA

„ƒ‚…
b
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Stability with respect to initial values

Introduce disturbance � of initial values u.0/

u0
� D f.t; u�/ t > 0

u�.0/ D u.0/ C �

What happens when t ! 1?

Martin Berggren () Rockets and ODEs November 30, 2010 10 / 32

Stability with respect to initial values

0

u0 − �

u0

u0 + �

(a)
0

u0 − �

u0

u0 + �

(b)
0

u0 − �
u0

u0 + �

(c)
I These are stable cases
I The solution curves for different initial values do not diverge as t ! 1
I Cases (a) & (b) asymptotically stable (the different curves converge

towards each other)
I Case (c) stable but not asymptotically stable
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Stability with respect to initial values

0

u0 − �
u0

u0 + �

I Unstable with respect to initial values: the solution curves for different
initial values diverge from each other as t ! 1

I Nothing “wrong” with the equation!
I Errors in indata grows as t grows
I Needs to be solved on a bounded interval t 2 Œ0; T �
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Stability with respect to initial values

I How to quantify stability?
I Can we determine in advance whether a given equation is stable with

respect to initial data?

Start with linear, scalar equations (˛ 2 C):

y
0 D ˛y C f .t/ t > 0

y.0/ D y0

I Stable if Re ˛ � 0

I Asymptotically stable if Re ˛ < 0

I Unstable if Re ˛ > 0
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Stability with respect to initial values

Linear systems of equations

u0 D f.t; u/ D Au C b t > 0

u.0/ D u.0/
(3)

I A: n-by-n matrix
I Assume that A is diagonalizable: there are n linearly independent

vectors v1, . . . , vn (in Cn) such that

Avk D �kvk;

where �1, . . . , �n 2 C are the eigenvalues of A
I System (3) is

I Stable if Re �k � 0 8k

I Asymptotically stable if Re �k < 0 8k

I Unstable if there is a k such that Re �k > 0

Martin Berggren () Rockets and ODEs November 30, 2010 14 / 32

Stability with respect to initial values

I The stability of linear systems does not depend on initial data. Stability
is a system property (depends on the real part of the eigenvalues of the
system matrix)

I The concept of stability for nonlinear systems

u0 D f.t; u/ t > 0

u.0/ D u.0/
(4)

more complicated.
I Look at the disturbed system

u0
� D f.t; u�/ t > 0

u�.0/ D u.0/ C �

I For stability, want u � u� not to grow!
I Difficult problem to analyze in general!
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Stability with respect to initial values

I Useful for numerical methods: study stability locally:

v0 D J.u.0/
/v t > 0

v.0/ D �
(5)

where Jij D @fi=@uj , the Jacobian matrix of f
I We have

v.t/ � u.t/ � u�.t/

for k�k small and for small t

I Equation (5) a linear system whose stability depends on the eigenvalue
of J.u.0/

/

I Thus, equation (4) is locally stable (with respect to initial conditions
u.0/) if all eigenvalues to J.u.0/

/ are nonpositive.
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Numerical methods for initial value problems
(

y
0 D f .t; y/ t > 0

y.0/ D y
.0/

(6)
t0 t1 t2 t3 t4 t5

Δ t

Method 1: Forward Euler (Euler framåt ).
Introduce the sequence y0, y1, y2, . . . . Approximate

y.tk/ � yk; y
0
.tk/ � ykC1 � yk

�t

(
ykC1 D yk C �t f .tk; yk/ k D 0; 1; 2; : : :

y0 D y
.0/

I Few flops per time step!
I Low accuracy (“1st-order accurate”; more on this later)
I Method becomes unstable for large time steps (more later)
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Numerical methods for initial value problems

Method 2: Backward Euler (Euler bakåt ).
(

ykC1 D yk C �t f .tkC1; ykC1/ k D 0; 1; 2; : : :

y0 D y
.0/

I Low accuracy: as inaccurate as Forward Euler (“1st-order accurate”)
I Implicit method: need to solve a nonlinear equation for ykC1 at each

time step! (Forward Euler is explicit)
I Many, many flops per time step!
I What’s the point? (Will come back to that!)
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Numerical methods for initial value problems

Method 3: The trapezoidal method (trapetsmetoden ).

8
<

:
ykC1 D yk C �t

2
Œf .tk; yk/ C f .tkC1; ykC1/� k D 0; 1; 2; : : :

y0 D y
.0/

I “Compromise” between Forward and Backward Euler!
I More accurate than Forward and Backward Euler (“2nd-order

accurate”)
I An implicit method that is usually a better choice that Backward Euler
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Numerical methods for initial value problems
Method 4: Heun’s method

Idea: Take the trapezoidal method, replace ykC1 in f .tkC1; ykC1/ with
estimate from Forward Euler.

8
ˆ̂<

ˆ̂:

ykC1 D yk C �t

2
.�1 C �2/ ; where

�1 D f .tk; yk/;

�2 D f .tkC1; yk C �t �1/

I Accuracy as the trapezoidal method (“2nd-order accurate”)
I Explicit method!
I Becomes unstable for large time steps, similarly as Forward Euler
I The simplest member of the family of Runge–Kutta methods

I Runge–Kutta methods (e.g. Matlabs ode23, ode45) a standard tool for
solving initial-value problems
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How good are the methods?

Several issues to consider:
I In general, yk ¤ y.tk/; we introduce a discretization error

I How accurate is the numerical solution: how small is the error
yk � y.tk/? (We will be able to estimate the size of the error even if we
cannot compute the exact solution y.)

I How fast can we compute the solution?
I How robust is the solution? Can something go wrong?

We will analyze the methods with respect to
I Accuracy (“truncation error”)
I Stability (with respect to choice of time step �t )
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Accuracy, truncation error

Question: how to quantify the error introduced by any of methods 1–4?

I Let y0, y1, y2, . . . be a sequence computed by a numerical method
applied to problem (6)

I Take any yk and solve the exact equation with yk as initial value
I The difference between ykC1 and the above exact solution evaluated at

t D tkC1 is called the local truncation error

I Thus, the local truncation error yields the error after one step of the
method

I The global truncation error (or simply the global error) is the error in
the solution after k steps
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Accuracy, truncation error

We will compare ykC1 with the solution to the ODEs
(

Ny0 D f .t; Ny/ t > tk

Ny.tk/ D yk

(
y

0 D f .t; y/ t > 0

y.0/ D y0

Def. Local truncation error:

LkC1 D ykC1 � Ny.tkC1/;

the error committed after one step with the method

Def. Global truncation error (or just “the global error”):

EkC1 D ykC1 � y.tkC1/;
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Accuracy, truncation error

Def. A method has the order of accuracy p if

LkC1 D a�t
pC1 C b�t

pC2 C � � � D O.�t
pC1

/

Note that p C 1 in the exponent corresponds to order p! Why?

In many cases (if the equation is nice enough): the global truncation error is
O.�t

p
/ if the local truncation error is O.�t

pC1
/

Thus, two ways to reduce the truncation error Lk D O.�t
pC1

/:

I Decrease �t . Needs more time steps to reach a predefined time
I Keep �t and switch to a method with higher p. Needs more

calculations each time step

Rule of thumb: the higher the demands on accuracy is, the more it pays off
to increase p
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Accuracy, truncation error
Error analysis example, Forward Euler:

ykC1 D yk C �t f .tk; yk/ (7)

Let (
Ny0 D f .t; Ny/ t > tk

Ny.tk/ D yk

(8)

Taylor expansion of Ny at t D tk :

Ny.tkC1/ D Ny.tk/ C Ny0
.tk/ �t C 1

2
Ny00

.tk/ �t
2 C : : :

[by eq. (8)] D yk C f .tk; yk/ �t C O.�t
2
/

(9)

Equations (7)�(9) yields

ykC1 � Ny.tkC1/ D O.�t
2
/

Conclusion: Forward Euler has the order of accuracy 1. Backward Euler
also has the order of accuracy 1.
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Stability of numerical schemes

Example: The equation

y
0 D �8ty C t

3=2
t > 0

y.0/ D 1

is stable with respect to initial values (coefficient in front of y is nonpositive)

Forward Euler:

ykC1 D yk C �t .�8tkyk C t
3=2
k

/ k D 0; 1; : : :

y0 D 1

Time steps: �t D 0:01, 0:05, 0:075, 0:1

Solving until time t D 8, i.e. for 800, 160, 107, and 80 time steps
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Stability of numerical schemes

! " # $ %
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�t D 0:01
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&
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�t D 0:05
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&
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�t D 0:075: numerically unstable!
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!"
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!
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"

t

y

�t D 0:1: numerically unstable!
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Stability of numerical schemes

I Similar effects happen for many schemes
I Typically there is a condition like �t � something to avoid numerical

instability
I In order to obtain quantitative information on a numerical methods

stability properties, we will analyze it on the stable model problem

(
y

0 D �y t > 0

y.0/ D y0
(10)

where � < 0 (for � 2 R); alternatively, Re � < 0 (for � 2 C)
I y.t/ D e

�t
y0. Since Re � < 0, we have jy.t/j < jy.0/j

I We say that the numerical method is stable if it holds that
jykC1j � jykj when applied to the above model problem
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Stability of numerical schemes

Example: Forward Euler

ykC1 D yk C �t f .tk; yk/ D [for eq. (10)]

D yk C �t �yk D .1 C �t �/„ ƒ‚ …
“Growth factor”

yk

Thus, Forward Euler stable if j1 C �t �j � 1. For � < 0, we have

�1 � 1 C �t � D 1 � �t j�j � 1

Conclusion: Forward Euler is stable for

�t � 2

j�j
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Stability of numerical schemes

Example: Backward Euler

ykC1 D yk C �t f .tk; ykC1/ D [for eq. (10)]

D yk C �t �ykC1;

that is,
.1 � �t �/ykC1 D yk;

or

ykC1 D 1

1 � �t �„ ƒ‚ …
Growth factor

yk;

Thus, Backward Euler stable if 1=j1 � �t �j � 1. For � < 0, this is always
true!

Conclusion: Backward Euler is unconditionally stable.
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Stability when solving systems of ODEs

Any of the numerical methods above can be applied to the system

u0 D f.t; u/ t > 0

u.0/ D u.0/

We study stability for the linear model problem defined by

f.t; u/ D Au;

where all eigenvalues of A are real and negative.

For Forward Euler, the stability condition becomes

�t � 2

j�i j
for all eigenvalues �i .

Thus, the time step will be limited by the eigenvalue of largest magnitude
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Stiff systems and implicit methods

I Having eigenvalues of the matrix A that are vastly different in size
corresponds to a system with a huge range in time scales. Fast time
scales: j�i j large; slow time scales: j�i j small

I Such systems are called stiff

I Stiff systems are common in chemistry problems, for instance
I Explicit methods are usually inefficient for stiff methods since the time

step is limited by the fastest time scales
I Implicit method typically more efficient for stiff systems, particularly if

the interest mostly is in the slow time scales.
I The investment in extra work when solving the implicit equation will

be payed back by the possibility of using larger time steps
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