Theme 5: Useful items in the numerical toolbox: Interpolation and Quadrature

Martin Berggren

December 8, 2010

Polynomial interpolation

Theorem

Let $\left(x_{i}, y_{i}\right)_{i=0}^{n}$ be an arbitrary set of pair of numbers where all the x_{i} are distinct. Then there is a unique polynomial p of degree $\leq n$ such that

$$
p\left(x_{i}\right)=y_{i} \quad i=0, \ldots, n
$$

For the proof, see Theorem 5.2.1 in Eldén, Wittmeyer-Koch
Note: The number of coefficients in polynomial $=$ the number of points to interpolate. In Matlab:
$\mathrm{p}=$ polyfit($\mathrm{x}, \mathrm{y}, \mathrm{n})$;

- Vectors x, y (length $n+1$) contain the coordinates
- n: polynomial order
- p: vector containing polynomial coefficients

Interpolation

Common task: Need to draw a nice curve through a set of points (for instance in computer graphics)

The interpolation problem: given $n+1$ pairs of numbers $\left(x_{i}, y_{i}\right)$,
$i=0,1, \ldots, n$, find a function f such that $f\left(x_{i}\right)=y_{i}$
Function f is the interpolant of the point set
A classic choice: polynomial interpolation

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

Martin Berggren 0
Interpolation \& Quadrature
December 8, $2010 \quad$ 2/23

Polynomial interpolation

Polynomial coefficients are easy to determined by writing the polynomial as follows:

$$
\begin{aligned}
p(x)=b_{0} & +b_{1}\left(x-x_{0}\right)+b_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\ldots \\
& +b_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)
\end{aligned}
$$

Conditions $p\left(x_{i}\right)=y_{i}, i=0, \ldots, n$, yield Newton's interpolation formula:

$$
\begin{aligned}
y_{0} & =b_{0} \\
y_{1} & =b_{0}+b_{1}\left(x_{1}-x_{0}\right) \\
y_{2} & =b_{0}+b_{1}\left(x_{1}-x_{0}\right)+b_{2}\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right) \\
& \vdots \\
y_{n} & =b_{0}+\ldots
\end{aligned}
$$

$$
\ldots+b_{n}\left(x_{n}-x_{0}\right) \cdots\left(x_{n}-x_{n-1}\right)
$$

An undertriangular system of equation for coefficients b_{0}, \ldots, b_{n}.
With Newton's interpolation formula, it is easy to add additional points to an already computed polynomial: just add one more row per point!

Martin Berggren 0

Polynomial interpolation

How does polynomial approximation perform?
Check: interpolate the function

$$
f(x)=\frac{1}{1+25 x^{2}}
$$

Blue function f interpolated at $n+1$ equispaced points (marked $*$) with green polynomial p of degree n

Martin Bergeren 0
Interpolation \& Quadrature
December 8, 2010 5/23

Cure 1: interpolation at Chebychev points

For interpolation on $[-1,1]$ of polynomials of degree n, interpolate at the points

$$
x_{i}=\cos \frac{i \pi}{n}, \quad i=0, \ldots, n
$$

$n=5$

$n=10$

$n=20$

Polynomial interpolation

Runge's phenomenon: Equispaced interpolation with polynomials tends to generate oscillations at the boundaries that become worse with increasing polynomial order

Conclusion:

- Interpolation with polynomials of high degree is often a terrible idea!
- Will often generate large oscillations between interpolation points

Cure 1:

- Change locations of the interpolation points by concentrating them along the boundaries
- A good choice: Chebychev points

Cure 2: (the most common approach!)

- Glue together piecewise polynomials of low degree (splines)

Martin Berggren 0
Interpolation \& Quadrature
December 8, $2010 \quad 6 / 23$

Cure 2: splines

- Cannot choose interpolation points in many cases! Ex: drawing programs
- The most common interpolation method: splines: piecewise polynomials of low degree. More appropriate than polynomial interpolation in most cases
- The simplest spline, linear splines, just continuous, piecewise-linear interpolation

Definition: A spline is a function that is composed by piecewise polynomials of degree k such that it is continuously differentiable $k-1$ times

Most common, besides linear splines: cubic splines (e.g. CAD systems)

Cubic splines

- Assume $n+1$ pairs of numbers $\left(x_{i}, y_{i}\right)$, $i=0, \ldots, n$
- The global function s is defined piecewise on the n intervals $\left[x_{i-1}, x_{i}\right]$, $i=1, \ldots, n$
- For $i=1, \ldots, n$, determine n cubic functions
$s_{i}(x)=a_{0}^{(i)}+a_{1}^{(i)} x+a_{2}^{(i)} x^{2}+a_{3}^{(i)} x^{3}$
on intervals $\left[x_{i-1}, x_{i}\right]$

- Thus, there are $4 n$ coefficients to determine
- Need $4 n$ equations (conditions) to determine these coefficients

Martin Berggren 0
Interpolation \& Quadrature
December 8, 2010

Cubic splines

There are several choices for the two extra conditions:
(i) "Non-a-knot" spline. Default in Matlab's spline. Imposes continuous third derivative at x_{1} and x_{n-1} :

$$
s_{1}^{\prime \prime \prime}\left(x_{1}\right)=s_{2}^{\prime \prime \prime}\left(x_{1}\right), \quad s_{n-1}^{\prime \prime \prime}\left(x_{n-1}\right)=s_{n}^{\prime \prime \prime}\left(x_{n-1}\right)
$$

Note that $s_{i}^{\prime \prime \prime}=6 a_{3}^{(i)}$ is piecewise constant!
(ii) "Natural spline". Impose zero curvature at the end points:

$$
s_{1}^{\prime \prime}\left(x_{0}\right)=0, \quad s_{n}^{\prime \prime}\left(x_{n}\right)=0
$$

(iii) Impose given slopes g_{L}, g_{R} at the end points:

$$
s_{1}^{\prime}\left(x_{0}\right)=g_{L}, \quad s_{n}^{\prime}\left(x_{n}\right)=g_{R}
$$

Option in Matlab's spline.

Cubic splines

- Interpolation in both ends:
$\left\{\begin{array}{rl}s_{i}\left(x_{i-1}\right) & =y_{i-1} \\ s_{i}\left(x_{i}\right) & =y_{i}\end{array} \quad i=1, \ldots, n\right.$
$2 n$ conditions. Yields that the composite function is continuous

- Continuous derivatives and second derivatives where neighboring cubics are joined:

$$
\left\{\begin{array}{rl}
s_{i}^{\prime}\left(x_{i}\right) & =s_{i+1}^{\prime}\left(x_{i}\right) \\
s_{i}^{\prime \prime}\left(x_{i}\right) & =s_{i+1}^{\prime \prime}\left(x_{i}\right)
\end{array} \quad i=1, \ldots, n-1\right.
$$

$2(n-1)$ conditions

- Totally $2 n+2(n-1)=4 n-2$ conditions. Two more conditions needed!

Martin Berggren 0
Interpolation \& Quadrature
December 8, 2010
$10 / 23$

Cubic splines
-_: not-a-knot
-----: natural
-.--: prescribed slopes $g_{L}=g_{R}=0$

Note that splines are "global": local changes (for instance at the boundary) can affect the function everywhere!

Quadrature

Quadrature, also called numerical integration, concerns numerical computation of the definite integral

$$
I(f)=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)+\underbrace{R_{n}}_{\text {rest term (error) }}
$$

(That is, we are not using primitive functions!)
In Matlab: use quad or quadl:
$I=\operatorname{quad}(f u n c, a, b) ;$
func is a function handle.

Quadrature

- Implement a Matlab function func in the file func.m
function $f=$ func (x)
$\mathrm{f}=\exp (-\mathrm{x} . * \mathrm{x})$;
end
Again note that function used in quad must be written to accept vector arguments and to return corresponding vector result!
- When integrating using the function func, write I = quad(@func, a, b);
- Also possible to use an intermediate variable:
integrand = @func;
I = quad(integrand, $\mathrm{a}, \mathrm{b})$;

Quadrature

Example: We wish to compute the definite integral

$$
I=\int_{a}^{b} e^{-x^{2}} d x
$$

There is no primitive function to this integrand! Numerical integration is necessary! Typical procedure:

- If the integrand is a simple, one-line formula, easiest to use "anonymous functions" (Matlab terminology):
func $=@(x) \quad \exp (-x . * x)$;
$\mathrm{I}=\operatorname{quad}(f u n c, a, b)$;
Then, variable I will contain a numerical estimate of $\int_{a}^{b} e^{-x^{2}} d x$
- Note: Functions used in quad must be written to accept vector arguments and to return corresponding vector result!
- For more complicated functions, it is more convenient to use a function m-file instead

Quadrature

How is quadrature done? Two examples:

Example 1:

Example 2:

Martin Berggren 0

- Divide interval $[a, b]$ into a number (here 8) of intervals
- Interpolate f with continuous piecewise linears
- Sum up the areas of all right trapezoids (paralleltrapetser)
- Called the trapezoidal rule (trapetsformeln)
- Divide $[a, b]$ into a number (here 4) of double intervals
- Interpolate f with continuous piecewise quadratics
- Compute and sum up the integrals of the interpolated function
- Called Simpson's rule

Iterpolation \& Quadrature

Quadrature

- Examples can be generalized to higher-order: called Newton-Cotes rules when using piecewise polynomial interpolation with equispaced interpolation points on each piece
- Software for quadrature (e.g. quad and quadl) accept an input tolerance: the integral is computed within the given error tolerance by adjusting the step length
- Often most efficient to use adaptive methods: the step length is varied so that smaller steps are used where f changes rapidly. Ex: Matlab's quad uses adaptive Simpson
- Question: How can the method compute the error without knowledge of the exact solution?

Composite (sammansatta) rules

When using equidistant partitioning, we may sum up as below.
The Composite Trapezoidal Rule:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx \frac{h}{2} \sum_{k=0}^{n-1}\left[f\left(x_{k}\right)+f\left(x_{k+1}\right)\right] \\
& =\frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]=I_{T}^{(h)}(a, b)
\end{aligned}
$$

The Composite Simpson Rule: (n odd, i.e. even number of intervals)

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \approx \frac{h}{3} \sum_{k=0,2,4, \ldots}^{n-1}\left[f\left(x_{k}\right)+4 f\left(x_{k+1}\right)+f\left(x_{k+2}\right)\right] \\
& \quad=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right) \cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \\
& \quad=I_{S}^{(h)}(a, b)
\end{aligned}
$$

Quadrature rules

The Trapezoidal Rule:

$$
\begin{aligned}
\int_{x_{k}}^{x_{k+1}} f(x) d x & \approx\left(x_{k+1}-x_{k}\right) \frac{f\left(x_{k}\right)+f\left(x_{k+1}\right)}{2} \\
& =h \frac{f\left(x_{k}\right)+f\left(x_{k+1}\right)}{2}
\end{aligned}
$$

The Simpson Rule:

$$
\begin{aligned}
\int_{x_{k}}^{x_{k+2}} f(x) d x & \approx\left(x_{k+2}-x_{k}\right) \frac{f\left(x_{k}\right)+4 f\left(x_{k+1}\right)+f\left(x_{k+2}\right)}{6} \\
& =2 h \frac{f\left(x_{k}\right)+4 f\left(x_{k+1}\right)+f\left(x_{k+2}\right)}{6}
\end{aligned}
$$

Note: double interval with $h=x_{k+2}-x_{k+1}=x_{k+1}-x_{k}$

Martin Berggren 0

Interpolation \& Quadrature

Accuracy

The quadrature error is a discretization error

Theorem

For twice continuously differentiable f hold

$$
\int_{a}^{b} f(x) d x=I_{T}^{(h)}(a, b)-\frac{h^{2}}{12}(b-a) f^{\prime \prime}(\xi)
$$

for some $\xi \in[a, b]$.
For four time continuously differentiable f hold

$$
\int_{a}^{b} f(x) d x=I_{S}^{(h)}(a, b)-\frac{h^{4}}{180}(b-a) f^{\prime \prime \prime \prime}(\xi)
$$

for some $\xi \in[a, b]$.

- Thus, the error is $O\left(h^{2}\right)$ and $O\left(h^{4}\right)$ for the trapezoidal and Simpson rule, respectively
- The Simpson rule requires a more regular f !

Error estimators

The error formulas can be used to estimate the error without knowledge of the exact integra!!

$$
\begin{array}{ll}
\int_{a}^{b} f(x) d x=I_{T}^{(h)}(a, b)-\frac{h^{2}}{12}(b-a) f^{\prime \prime}\left(\xi_{1}\right) & \xi_{1} \in[a, b] \\
\int_{a}^{b} f(x) d x=I_{T}^{(2 h)}(a, b)-\frac{4 h^{2}}{12}(b-a) f^{\prime \prime}\left(\xi_{2}\right) & \xi_{2} \in[a, b] \tag{2}
\end{array}
$$

Assume $f^{\prime \prime}\left(\xi_{1}\right) \approx f^{\prime \prime}\left(\xi_{2}\right)$ and set $E_{T}^{(h)}=-\frac{h^{2}}{12}(b-a) f^{\prime \prime}\left(\xi_{1}\right)$. Subtracting expression (2) from expression (2) yields

$$
E_{T}^{h}=\frac{I_{T}^{(h)}(a, b)-I_{T}^{(2 h)}(a, b)}{3} \quad(\text { "tredjedelsregeln") }
$$

Thus, by performing two computations, with steps $2 h$ and h, we can estimate the error when using step h

