
Institutionen för datavetenskap
Umeå universitet

19 november 2009
Numeriska metoder för civilingenjörer

Theme: Soft soils and nonlinear equations
Part II

Rules:

• Each student should hand in an individually completed report at latest November 24.

• You may discuss the problem among fellow students. If you receive considerable help
from someone, say so in your solutions.

• Do not copy solutions or code from others. Do not lend your solution or your code to
other students.

Computer exercises
1. Write a Matlab function that returns the function values and the Jacobian matrix associ-

ated with the soil problem given in Part I. The function head should be

function [f J] = soilf_J(a, r, p, h)

Output parameters are the 3-vector of function values f and the 3-by-3 Jacobian matrix J .
Input parameters are: a vector a containing parameter values a1, a2, and a3; a vector r
containing three disk radii; a vector p containing the three pressure values associated
with corresponding components in r ; and a nonnegative scalar parameter h. When h = 0,
the function should return the exact Jacobian matrix, as computed by hand in Part I of
the theme. When h > 0, the function should return a finite-difference approximation of
the Jacobian computed using the step length h. Specify how you have tested that your
implementation is correct.

2. Implement Newton’s method for the solution of the system of nonlinear equations as-
sociated with determining parameters a1, a2, and a3. Your implementation should use
the function implemented in task 1, and terminate when current iterate a(n) satisfies
‖ f (a(n))‖ ≤ δ for a user-specified tolerance δ.

Assume that plates of radii 25, 50, and 75 mm require the pressures 69, 83, and 103 Pa
to be displaced to the same depth. Using your code with h = 0 (exact Jacobians), find
corresponding values of constants a1, a2, and a3. Test your code with the following
starting guesses: (1,10,1), (1,1,1), (1,1,1000), and (10,10,1000).

3. Run the above problem with h > 0 (finite-difference approximations of the Jacobian)
using the starting value (1,10,1). Examine the robustness of your algorithm with respect
to the choice of h:

(a) How large can h at most be (approximately) for the algorithm not to require more
iteration than when using exact Jacobians?

(b) What is the smallest value of h (approximately) for which the algorithm works. Why
does very small values of h give problems?



Remark. Good choices of h are highly dependent on the scaling of the problem at hand
and of the properties of the function f , so the good range of values for h you computed
above is unfortunately only relevant for this particular problem!

4. The Newton method you just have implemented could be called the naive Newton method.
Based on your experiences from using it, list at least two problems with the naive Newton
method!

5. A much more robust implementation of Newton’s method is contained in the routine
fsolve, which is available in Matlab’s optimization toolbox. Type doc fsolve to survey
the features of the routine.

Use the following syntax to call fsolve for the present problem:

func = @(a)soilf_J(a, r, p, 0);
options = optimset(’Jacobian’,’on’);
a = fsolve(func,a0,options);

The @(a) in the first row defines func as a function handle for the Matlab function
soilf_J, where a is regarded as the independent variable for soilf_J as a mathematical
function.

Use fsolve instead of your own implementation of Newton’s method to determine a1, a2,
and a3. Try the same initial guesses as in problem 2, that is, (1,10,1), (1,1,1), (1,1,1000),
and (10,10,1000). Comment on differences and similarities!

2


