
Institutionen för datavetenskap
Umeå universitet

12 november 2009
Numeriska metoder för civilingenjörer

Theme: Network models and linear systems
Part II

Rules:

• Each student should hand in an individually completed report at latest November 17.

• You may discuss the problem among fellow students. If you receive considerable help
from someone, say so in your solutions.

• Do not copy solutions or code from others. Do not lend your solution or your code to
other students.

Computer exercises
1. Write a Matlab function that computes the pressure in the nodes of a given arbitrary

network by setting up and solving the equation system (10) in the introduction to the
theme. The function head should be

function p = computepressure(B, e, s, k0)

Input parameters are an incidence matrix B (not the truncated B̄) for an arbitrary directed
graph, a vector e = (ε1, . . . ,εm) with conductivity parameters for all edges in the graph
(the length of e should be equal to the number of columns of B), a vector s (the length of
s should be equal to the number of rows of B) containing the volume flows at the nodes
of the graph, and an integer k0 that specifies which node that should be “grounded”; that
is, it should hold that pk0 = 0.

Hint: The Matlab function diag1 is useful!

To test your program, choose conductivity parameters as in problem 2 (b) in the prepara-
tory exercises, solve the problem with you function, and verify that you get the same
answer as when calculating by hand!

2. Make up your own network with at least 10 nodes. Construct the incidence matrix for the
directed graph, and solve equation (10) in the theme introduction for your network using
εi = 1 for all edges i and si = 1 for all nodes i except the one that is grounded (which
could be any node).

3. By comparing the structure of the graphs with the structure of the matrices you obtain
from problems 1 and 2, infer a rule for how many nonzero elements there are at a
particular row in matrix B̄EB̄ T .

4. Modify your code so that it solves equation (10) in the introduction to the theme with B
instead of B̄ and with s instead of s̄, that is, without “grounding” a node. What happens if
you try to solve the modified problem? Compute BEB T p for p = (1, . . . ,1)T , and explain
what the problem is!

1To read the documentation, type doc diag or help diag at the Matlab prompt. Note that documentation for any
Matlab command is available by typing doc or help before the command.



5. Now assume that we would like to study much larger graphs; for instance those that could
represent the network of water pipes in a residential area with hundreds of thousands of
houses. Download from the course home page the files Bc0.mat and Bc1.mat, which
contains incidence matrices of dimensions 399× 1146 and 1545× 4536. The Matlab
command load Bc0 and load Bc1 loads these matrices from current directory. Use
your code to solve problems with these incidence matrices, using any values for the
sources and any (positive) values for the conductivities. Time the solution of the linear
system associated with the incidence matrix in Bc0.mat using the commands tic and
toc (read the documentation of these commands!). Then compute approximately the
time t f required for one floating point operation using the estimate of how many flops
Gaussian elimination take. Use this value of t f to estimate how long time the solution of
the linear system associated with the incidence matrix in Bc1.mat will take. Compare
with the time it really takes and comment!

6. As we have seen, network problems gives rise to large, sparse linear systems. There are
specialized algorithms for such systems that are much more efficient and much less
memory demanding than Gaussian elimination of the kind that we study in this course.
(Note that our strategy to work explicitly with incidence matrices is not advisable when
the graphs are very large, since these matrices contain mostly zeros.) Such specialized
algorithms are available in Matlab. The matrix should then be stored in a special sparse
format, in which only the nonzero elements are stored. (The documentation for the
command sparse contains more information about the sparse format.) If a matrix K is
already available as an “ordinary” matrix, it can be converted to sparse format through the
command K=sparse(K). Matlab’s backslash operator, being “smart”, recognizes when
the matrix is defined in sparse format and choses then the specialized algorithm. For
both matrices in problem 5, compare the times required for solution of the linear system
when sparse(K) is used instead of K, where K is the matrix B̄EB̄ T . Is there any benefit
with the specialized algorithm?

2


