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Theme: Network models and linear systems
Part I

Study the theory (the lecture notes and relevant sections in the book), Part I below, and complete
the preparatory exercises before the start of the lab. The preparatory exercises need to be
completed to get a passing grade on the lab, so show them to the teacher in order to verify that
they are completed. At the beginning of the lab, Part II of the theme, the computer exercises, will
be handed out and uploaded to the home page of the course. General rules for the preparatory
exercises and the computer exercises:

• Each student should hand in individually completed solutions.

• You may discuss the problem among fellow students. If you receive considerable help
from someone, say so in your solutions.

• Do not copy solutions or code from others. Do not lend your solution or code to other
students.

Theme introduction
Various kinds of network problems arise again and again in many applications and yields linear
systems of equations with particular properties. Figure 1 shows an example of a small network.
Networks are modeled mathematically using graph theory.1 A graph consists of a collection
of vertices (or nodes; noder in Swedish) and edges (kanter or bågar in Swedish) that pairwise
connect the vertices. The network in figure 1 is a directed graph2 that could represent an
electrical network connecting components like resistors, capacitors, inductors, and electric
sources. The network could alternatively illustrate transportation routes for goods between
cites. More examples of systems that can be modeled using graphs are truss networks, computer
networks, and the World Wide Web.

Here, we will take a closer look at networks of water pipes. Assume that each of the five
numbered edges in figure 1 represents a pipe through which water may flow. The vertices
represent sources (the water company) or sinks (residential houses, say) of water. Assuming
that we know the amount of water per time unit that is supplied or removed at each vertex, we
like to determine the water pressures that are needed at the various vertices. This is a relevant
question when dimensioning pumps and pipes. We will describe a general methodology to
solve this problem under simplified assumptions.

The arrows in figure 1 indicate sign conventions for positive flux through the pipes. For
example, water flows from vertex 1 to vertex 3 at a rate of u1 m3/s (u1 < 0 indicates net flow
from vertex 3 to vertex 1). Moreover, we know the rates si (in m3/s) at which water is supplied
or removed at vertex i ; si > 0 means that water is added and si < 0 that water is removed from
the network.

We assume that there are no leaks in the network. Thus, the flux of water out of vertex i ,
−si must be exactly equal the sum of the fluxes that are coming into vertex i through the edges

1See for instance Wikipedia’s article http://en.wikipedia.org/wiki/Graph_(mathematics)
2http://en.wikipedia.org/wiki/Directed_graph
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Figure 1: An example of a network in terms of a directed graph with 4 vertices and 5 edges

that are attached to vertex i . The flow of water in the network in figure 1 will then satisfy the
equations

−u1 −u2 =−s1 (at node 1)

u2 −u3 −u5 =−s2 (at node 2)

u1 +u3 −u4 =−s3 (at node 3)

u4 +u5 =−s4 (at node 4).

(1)

Note that the plus or minus signs of equation (1) depend on the sign conventions; we have
(arbitrary) assigned directions as in figure 1 and defined positive sources as adding to the
network.

Since there are no leaks in the system, and since water is hard to compress, it holds that
everything that goes in must come out:

s1 + s2 + s3 + s4 = 0. (2)

Equation (1) can be written in the matrix form

Bu =−s, (3)

where

B =


−1 −1 0 0 0
0 1 −1 0 −1
1 0 1 −1 0
0 0 0 1 1

 , u =


u1

u2

u3

u4

u5

 , s =


s1

s2

s3

s4

 . (4)

Matrix B is called the incidence matrix3 of the directed graph and give a complete description of
how the network is connected—its “topology”. The incidence matrix reveals nothing, however,
about the coordinates of the vertices or the edges, an information that is not needed for the
present problem. An incidence matrix for a directed graph has as many rows as vertices in the
graph and as many columns as edges in the graph. Every column represents thus an edge and
has +1 and −1 at the rows that correspond to the vertices in which there are inflow and outflow,
respectively. All other entries in B are zero. Note that the incidence matrix typically has more
columns that rows, since a graph typically have more edges than vertices.

Denote the pressure (in Pa) at vertex i by pi . The flux of water through a particular edge
depends on the difference of pressure between the two vertices that the edge connects. We
assume a simple linear relationship so that the flux is proportional to the pressure difference:

u1 = ε1(p1 −p3) (edge 1),

u2 = ε2(p1 −p2) (edge 2),

u3 = ε3(p2 −p3) (edge 3),

u4 = ε4(p3 −p4) (edge 4),

u5 = ε5(p2 −p4) (edge 5),

(5)

3http://en.wikipedia.org/wiki/Incidence_matrix

2



where the coefficients εi ≥ 0 denotes the “conductivity” of that pipe; a property that can be
determined by experiments, for instance. Writing equation (5) (which corresponds to Ohm’s
law for electrical circuits) in matrix form,

u =−EB T p, (6)

where

E =


ε1 0 0 0 0
0 ε2 0 0 0
0 0 ε3 0 0
0 0 0 ε4 0
0 0 0 0 ε5

 , p =


p1

p2

p3

p4

 , (7)

reveals that the transpose of the incidence matrix also appears in the pressure–flux relation.
To further simplify the modeling, we consider a case where the pressure at vertex 4 is held at

the constant valus p4 = 0. The unknown pressures p1, p2, and p3 will then denote the pressure
relative to the pressure at vertex 4, analogous to the concept of zero-potential “ground” in
electrical circuits. Also, we let s1, s2, and s3 be given arbitrarily and define s4 =−s1 − s2 − s3 so
that equation (2) is automatically satisfied. These simplifications imply that we may delete
the fourth row in matrix B (since we already know what happens at vertex 4!) and remove s4

and p4 from the problem (since these are known). That yields one less equation (in the system
Bu =−s) and one less unknown (in u =−EB T p), and we obtain

B̄u =−s̄ (8a)

u =−EB̄ T p̄, (8b)

where

B̄ =
−1 −1 0 0 0

0 1 −1 0 −1
1 0 1 −1 0

 , s̄ =
s1

s2

s3

 , p̄ =
 p1

p2

p3.

 . (9)

Multiplying both sides of equation (8b) from the left with −B̄ and adding the resulting
equation to equation (8a) yields the following equation in the reduced unknowns p̄:

B̄EB̄ T p̄ = s̄. (10)

Preparatory exercises for lab
1. Compute by hand the LU -factors of matrix

A =


1 1.5 1 −1
2 1 3 −2
0 2 1 1
0 4 2 0

 .

2. Consider equation system (10) in the particular case of the network of figure 1.

(a) Explicitly compute the left-hand-side matrix for arbitrary values of the conductivity
parameters ε1, . . . , ε5.

(b) Compute by hand the LU factorization of the above matrix for the particular con-
ductivities ε1 = 1, ε2 = 2, ε3 = 2, ε4 = 3, ε5 = 4.

(c) Use the LU -factorization you computed above to solve the system by hand for the
right-hand side vector s = (0,4,3)T .
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