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Content

I Computer arithmetic, floating-point numbers

I “The” standard: IEEE 754 double precision floating point format

I Rounding error analysis, machine epsilon

I Warnings, consequences, rules of thumb for practical computations

The lab will clarify the relation to population modeling!
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Error Concepts

I Approximate solutions of mathematical problems using computers
introduce various errors

I Distinguish between discretization error and roundoff error

Ex: Computer representation of a black-and-white picture

I Discretization error: a spatially continuous image is rasterized to
pixels (say 1024 ! 768)

I Rounding error: only a fixed number (say 256) of gray tones at each
pixel
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Error Concepts

I Discretization errors typically dominate the total error

I Rounding errors can in many practical cases be neglected!

Although rounding errors typically are small, they are noticeably annoying
in practical computations with real numbers:

Expression Value in Matlab

cos !=2 0 6.1232e-017
0:08 C 0:42 " 0:5 0 0
0:42 " 0:5 C 0:08 0 -1.3878e-017

Martin Berggren () Theme 1: Roundoff and population modeling November 4, 2009 4 / 20



Binary numbers

I Computers usually stores numbers in binary form:

.

4 bit‚…„ƒ
1101 /2 D 1 # 23 C 1 # 22 C 0 # 21 C 1 # 20 D .13/10

I Integers are stored exactly in binary form up to 2n (n bit)

I Fractional binary numbers:

.:1101/2 D 1 # 2!1 C 1 # 2!2 C 0 # 2!3 C 1 # 2!4

D 1

2
C 1

4
C 0 C 1

16
D 13

16
D .0:8125/10

I Note: The decimal fractions 0:1, 0:2, 0:3, 0:4, 0:6, 0:7, 0:8, 0:9 cannot
be exactly represented as a fractional binary number! (But 0:5 can.)
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Floating point numbers

I Real numbers cannot be stored exactly; they need to be rounded and
bounded

I Almost all computer hardware and software support the IEEE Standard
for Floating-Point Arithmetic IEEE 754

I IEEE 754 adopted in 1985. Latest version IEEE 754-2008 (from year
2008)

I Yields a machine-independent model of how floating point arithmetic
behaves

I Matlab supports IEEE binary double precision format, the most
common format for floating point numbers
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IEEE 754 double precision floating point format

I The format stores the numbers in normalized form, that is, it can be
expressed as

x D ˙.1 C f / # 2e;

where
I 0 $ f < 1 (the mantissa, or fraction) is represented in binary form

using 52 bits
I e (the exponent) is an integer satisfying "1022 $ e $ 1023 (using 11 bits)
I 1 bit is used for the sign (0 positive, 1 negative)

I Finiteness of f is a limitation on precision

I Finiteness of e is a limitation on range

I Only f , e, and sign is stored; not the initial 1 (“hidden bit”)

I Number 0 is handled separately (e D "1023 and f D 0 indicates zero)
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IEEE 754 double precision floating point format

I Thus, 64 bits, or 8 bytes (1 byte = 8 bits), is used for each floating-point
number

exponent
(11 bit)sign

fraction
(52 bit)

63 52 0

Picture: Wikipedia

I Ex: A 1000 ! 1000 real matrix. Requires 106 8-byte floating point
numbers, thus 8 Mb storage
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Machine epsilon

I The number of digits in f (the mantissa) limits the precision of the
floating point system

I f is represented by 52 binary digits in IEEE 754 double precision

I For any floating point system, the distance between the number 1 and
the next representable number is called the machine epsilon "M

I For IEEE 754 double precision, "M D 2!52 % 2:2204 ! 10!16:

.1:000000000000000000000000000000000000000000000000000„ ƒ‚ …
1:::51

1/2

I "M quantifies the precision of the floating point system
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Spacing between floating point numbers

x D ˙.1 C f / # 2e;

I For e D 0, the spacing between each consecutive numbers is "M . Ex:

.1:011000000000000000000000000000000000000000000001000/2

".1:011000000000000000000000000000000000000000000000111/2

D.0:000000000000000000000000000000000000000000000000001/2

I For e D 1, the spacing between consecutive numbers is 2"M

I In general, the spacing between consecutive numbers is "M # 2e

I Thus, there is a constant spacing between numbers for a fixed
exponent, but the spacing grows with the exponent

Martin Berggren () Theme 1: Roundoff and population modeling November 4, 2009 10 / 20

Overflow and underflow

I Recall: x D ˙.1 C f / # 2e with "1022 $ e $ 1023

I Smallest (in magnitude) normalized number xmin D 2!1022

Note: much smaller than "M !

I Largest (in magnitude) representable number: xmax D .2 " "M / # 21023

I Attempt to store numbers with jxj > xmax yields overflow (many
programs terminate with error when this happens)

I Attempt to store numbers with jxj < xmin yields underflow (many
programs set x D 0 and continue)

The above is a slight lie: IEEE 754 actually supports “subnormal numbers” or
“gradual underflow”. When e D "1023, f D 0 indicates zero, but any
nonzero f indicates the number 0:f # 2!1023, which allows storage of
numbers down to 2!1074 with reduced accuracy.
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Specials

The standard also defines the following quantities:

I The (extended real) numbers C1 and "1 (stored using the sign flag
and e D 1024 and f D 0)

I The symbol not-a-number, or NaN (stored in e D 1024 when f ¤ 0).
NaN is typically used as the result of an operation using invalid inputs,
such as 0=0.
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Absolute and relative error

I x: exact (real) number

I Ox: number with error (due to measurement error, roundoff, . . . )

I Absolute error: jx " Oxj
I Relative error:

jx " Oxj
jxj

If x is a vector, use vector norm to express errors:

I Absolute error: kx " Oxk
I Relative error:

kx " Oxk
kxk

kxk D
 

nX

iD1

x2
i

!1=2

(e. g.; we will introduce other vector norms later!)
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Rounding errors

I Assume that a given real number x is approximated by a floating point
number fl.x/ (using IEEE 754 double precision)

I How big is the error jx " fl.x/j, the rounding error?

I fl.x/ D m # 2e with m D 1:f or m D 0 (when x D 0)

I Also, we may write x D Om # 2e, with same exponent as for fl.x/, and
1 $ Om < 2, with infinite precision, or Om D 0

I Recall that the distance between each floating point number is "M # 2e

εM•2e

I Thus, for any sensible rounding jx " fl.x/j $ "M # 2e

I When rounding to nearest floating point number
jx " fl.x/j $ 1

2"M # 2e (the default rounding and the one Matlab uses)
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Rounding errors

I Note that jxj D j Om # 2ej & 2e whenever x ¤ 0

I Thus, for x ¤ 0, and when rounding to nearest floating-point number,
the relative error is

jx " fl.x/j
jxj $

1
2"M # 2e

2e
D 1

2
"M (1)

I Thus, when rounding to nearest floating point number:

The relative error in the floating point approximation
of any nonzero number is bounded by 1

2"M

I In particular: the relative error is independent of the size of the number

Note: Some authors attach the name “machine epsilon” or “unit roundoff”
to the quantity # D 1

2"M (in Eldén, Wittmeyer–Koch avrundningsenheten).
However, we follow Matlab’s definition.
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Rounding errors in practical computations

I Machine epsilon is a measure of the relative accuracy of a stored real
number

I IEEE 754 double precision format provides a precision of about 16

decimal digits

I During practical computations, many floating point operations are
performed on numbers that has been rounded. Nevertheless, the
accumulated relative error in the final result is usually not more than a
few orders of magnitude greater than "M

I Rounding errors are in the majority of cases much smaller than other
errors (discretization errors, measurement errors)!

I However, there are a few “dangerous” cases to watch out for!
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Cancellation of significant digits

I Watch out when subtracting almost-equal numbers:

1:23456789 " 1:23456700 D 0:00000089

I If both numbers to the left have 9 correct digits, the resulting number to
the right only has 2 correct digits!

I The phenomenon is called cancellation of significant digits

I Cancellation can sometimes be avoided by rewriting:

p
1 C x "

p
1 " x D .

p
1 C x "

p
1 " x/.

p
1 C x C

p
1 " x/p

1 C x C
p

1 " x

D 2xp
1 C x C

p
1 " x

Martin Berggren () Theme 1: Roundoff and population modeling November 4, 2009 17 / 20

Consequences, rules of thumb

I if x==y then... a dangerous statement when x and y are general
floating point numbers

I Better to use if abs(x-y) <= tolerance then... where
tolerance is a small number

I Avoid, if possible, subtraction of almost-equal numbers

I The associative and distributive laws of arithmetic does not hold
exactly for floating point numbers (often not so important)

I For
PN

nD1 sn, try to add up the terms starting with the smallest in
magnitude
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When are rounding errors noticeable?

I Recall example with computer representation of a black-and-white
picture

I Discretization error: a spatially continuous image is rasterized to pixels
(say 1024 ! 768)

I Rounding error: only a fixed number (say 256) of gray tones at each
pixel

I Using e. g. double precision floating point numbers for the gray tones,
the rounding error can be completely neglected, it will only be the
discretization error that matter!

I Similarly, in most cases when using numerical software, we can forget
about rounding errors

I Two important exceptions!
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When are rounding errors noticeable?

1. Sensitive problems. The solution to a mathematical problems can
sometimes be very sensitive to changes in the input data: small
changes in the data creates large changes in the solution. The small
errors induced by rounding the input can therefore cause noticeable
changes in the solution. Such problems are called ill-conditioned or in
extreme cases ill-posed.

2. Numerically unstable algorithms. Some numerical algorithms are
sensitive to roundoff even when applied to a well-conditioned
problem. Avoid such algorithms if possible!

Martin Berggren () Theme 1: Roundoff and population modeling November 4, 2009 20 / 20


