Theme 4: Rocket launches and initial value problems for ordinary differential equations

Martin Berggren

December 20, 2009

Initial value problems, examples Example 2: More realistic microbial growth

The logistic equation (Theme 1) in continuous time:

$$
\begin{aligned}
y^{\prime} & =\alpha\left(1-\frac{y}{M}\right) y \quad t>0 \\
y(0) & =y_{0}
\end{aligned}
$$

- The growth rate decreases as y increases
- The growth rate vanishes at $y=M$, due to nutritional depletion e.g.
- A nonlinear equation. "Linear", "nonlinear" refers to functions y, y^{\prime} (not t e.g.). Example 1 linear.
- The equation can be solved "analytically" (it is separable)

Initial value problems, examples
Example 1:

$$
\begin{align*}
y: \mathbb{R} \rightarrow \mathbb{R}, \alpha \in \mathbb{R}, \\
y^{\prime}=\alpha y \quad t>0, \\
y(0)=y_{0} \tag{1}
\end{align*}
$$

- The solution is $y(t)=\mathrm{e}^{\alpha t} y_{0}$. Numerical solution not needed!
- Models e.g. microbial growth $(\alpha>0)$, radioactive radiation $(\alpha<0)$, chemical reactions

Martin Berggren 0
Rockets and ODEs
December 20, 2009 2/

Initial value problems, examples
Example 3: Population modeling in continuous time

$$
\begin{aligned}
& \begin{cases}h^{\prime}=\left[c_{1}\left(1-\frac{h}{M}\right)-d_{1} r\right] h, & t>0 \\
r^{\prime}=\left(-c_{2}+d_{2} h\right) r, & t>0\end{cases} \\
& \begin{cases}h(0)=h_{0} \\
r(0)=r_{0}\end{cases}
\end{aligned}
$$

- h : hares. Growth rate inhibited by nutritional depletion and by being preyed on by foxes
- r : foxes. Growth rate increasing with hare population. Population shrinking by natural death
- A system of nonlinear equations
- Cannot be solved "analytically"!

Initial value problems, examples
Example 4: Oscillating phenomena, modeled by equation (1), but with $\alpha \in \mathbb{C}$.
$y: \mathbb{R} \rightarrow \mathbb{R}, \alpha \in \mathbb{C}$,

$$
\begin{aligned}
y^{\prime} & =\alpha y \quad t>0, \\
y(0) & =y_{0}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
y(t) & =\mathrm{e}^{\alpha t} y_{0}=\mathrm{e}^{\left(\alpha_{r}+\mathrm{i} \alpha_{i}\right) t} y_{0}=\mathrm{e}^{\alpha_{r} t} \mathrm{e}^{\mathrm{i} \alpha_{i} t} \\
& =\mathrm{e}^{\alpha_{r} t}\left(\cos \alpha_{i} t+\mathrm{i} \sin \alpha_{i} t\right)
\end{aligned}
$$

- α_{r} : exponential growth/decay of amplitude
- α_{i} : angular frequency

Martin Berggren 0
Rockets and ODEs

Initial value problems, examples
Example 5: Rigid body mechanics. Newton's second law for the center of mass:

$$
\begin{aligned}
& m x^{\prime \prime}=b_{x}\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \\
& m y^{\prime \prime}=b_{y}\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \quad t>0 \\
& m z^{\prime \prime}=b_{z}\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \\
& x(0)=0, \quad y(0)=0, \quad z(0)=0 \\
& x^{\prime}(0)=0, \quad y^{\prime}(0)=0, \quad z^{\prime}(0)=0
\end{aligned}
$$

- $\boldsymbol{b}=\left(b_{x}, b_{y}, b_{z}\right)$ represents the forces on body (gravitation, air resistance)
- System of ODEs of second order
- Nonlinear if \boldsymbol{b} depends nonlinearly on $x, y, z, x^{\prime}, y^{\prime}, z^{\prime}$. Linear otherwise

Martin Berggren 0
Rockets and ODEs

Initial value problems, standard form

Examples 1, 2, and 4 already in standard form.
Example 3:

$$
\begin{aligned}
& \binom{h}{r}^{\prime}=\left(\begin{array}{c}
{\left[\begin{array}{c}
c_{1}\left(1-\frac{h}{M}\right)-d_{1} r \\
\left(-c_{2}+d_{2} h\right) r
\end{array}\right.}
\end{array}\right) \quad t>0 \\
& \binom{h(0)}{r(0)}=\binom{h_{0}}{r_{0}}
\end{aligned}
$$

In standard form (2) for

$$
\mathbf{u}=\binom{h}{r}, \quad \mathbf{f}=\binom{\left[c_{1}\left(1-\frac{h}{M}\right)-d_{1} r\right] h}{\left(-c_{2}+d_{2} h\right) r}
$$

Initial value problems, standard form

Example 5:
First, the x-component equation $m x^{\prime \prime}=b_{x}$. Let $p=m x^{\prime}$ (component of momentum, rörelsemängd in x direction). Then

$$
\binom{x}{p}^{\prime}=\binom{p / m}{b_{x}}=\left(\begin{array}{cc}
0 & 1 / m \\
0 & 0
\end{array}\right)\binom{x}{p}+\binom{0}{b_{x}}
$$

For all three components:

Martin Berggren 0
Rockets and ODEs

Stability with respect to initial values

(a)

(b)

(c)

- These are stable cases
- The solution curves for different initial values do not diverge as $t \rightarrow \infty$
- Cases (a) \& (b) asymptotically stable (the different curves converge towards each other)
- Case (c) stable but not asymptotically stable

Stability with respect to initial values

Introduce disturbance $\boldsymbol{\epsilon}$ of initial values $\mathbf{u}^{(0)}$

$$
\begin{array}{rlr}
\mathbf{u}_{\epsilon}^{\prime} & =\mathbf{f}\left(t, \mathbf{u}_{\epsilon}\right) \quad t>0 \\
\mathbf{u}_{\epsilon}(0) & =\mathbf{u}^{(0)}+\boldsymbol{\epsilon}
\end{array}
$$

What happens when $t \rightarrow \infty$?

Stability with respect to initial values

- Unstable with respect to initial values: the solution curves for different initial values diverge from each other as $t \rightarrow \infty$
- Nothing "wrong" with the equation!
- Errors in indata grows as t grows
- Needs to be solved on a bounded interval $t \in[0, T]$

Stability with respect to initial values

How to quantify stability?

Start with linear, scalar equations $(\alpha \in \mathbb{C})$:

$$
\begin{aligned}
y^{\prime} & =\alpha y+f(t) \quad t>0 \\
y(0) & =y_{0}
\end{aligned}
$$

- Stable if $\operatorname{Re} \alpha \leq 0$
- Asymptotically stable if $\operatorname{Re} \alpha<0$
- Unstable if $\operatorname{Re} \alpha>0$

Stability with respect to initial values

- The stability of linear systems does not depend on initial data. Stability is a system property (depends on the real part of the eigenvalues of the system matrix)
- The concept of stability for nonlinear systems

$$
\begin{align*}
\mathbf{u}^{\prime} & =\mathbf{f}(t, \mathbf{u}) \quad t>0 \\
\mathbf{u}(0) & =\mathbf{u}^{(0)} \tag{4}
\end{align*}
$$

more complicated.

- Look at the disturbed system

$$
\begin{aligned}
\mathbf{u}_{\epsilon}^{\prime} & =\mathbf{f}\left(t, \mathbf{u}_{\epsilon}\right) \quad t>0 \\
\mathbf{u}_{\epsilon}(0) & =\mathbf{u}^{(0)}+\boldsymbol{\epsilon}
\end{aligned}
$$

- For stability, want $\mathbf{u}-\mathbf{u}_{\epsilon}$ not to grow!
- Difficult problem to analyze in general!

Stability with respect to initial values

Linear systems of equations

$$
\begin{align*}
\mathbf{u}^{\prime} & =\mathbf{f}(t, \mathbf{u})=\mathbf{A} \mathbf{u}+\mathbf{b} \quad t>0 \\
\mathbf{u}(0) & =\mathbf{u}^{(0)} \tag{3}
\end{align*}
$$

- A: n-by-n matrix
- Assume that \mathbf{A} is diagonalizable: there are n linearly independent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\left(\right.$ in $\left.\mathbb{C}^{n}\right)$ such that

$$
\mathbf{A} \mathbf{v}_{k}=\lambda_{k} \mathbf{v}_{k}
$$

where $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ are the eigenvalues of \mathbf{A}

- System (3) is
- Stable if $\operatorname{Re} \lambda_{k} \leq 0 \forall k$
- Asymptotically stable if $\operatorname{Re} \lambda_{k}<0 \forall k$
- Unstable if there is a k such that $\operatorname{Re} \lambda_{k}>0$

Martin Berggren 0
Rockets and ODEs

Stability with respect to initial values

- Useful for numerical methods: study stability locally:

$$
\begin{align*}
\mathbf{v}^{\prime} & =\mathbf{J}\left(\mathbf{u}^{(0)}\right) \mathbf{v} \quad t>0 \tag{5}\\
\mathbf{v}(0) & =\boldsymbol{\epsilon}
\end{align*}
$$

where $J_{i j}=\partial f_{i} / \partial u_{j}$, the Jacobian matrix of \mathbf{f}

- We have

$$
\mathbf{v}(t) \approx \mathbf{u}(t)-\mathbf{u}_{\epsilon}(t)
$$

for $\|\boldsymbol{\epsilon}\|$ small and for small t

- Equation (5) a linear system whose stability depends on the eigenvalue of $\mathbf{J}\left(\mathbf{u}^{(0)}\right)$
- Thus, equation (4) is locally stable (with respect to initial conditions $\mathbf{u}^{(0)}$) if all eigenvalues to $\mathbf{J}\left(\mathbf{u}^{(0)}\right)$ are nonpositive.

Numerical methods for initial value problems

$$
\left\{\begin{align*}
y^{\prime} & =f(t, y) \quad t>0 \tag{6}\\
y(0) & =y^{(0)}
\end{align*}\right.
$$

Method 1: Forward Euler (Euler framåt).
Introduce the sequence $y_{0}, y_{1}, y_{2}, \ldots$ Approximate

$$
\begin{gathered}
y\left(t_{k}\right) \approx y_{k}, \quad y^{\prime}\left(t_{k}\right) \approx \frac{y_{k+1}-y_{k}}{\Delta t} \\
\left\{\begin{aligned}
& y_{k+1}=y_{k}+\Delta t f\left(t_{k}, y_{k}\right) \quad k=0,1,2, \ldots \\
& y_{0}=y^{(0)}
\end{aligned}\right.
\end{gathered}
$$

- Few flops per time step!
- Low accuracy (" 1 st-order accurate")
- Becomes unstable for large time steps

Martin Berggren 0
Rockets and ODEs

Numerical methods for initial value problems

Method 3: The trapezoidal method (trapetsmetoden).

$$
\left\{\begin{aligned}
y_{k+1} & =y_{k}+\frac{\Delta t}{2}\left[f\left(t_{k}, y_{k}\right)+f\left(t_{k+1}, y_{k+1}\right)\right] \quad k=0,1,2, \ldots \\
y_{0} & =y^{(0)}
\end{aligned}\right.
$$

- "Compromise" between Forward and Backward Euler!
- More accurate than Forward and Backward Euler ("2nd-order accurate")
- Implicit method that is usually a better choice that Backward Euler

Numerical methods for initial value problems

Method 2: Backward Euler (Euler bakåt).

$$
\left\{\begin{aligned}
y_{k+1} & =y_{k}+\Delta t f\left(t_{k+1}, y_{k+1}\right) \quad k=0,1,2, \ldots \\
y_{0} & =y^{(0)}
\end{aligned}\right.
$$

- Low accuracy: as inaccurate as Forward Euler ("1st-order accurate")
- Implicit method: need to solve a nonlinear equation for y_{k+1} at each time step! (Forward Euler is explicit)
- Many, many flops per time step!
- What's the point? (Will come back to that!)

Numerical methods for initial value problems

Method 4: Heun's method

Idea: Take the trapezoidal method, replace y_{k+1} in $f\left(t_{k+1}, y_{k+1}\right)$ with estimate from Forward Euler.

$$
\left\{\begin{aligned}
y_{k+1} & =y_{k}+\frac{\Delta t}{2}\left(\kappa_{1}+\kappa_{2}\right), \text { where } \\
\kappa_{1} & =f\left(t_{k}, y_{k}\right) \\
\kappa_{2} & =f\left(t_{k+1}, y_{k}+\Delta t \kappa_{1}\right)
\end{aligned}\right.
$$

- Accuracy as the trapezoidal method ("2nd-order accurate")
- Explicit method!
- Becomes unstable for large time steps, similarly as Forward Euler
- The simplest member of the family of Runge-Kutta methods
- Runge-Kutta methods (e.g. Matlabs ode23, ode45) a standard tool for solving initial-value problems

How good are the methods?

Several issues to consider:

- In general, $y_{k} \neq y\left(t_{k}\right)$; we introduce a discretization error
- How accurate is the numerical solution: how small is the error $y_{k}-y\left(t_{k}\right)$? (We will be able to estimate the error even if we cannot compute the exact solution y.)
- How fast can we compute the solution?
- How robust is the solution? Can something go wrong?

We will analyze the methods with respect to

- Accuracy ("truncation error")
- Stability (with respect to choice of time step Δt)

Accuracy, truncation error

Let

$$
\left\{\begin{aligned}
\bar{y}^{\prime} & =f(t, \bar{y}) \quad t>t_{k} \\
\bar{y}\left(t_{k}\right) & =y_{k}
\end{aligned}\right.
$$

Def. Local truncation error:

$$
L_{k+1}=y_{k+1}-\bar{y}\left(t_{k+1}\right),
$$

the error committed after one step with the method
Def. Global truncation error (or just "the global error"):

$$
E_{k+1}=y_{k+1}-y\left(t_{k+1}\right)
$$

the error compared with the exact solution to equation (6)

Accuracy, truncation error

Question: how to quantify the error introduced by any of methods 1-4?

- Let $y_{0}, y_{1}, y_{2}, \ldots$ be the numerically computed sequence
- Take any y_{k} and solve the exact equation with y_{k} as initial value
- The difference between y_{k+1} and the above exact solution evaluated at $t=t_{k+1}$ is called the local truncation error
- Thus, the local truncation error yields the error after one step of the method
- The global truncation error (or simply the global error) is the error in the solution after k steps

Accuracy, truncation error

Def. A method has the order of accuracy p if

$$
L_{k+1}=a \Delta t^{p+1}+b \Delta t^{p+2}+\cdots=O\left(\Delta t^{p+1}\right)
$$

Note that $p+1$ in the exponent corresponds to order $p!$ Why?
In many cases (if the equation is nice enough): the global truncation error is $O\left(\Delta t^{p}\right)$ if the local truncation error is $O\left(\Delta t^{p+1}\right)$

Thus, two ways to reduce the truncation error $L_{k}=O\left(\Delta t^{p+1}\right)$:

- Decrease Δt. Needs more time steps to reach a predefined time
- Keep Δt and switch to a method with higher p. Needs more calculations each time step

Rule of thumb: the higher the demands on accuracy is, the more it pays off to increase p

Accuracy, truncation error

Error analysis example, Forward Euler:

$$
\begin{equation*}
y_{k+1}=y_{k}+\Delta t f\left(t_{k}, y_{k}\right) \tag{7}
\end{equation*}
$$

Let

$$
\left\{\begin{align*}
\bar{y}^{\prime} & =f(t, \bar{y}) \quad t>t_{k} \tag{8}\\
\bar{y}\left(t_{k}\right) & =y_{k}
\end{align*}\right.
$$

Taylor expansion of \bar{y} at $t=t_{k}$:

$$
\begin{align*}
\bar{y}\left(t_{k+1}\right) & =\bar{y}\left(t_{k}\right)+\bar{y}^{\prime}\left(t_{k}\right) \Delta t+\frac{1}{2} \bar{y}^{\prime \prime}\left(t_{k}\right) \Delta t^{2}+\ldots \tag{9}\\
{[\text { by eq. (8)] }} & =y_{k}+f\left(t_{k}, y_{k}\right) \Delta t+O\left(\Delta t^{2}\right)
\end{align*}
$$

Equations (7)-(9) yields

$$
y_{k+1}-\bar{y}\left(t_{k+1}\right)=O\left(\Delta t^{2}\right)
$$

Conclusion: Forward Euler has the order of accuracy 1. Backward Euler also has the order of accuracy 1.

Martin Berggren 0
Rockets and ODEs
December 20, 2009 25/32

Stability of numerical schemes

$\Delta t=0.01$

$\Delta t=0.075$: numerically unstable! $\Delta t=0.1$: numerically unstable! Martin Berggren () Rockets and ODEs

Stability of numerical schemes

Example: The equation

$$
\begin{aligned}
y^{\prime} & =-8 t y+t^{3 / 2} \quad t>0 \\
y(0) & =1
\end{aligned}
$$

is stable with respect to initial values (coefficient in front of y is nonpositive)

Forward Euler:

$$
\begin{aligned}
y_{k+1} & =y_{k}+\Delta t\left(-8 t_{k} y_{k}+t_{k}^{3 / 2}\right) \quad k=0,1, \ldots \\
y_{0} & =1
\end{aligned}
$$

Time steps: $\Delta t=0.01,0.05,0.075,0.1$

Solving until time $t=8$, i.e. for $800,160,107$, and 80 time steps

$$
\text { Martin Berggren } 0
$$

Rockets and ODEs
December 20, 2009 26/32

Stability of numerical schemes

- Similar effects happen for many schemes
- Typically there is a condition like $\Delta t \leq$ something to avoid numerical instability
- In order to obtain quantitative information on a numerical methods stability properties, we will analyze it on the stable model problem

$$
\left\{\begin{align*}
y^{\prime} & =\lambda y \quad t>0 \tag{10}\\
y(0) & =y_{0}
\end{align*}\right.
$$

where $\lambda<0$ (for $\lambda \in \mathbb{R}$); alternatively, $\operatorname{Re} \lambda<0$ (for $\lambda \in \mathbb{C}$)

- $y(t)=e^{\lambda t} y_{0}$. Since $\operatorname{Re} \lambda<0$, we have $|y(t)|<|y(0)|$
- We say that the numerical method is stable if it holds that $\left|y_{k+1}\right| \leq\left|y_{k}\right|$ when applied to the above model problem

Martin Berggren 0
Rockets and ODEs
December 20, 2009

Stability of numerical schemes

Example: Forward Euler

$$
\begin{aligned}
y_{k+1} & =y_{k}+\Delta t f\left(t_{k}, y_{k}\right)=[\text { for eq. (10)] } \\
& =y_{k}+\Delta t \lambda y_{k}=\underbrace{(1+\Delta t \lambda)}_{\text {"Growth factor" }} y_{k}
\end{aligned}
$$

Thus, Forward Euler stable if $|1+\Delta t \lambda| \leq 1$. For $\lambda<0$, we have

$$
-1 \leq 1+\Delta t \lambda=1-\Delta t|\lambda| \leq 1
$$

Conclusion: Forward Euler is stable for

$$
\Delta t \leq \frac{2}{|\lambda|}
$$

Stability when solving systems of ODEs

Any of the numerical methods above can be applied to the system

$$
\begin{aligned}
\mathbf{u}^{\prime} & =\mathbf{f}(t, \mathbf{u}) \quad t>0 \\
\mathbf{u}(0) & =\mathbf{u}^{(0)}
\end{aligned}
$$

We study stability for the linear model problem defined by

$$
\mathbf{f}(t, \mathbf{u})=\mathbf{A} \mathbf{u}
$$

where all eigenvalues of \mathbf{A} are real and negative.
For Forward Euler, the stability condition becomes

$$
\Delta t \leq \frac{2}{\left|\lambda_{i}\right|}
$$

for all eigenvalues λ_{i}.
Thus, the time step will be limited by the eigenvalue of largest magnitude

Stability of numerical schemes

Example: Backward Euler

$$
\begin{aligned}
y_{k+1} & =y_{k}+\Delta t f\left(t_{k}, y_{k+1}\right)=[\text { for eq. (10) }] \\
& =y_{k}+\Delta t \lambda y_{k+1}
\end{aligned}
$$

that is,

$$
(1-\Delta t \lambda) y_{k+1}=y_{k}
$$

or

$$
y_{k+1}=\underbrace{\frac{1}{1-\Delta t \lambda}}_{\text {Growth factor }} y_{k}
$$

Thus, Backward Euler stable if $1 /|1-\Delta t \lambda| \leq 1$. For $\lambda<0$, this is always true!

Conclusion: Backward Euler is unconditionally stable.

Martin Berggren 0
Rockets and ODEs
December 20, $200930 / 32$

Stiff systems and implicit methods

- Having eigenvalues of the matrix \mathbf{A} that are vastly different in size corresponds to a system with a huge range in time scales. Fast time scales: $\left|\lambda_{i}\right|$ large; slow time scales: $\left|\lambda_{i}\right|$ small
- Such systems are called stiff
- Stiff systems are common in chemistry problems, for instance
- Explicit methods are usually inefficient for stiff methods since the time step is limited by the fastest time scales
- Implicit method typically more efficient for stiff systems, particularly if the interest mostly is in the slow time scales.
- The investment in extra work when solving the implicit equation will be payed back by the possibility of using larger time steps

