
Theme 4: Rocket launches and initial value problems

for ordinary differential equations

Martin Berggren

December 20, 2009

Martin Berggren () Rockets and ODEs December 20, 2009 1 / 32

Initial value problems, examples

Example 1:

yW R ! R, ˛ 2 R,

y0 D ˛y t > 0;

y.0/ D y0
(1)
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α > 0α < 0
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I The solution is y.t/ D e˛ty0. Numerical solution not needed!

I Models e.g. microbial growth (˛ > 0), radioactive radiation (˛ < 0),
chemical reactions
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Initial value problems, examples

Example 2: More realistic microbial growth

The logistic equation (Theme 1) in
continuous time:

y0 D ˛
!
1 ! y

M

"
y t > 0;

y.0/ D y0

0 5 10 15
t

I The growth rate decreases as y increases

I The growth rate vanishes at y D M , due to nutritional depletion e.g.

I A nonlinear equation. “Linear”, “nonlinear” refers to functions y, y0

(not t e.g.). Example 1 linear.

I The equation can be solved “analytically” (it is separable)
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Initial value problems, examples

Example 3: Population modeling in continuous time

(
h0 D

#
c1

$
1 ! h

M

%
! d1r

&
h; t > 0

r 0 D .!c2 C d2h/ r; t > 0
(

h.0/ D h0

r.0/ D r0

I h: hares. Growth rate inhibited by nutritional depletion and by being
preyed on by foxes

I r : foxes. Growth rate increasing with hare population. Population
shrinking by natural death

I A system of nonlinear equations

I Cannot be solved “analytically”!
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Initial value problems, examples

Example 4: Oscillating phenomena, modeled by equation (1), but with
˛ 2 C.

yW R ! R, ˛ 2 C,

y0 D ˛y t > 0;

y.0/ D y0

Solution:

y.t/ D e˛ty0 D e.˛r Ci ˛i /ty0 D e˛r t ei˛i t

D e˛r t .cos ˛i t C i sin ˛i t /

! " # $ % &!
!&

!!'(

!

!'(

&

α r < 0

I ˛r : exponential growth/decay of amplitude

I ˛i : angular frequency
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Initial value problems, examples

Example 5: Rigid body mechanics. Newton’s second law for the center of
mass:

mx00 D bx.x; y; z; x0; y0; z0/
my00 D by.x; y; z; x0; y0; z0/
mz00 D bz.x; y; z; x0; y0; z0/

t > 0

x.0/ D 0; y.0/ D 0; z.0/ D 0

x0.0/ D 0; y0.0/ D 0; z0.0/ D 0

b

I b D .bx; by ; bz/ represents the forces on body (gravitation, air
resistance)

I System of ODEs of second order

I Nonlinear if b depends nonlinearly on x, y, z, x0, y0, z0. Linear

otherwise
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Initial value problems, standard form

I Plenty of “canned” software for solving initial-value problems for ODEs

I Matlab: ode23, ode45, ode113, ode15s, ode23s, ode23t,
ode23tb

I Need to write all problems in a uniform way to use standard software.

I The standard form for initial value problems:

u0 D f.t; u/ t > 0

u.0/ D u.0/
(2)

I Note: u, f are vectors!

I u W R ! Rn; a function from time into n-vectors

I f W R " Rn ! Rn; a function of time and of the “state” u (an n-vector)

I For a linear ODE: f D Au ! b, where A (matrix), b (vector)
independent of u
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Initial value problems, standard form

Examples 1, 2, and 4 already in standard form.

Example 3:

$
h

r

%0
D
 h

c1

!
1 ! h

M

"
! d1r

i
h

.!c2 C d2h/ r

!
t > 0

$
h.0/

r.0/

%
D

$
h0

r0

%

In standard form (2) for

u D
$

h

r

%
; f D

 h
c1

!
1 ! h

M

"
! d1r

i
h

.!c2 C d2h/ r

!
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Initial value problems, standard form

Example 5:

First, the x-component equation mx00 D bx . Let p D mx0 (component of
momentum, rörelsemängd in x direction). Then

$
x

p

%0
D

$
p=m

bx

%
D

$
0 1=m

0 0

% $
x

p

%
C

$
0

bx

%

For all three components:
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Stability with respect to initial values

Introduce disturbance ! of initial values u.0/

u0
! D f.t; u!/ t > 0

u!.0/ D u.0/ C !

What happens when t ! 1?
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Stability with respect to initial values

0

u0 − ε

u0

u0 + ε

(a)

0

u0 − ε

u0

u0 + ε

(b)

0

u0 − ε
u0

u0 + ε

(c)

I These are stable cases

I The solution curves for different initial values do not diverge as t ! 1
I Cases (a) & (b) asymptotically stable (the different curves converge

towards each other)

I Case (c) stable but not asymptotically stable
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Stability with respect to initial values

0

u0 − ε
u0

u0 + ε

I Unstable with respect to initial values: the solution curves for different
initial values diverge from each other as t ! 1

I Nothing “wrong” with the equation!

I Errors in indata grows as t grows

I Needs to be solved on a bounded interval t 2 Œ0; T !
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Stability with respect to initial values

How to quantify stability?

Start with linear, scalar equations (˛ 2 C):

y0 D ˛y C f .t/ t > 0

y.0/ D y0

I Stable if Re ˛ # 0

I Asymptotically stable if Re ˛ < 0

I Unstable if Re ˛ > 0
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Stability with respect to initial values

Linear systems of equations

u0 D f.t; u/ D Au C b t > 0

u.0/ D u.0/
(3)

I A: n-by-n matrix

I Assume that A is diagonalizable: there are n linearly independent
vectors v1, . . . , vn (in Cn) such that

Avk D "kvk;

where "1, . . . , "n 2 C are the eigenvalues of A
I System (3) is

I Stable if Re "k # 0 8k
I Asymptotically stable if Re "k < 0 8k
I Unstable if there is a k such that Re "k > 0
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Stability with respect to initial values

I The stability of linear systems does not depend on initial data. Stability
is a system property (depends on the real part of the eigenvalues of the
system matrix)

I The concept of stability for nonlinear systems

u0 D f.t; u/ t > 0

u.0/ D u.0/
(4)

more complicated.

I Look at the disturbed system

u0
! D f.t; u!/ t > 0

u!.0/ D u.0/ C !

I For stability, want u ! u! not to grow!

I Difficult problem to analyze in general!
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Stability with respect to initial values

I Useful for numerical methods: study stability locally:

v0 D J.u.0//v t > 0

v.0/ D !
(5)

where Jij D @fi=@uj , the Jacobian matrix of f
I We have

v.t/ $ u.t/ ! u!.t/

for k!k small and for small t

I Equation (5) a linear system whose stability depends on the eigenvalue
of J.u.0//

I Thus, equation (4) is locally stable (with respect to initial conditions
u.0/) if all eigenvalues to J.u.0// are nonpositive.
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Numerical methods for initial value problems
(

y0 D f .t; y/ t > 0

y.0/ D y.0/
(6)

t0 t1 t2 t3 t4 t5

Δ t

Method 1: Forward Euler (Euler framåt ).
Introduce the sequence y0, y1, y2, . . . . Approximate

y.tk/ $ yk; y0.tk/ $ ykC1 ! yk

#t
(

ykC1 D yk C #t f .tk; yk/ k D 0; 1; 2; : : :

y0 D y.0/

I Few flops per time step!

I Low accuracy (“1st-order accurate”)

I Becomes unstable for large time steps
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Numerical methods for initial value problems

Method 2: Backward Euler (Euler bakåt ).

(
ykC1 D yk C #t f .tkC1; ykC1/ k D 0; 1; 2; : : :

y0 D y.0/

I Low accuracy: as inaccurate as Forward Euler (“1st-order accurate”)

I Implicit method: need to solve a nonlinear equation for ykC1 at each
time step! (Forward Euler is explicit)

I Many, many flops per time step!

I What’s the point? (Will come back to that!)
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Numerical methods for initial value problems

Method 3: The trapezoidal method (trapetsmetoden ).

8
<

:
ykC1 D yk C #t

2
Œf .tk; yk/ C f .tkC1; ykC1/! k D 0; 1; 2; : : :

y0 D y.0/

I “Compromise” between Forward and Backward Euler!

I More accurate than Forward and Backward Euler (“2nd-order
accurate”)

I Implicit method that is usually a better choice that Backward Euler
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Numerical methods for initial value problems

Method 4: Heun’s method

Idea: Take the trapezoidal method, replace ykC1 in f .tkC1; ykC1/ with
estimate from Forward Euler.

8
ˆ̂<

ˆ̂:

ykC1 D yk C #t

2
.$1 C $2/ ; where

$1 D f .tk; yk/;

$2 D f .tkC1; yk C #t $1/

I Accuracy as the trapezoidal method (“2nd-order accurate”)

I Explicit method!

I Becomes unstable for large time steps, similarly as Forward Euler

I The simplest member of the family of Runge–Kutta methods

I Runge–Kutta methods (e.g. Matlabs ode23, ode45) a standard tool for
solving initial-value problems
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How good are the methods?

Several issues to consider:

I In general, yk ¤ y.tk/; we introduce a discretization error

I How accurate is the numerical solution: how small is the error
yk ! y.tk/? (We will be able to estimate the error even if we cannot
compute the exact solution y.)

I How fast can we compute the solution?

I How robust is the solution? Can something go wrong?

We will analyze the methods with respect to

I Accuracy (“truncation error”)

I Stability (with respect to choice of time step #t )
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Accuracy, truncation error

Question: how to quantify the error introduced by any of methods 1–4?

I Let y0, y1, y2, . . . be the numerically computed sequence

I Take any yk and solve the exact equation with yk as initial value

I The difference between ykC1 and the above exact solution evaluated at
t D tkC1 is called the local truncation error

I Thus, the local truncation error yields the error after one step of the
method

I The global truncation error (or simply the global error) is the error in
the solution after k steps
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Accuracy, truncation error

Let (
Ny0 D f .t; Ny/ t > tk

Ny.tk/ D yk

Def. Local truncation error:

LkC1 D ykC1 ! Ny.tkC1/;

the error committed after one step with the method

Def. Global truncation error (or just “the global error”):

EkC1 D ykC1 ! y.tkC1/;

the error compared with the exact solution to equation (6)
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Accuracy, truncation error

Def. A method has the order of accuracy p if

LkC1 D a#tpC1 C b#tpC2 C % % % D O.#tpC1/

Note that p C 1 in the exponent corresponds to order p! Why?

In many cases (if the equation is nice enough): the global truncation error is
O.#tp/ if the local truncation error is O.#tpC1/

Thus, two ways to reduce the truncation error Lk D O.#tpC1/:

I Decrease #t . Needs more time steps to reach a predefined time

I Keep #t and switch to a method with higher p. Needs more
calculations each time step

Rule of thumb: the higher the demands on accuracy is, the more it pays off
to increase p
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Accuracy, truncation error

Error analysis example, Forward Euler:

ykC1 D yk C #t f .tk; yk/ (7)

Let (
Ny0 D f .t; Ny/ t > tk

Ny.tk/ D yk

(8)

Taylor expansion of Ny at t D tk :

Ny.tkC1/ D Ny.tk/ C Ny0.tk/ #t C 1

2
Ny00.tk/ #t2 C : : :

[by eq. (8)] D yk C f .tk; yk/ #t C O.#t2/
(9)

Equations (7)!(9) yields

ykC1 ! Ny.tkC1/ D O.#t2/

Conclusion: Forward Euler has the order of accuracy 1. Backward Euler
also has the order of accuracy 1.
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Stability of numerical schemes

Example: The equation

y0 D !8ty C t3=2 t > 0

y.0/ D 1

is stable with respect to initial values (coefficient in front of y is nonpositive)

Forward Euler:

ykC1 D yk C #t .!8tkyk C t
3=2
k

/ k D 0; 1; : : :

y0 D 1

Time steps: #t D 0:01, 0:05, 0:075, 0:1

Solving until time t D 8, i.e. for 800, 160, 107, and 80 time steps
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Stability of numerical schemes

! " # $ %
!"

!&'(

!&

!!'(

!

!'(

&

&'(

"

t

y

#t D 0:01
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#t D 0:05
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#t D 0:075: numerically unstable!

! " # $ %
!"

!&'(

!&

!!'(

!

!'(

&

&'(

"

t

y

#t D 0:1: numerically unstable!
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Stability of numerical schemes

I Similar effects happen for many schemes

I Typically there is a condition like #t # something to avoid numerical
instability

I In order to obtain quantitative information on a numerical methods
stability properties, we will analyze it on the stable model problem

(
y0 D "y t > 0

y.0/ D y0
(10)

where " <0 (for " 2 R); alternatively, Re " <0 (for " 2 C)

I y.t/ D e"t y0. Since Re " <0 , we have jy.t/j < jy.0/j
I We say that the numerical method is stable if it holds that

jykC1j #j ykj when applied to the above model problem
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Stability of numerical schemes

Example: Forward Euler

ykC1 D yk C #t f .tk; yk/ D [for eq. (10)]

D yk C #t "yk D .1 C #t "/„ ƒ‚ …
“Growth factor”

yk

Thus, Forward Euler stable if j1 C #t "j # 1. For " <0 , we have

!1 # 1 C #t " D 1 ! #t j"j # 1

Conclusion: Forward Euler is stable for

#t # 2

j"j
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Stability of numerical schemes

Example: Backward Euler

ykC1 D yk C #t f .tk; ykC1/ D [for eq. (10)]

D yk C #t "ykC1;

that is,
.1 ! #t "/ykC1 D yk;

or

ykC1 D 1

1 ! #t "„ ƒ‚ …
Growth factor

yk;

Thus, Backward Euler stable if 1=j1 ! #t "j # 1. For " <0 , this is always
true!

Conclusion: Backward Euler is unconditionally stable.
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Stability when solving systems of ODEs

Any of the numerical methods above can be applied to the system

u0 D f.t; u/ t > 0

u.0/ D u.0/

We study stability for the linear model problem defined by

f.t; u/ D Au;

where all eigenvalues of A are real and negative.

For Forward Euler, the stability condition becomes

#t # 2

j"i j
for all eigenvalues "i .

Thus, the time step will be limited by the eigenvalue of largest magnitude
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Stiff systems and implicit methods

I Having eigenvalues of the matrix A that are vastly different in size
corresponds to a system with a huge range in time scales. Fast time
scales: j"i j large; slow time scales: j"i j small

I Such systems are called stiff

I Stiff systems are common in chemistry problems, for instance

I Explicit methods are usually inefficient for stiff methods since the time
step is limited by the fastest time scales

I Implicit method typically more efficient for stiff systems, particularly if
the interest mostly is in the slow time scales.

I The investment in extra work when solving the implicit equation will
be payed back by the possibility of using larger time steps
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