
Theme 2: Network Models and Linear Systems

Martin Berggren

November 10, 2009

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 1 / 43

Linear Systems

Linear Systems

I Mathematical models often gives rise to large linear systems of
equations, e.g. the network model in present theme

I The execution time is often dominated by the solution of the linear
systems!

I Today’s lecture:

I Algorithms: the basic algorithm for Gaussian elimination and back
substitution

I The basic algorithm is numerically unstable!
I Stabilization through row pivoting
I Computational complexity, execution time
I LU factorization
I Accuracy w.r.t. roundoff errors
I Norms on vectors and matrices
I Condition numbers

I Acknowledgement: these notes are based on material from Stefan
Pålsson, Department of Information Technology, Uppsala University

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 2 / 43

Linear Systems

Aim

Compare with previous linear algebra course:

I The mathematics course:
I General understanding the properties of vectors, matrices, and linear

systems of equations;
I Learn how to solve small systems of equations by hand

I Here:
I Understand the computer adapted algorithms and their properties
I Learn how to solve large systems by computer

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 3 / 43

Linear Systems Algorithms: Gaussian elimination, back substitution

Algorithms

I Matlab’s backslash operator (\) solves the system Ax D b

>> x = A\b
when A is a square matrix and b, x column vectors

I The standard algorithm: Gaussian elimination based on LU

factorization (today’s subject!)

I An “intelligent” operator: chooses different methods depending on the
properties of the matrix! (See lab!)

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 4 / 43

Linear Systems Algorithms: Gaussian elimination, back substitution

Basic algorithm for Gaussian elimination

Gaussian elimination carried out in two steps:

I Factorization: Elementary row operations transforms the system
Ax D b to the form Ux D d , where U is an over triangular matrix

matrix

I Back substitution: Solving the system Ux D d

“Naive” version of factorization step (as when solving by hand):

I Indata: A, b, n (matrix order)

1. Form the total matrix OA D ŒA b!

2. For column k D 1, 2, . . . , n ! 1

Zero out the elements in column k for all rows i > k (below column k)
by adding the right multiple of row k to row i D k C 1, k C 2, . . . , n

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 5 / 43

Linear Systems Algorithms: Gaussian elimination, back substitution

Code for naive factorization step

Indata: A , b , n (matrix order)
Form the total matrix Aug = [A b]

for k = 1: n-1
for i = k+1:n

Lik = Aug(i,k)/Aug(k,k);
for j = k:n+1

Aug(i,j) = Aug(i,j) - Lik*Aug(k,j);
end

end
end

I Note that U overwrites the upper triangle of Aug’s first n columns, and
d overwrites column nC 1 of Aug, which contains the right-hand side

I This overwriting strategy saves memory, which is important when the
matrix is large!

I The last for loop can in Matlab be shortened:
Aug(i,k:n+1) = Aug(i,k:n+1) - Lik*Aug(k,k:n+1);

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 6 / 43

Linear Systems Algorithms: Gaussian elimination, back substitution

Code for back substitution

For i D n, n ! 1, . . . , 1:

Ui ixi C
nX

j DiC1

Uij xj D dj

Indata: U, d, n

x(n) = d(n)/U(n,n)
for i = n-1:-1:1

x(i) = (d(i) - U(i,i+1:n)*x(i+1:n))/(U(i,i);
end

I Note that U(i,i+1:n)*x(i+1:n) denotes the (inner) product of the
row vector U(i,i+1:n) with the column vector x(i+1:n)

I No extra matrix U is needed; the factorization step stores U in
Aug(1:n,1:n)

I Usually Aug(1:n,n+1) is overwritten with x; that is, no separate
variable is needed for x

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 7 / 43

Linear Systems Algorithms: Gaussian elimination, back substitution

The naive factorization algorithm is numerically unstable!

Exempel:

.A j b/ D

0

@
3 !1 2 8

1 0 !1 !1

4 2 !3 !4

1

Awith the exact solution x D

0

@
1

!1

2

1

A

Let Lik be the factor used to zero out aik . For simplicity, assume rounding
to 3 decimal digits (instead of rounding to 52 binary!)

fl.L21/ D fl.1=3/ D 0:333

fl.L31/ D fl.4=3/ D 1:33

)

0

@
3 !1 2 8

0 0:333 !1:67 !3:67

0 3:33 !5:67 !14:6

1

A

fl.L32/ D fl.3:33=0:333/ D 10

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 8 / 43

Linear Systems Algorithms: Gaussian elimination, back substitution

The naive factorization algorithm is numerically unstable!

)

0

@
3 !1 2 8

0 0:333 !1:67 !3:67

0 0 11:0 22:1

1

A) fl.x/ D

0

@
2:01

!0:848

1:61

1

A

which is far from the real solution x D .1; !1; 2/T

Numerical unstable algorithm: the algorithm successively amplifies the
rounding errors. Causes a large error in the solution.

Remember:
Aug(i,k:n+1) = Aug(i,k:n+1) - Lik*Aug(k,k:n+1)

The problem: whenever jLikj > 1!, the multiplication will amplify the
rounding error in Aug(k,k:n+1)

The rounding errors will successively become larger and larger

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 9 / 43

Linear Systems Algorithms: Gaussian elimination, back substitution

Row pivoting stabilization

I Cure: row pivoting

I Recall: Lik = Aug(i,k)/Aug(k,k)
I For each k, find a row m for which it holds that

|Aug(m,k)| " |Aug(i,k)|, i = k, k+1, ..., n
I In words: in column k, find the element of the largest magnitude on

and below the diagonal

I Swap the content of row m and k

I Then |Aug(k,k)| " |Aug(i,k)|, so jLikj # 1, which prevents
amplification of the error when multiplying with Lik

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 10 / 43

Linear Systems Algorithms: Gaussian elimination, back substitution

Row pivoting

Earlier example

.A j b/ D

0

@
3 !1 2 8

1 0 !1 !1

4 2 !3 !4

1

A

ˇ̌
ˇ̌
ˇ Exchange rows 1 and 3

0

@
4 2 !3 !4

1 0 !1 !1

3 !1 2 8

1

A

fl.L21/ D fl.1=4/ D 0:25

fl.L31/ D fl.3=4/ D 0:75

)

0

@
4 2 !3 !4

0 !0:5 !0:25 0

0 !2:5 4:25 11

1

A

ˇ̌
ˇ̌
ˇ Exchange rows 2 and 3

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 11 / 43

Linear Systems Algorithms: Gaussian elimination, back substitution

Row pivoting

)

0

@
4 2 !3 !4

0 !2:5 4:25 11

0 !0:5 !0:25 0

1

A

fl.L32/ D fl.!0:5= ! 2:5/ D 0:2

)

0

@
4 2 !3 !4

0 !2:5 4:25 11

0 0 !1:1 !2:2

1

A)
x1 D 1

x2 D !1

x3 D 2

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 12 / 43

Linear Systems Algorithms: Gaussian elimination, back substitution

Execution time

I It can take very long time to perform Gaussian elimination on large
matrices

I A central question: how does the number of floating point operations
depend on the order of the matrix?

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 13 / 43

Linear Systems Algorithms: Gaussian elimination, back substitution

The number of floating point operations

I Consider the second for-loop in the factorization step, which is
performed for k D 1, . . . , n ! 1

for i = k+1:n
Lik = Aug(i,k)/Aug(k,k)
for j = k:n+1

Aug(i,j) = Aug(i,j) - Lik*Aug(k,j)

executed n ! k times
1 op
executed n!kC2 times
2 op

Number of floating point operations (flops):
.n ! k/

!
1C .n ! k C 2/2

"
$ 2.n ! k/2 (plus linear terms in k and n)

I Summing for all k:

n!1X

kD1

2.n ! k/2 D 2

3
n3 CO.n2/ (Lemma 8.3.1 in book)

I Conclusion: the factorization step of Gaussian elimination, applied to
an n-by-n system, requires 2

3n3 CO.n2/ flops

I A similar analysis: The backward substitution step requires n2 flops

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 14 / 43

Linear Systems Algorithms: Gaussian elimination, back substitution

Execution time

I The analysis says that that Gaussian elimination is of complexity n3

(factorization) and n2 (back substitution)

I What does the flop count mean in actual times?

I Assume tf D 10!9 s/flop; a realistic number

factorization back substitution

n 2
3n3 tf n2 tf

103 0:67 s 10!3 s

106 0:67 % 109 s $ 21 years 103 s $ 17 min

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 15 / 43

Linear Systems Algorithms: Gaussian elimination, back substitution

Execution time

How big system can be solved in one hour if the computer performs at
1 Gflop/s? (Gflop = 109 flops)

Answer: 2
3n3 & 10!9 D 3 600) n $ 18 000

How big system can be solved in a minute?

Answer: 2
3n3 & 10!9 D 60) n $ 4 500

Limitation in memory access can cause additional significant delays!

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 16 / 43

Linear Systems Algorithms: Gaussian elimination, back substitution

The need for efficient algorithms

I The n3 complexity limits the usefulness of Gaussian elimination for
very large matrices

I Alternative:

I Exploit any particular structure of the matrix, if possible. There are
versions of Gaussian elimination for banded or very sparse matrices.

I A completely different type of algorithms, iterative methods, becomes
necessary for very large, sparse matrices.

I These type of matrices are often obtained when the matrix is obtained from
the discretization of partial differential equations

I Matrix order up to n D 108 can appear for such problems!
I Such problems require large parallel computers (e.g. Akka in Umeå) and

specially developed algorithms.

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 17 / 43

Linear Systems Algorithms: LU factorization

LU factorization

I Common case: a sequence of linear equation using the same matrix but
with different right-hand sides:

Ax.k/ D b.k/; k D 1, . . . , m

I Idea: factor A only once:
I Store U
I Store the factors Lik in a lower triangular matrix L (that has 1s on the

diagonal)
I Store information about the pivoting (row swaps) in a matrix P

I Called LU factorization of A

I Can show that LU D PA (Theorem 8.6.1 in book)

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 18 / 43

Linear Systems Algorithms: LU factorization

LU factorization

I Given A, compute L, U , P , so that LU D PA

Ax D b) PAx D Pb) LUx D Pb [factorization, O.n3/ flops]

I For each right-hand side b.k/, do

I Solve problem

Ld D Pb [forward substitution, O.n2/]

to determine d ;
I Solve problem

Ux D d [back substitution, O.n2/]

to determine the solution x.k/

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 19 / 43

Linear Systems Algorithms: LU factorization

LU factorization

What is the benefit of LU factorization compared to the “usual” Gaussian
elimination?

I Inefficient strategy:Solve each system with xi=A\bi
I A will be factored from scratch for each new right-hand side bi!
I Number of flops: m. 2

3 n3 C n2/ (m systems that are factored and back
substituted)

I Efficient strategy: LU factorize A and solve

I d = L\b
I x = U\d
I Number of flops: 2

3 n3 C 2mn2

(factored only once, m forward- and back substitutions)

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 20 / 43

Linear Systems Algorithms: LU factorization

LU factorization in Matlab

>> A = [3 -1 2; 1 0 -1; 4 2 -3];
>> b = [8; -1; -4];
>> [L, U, P] = lu(A);
L =

1.0000 0 0
0.7500 1.0000 0
0.2500 0.2000 1.0000

U =
4.0000 2.0000 -3.0000
0 -2.5000 4.2500
0 0 -1.1000

P =
0 0 1
1 0 0
0 1 0

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 21 / 43

Linear Systems Algorithms: LU factorization

LU factorization in Matlab

Checking:

>> P*A
ans =

4 2 -3
3 -1 2
1 0 -1

>> L*U
ans =

4 2 -3
3 -1 2
1 0 -1

Solution with LU factorization

>> d = L\(P*b)
d =

-4.0000
11.0000
-2.2000

>> x = U\d
x =

1
-1
2

Note: The backslash operator is “smart”; when the matrices are upper or
lower triangular, the algorithms for forward and backward substitutions are
used instead of full Gaussian elimination.

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 22 / 43

Linear Systems Algorithms: LU factorization

LU factorization in Matlab

Testing whether backslash is smart enough to employ LU factorization!

>> n = 2000;
>> A = rand(n,n);
>> B40 = rand(n, 40); b1 = rand(n,1);
>> tic; X = A\B40; toc
Elapsed time is 1.883686 seconds.
>> tic; x = A\b1; toc
Elapsed time is 1.481570 seconds.

I Matrix B40 D Œb1b2 : : : b40! stores 40 right hand sides

I Matrix X D Œx1x2 : : : x40! contains the solutions to the linear systems for the
right-hand sides in B40

I 40 systems with the same matrix is solved almost as quickly as only 1 system!

I Indicates that Matlab indeed uses the LU factorization!

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 23 / 43

Linear Systems Algorithms: LU factorization

LU factorization: example

Mathematical object

ˇ̌
ˇ̌
ˇ

!
!

0

@
2 2 !2

!4 !2 2

!2 3 9

1

A

Data structures

2 2 -2
-4 -2 2
-2 3 9

matrix

1
2
3

permutation vector

Row swap:

0

@
!4 !2 2

2 2 !2

!2 3 9

1

A
-4 -2 2
2 2 -2
-2 3 9

matrix

2
1
3

permutation vector

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 24 / 43

Linear Systems Algorithms: LU factorization

LU factorization: example

Elimination, column 1, with factors L21 D !1=2, L31 D 1=2:

ˇ̌
ˇ̌!̌
!

0

@
!4 !2 2

0 1 !1

0 4 8

1

A
-4 -2 2
-1/2 1 -1
1/2 4 8

matrix

2
1
3

permutation vektor

Row swap:

0

@
!4 !2 2

0 4 8

0 1 !1

1

A
-4 -2 2
1/2 4 8
-1/2 1 -1

matrix

2
3
1

permutation vector

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 25 / 43

Linear Systems Algorithms: LU factorization

LU factorization: example

Elimination, column 2, with factor L32 D 1=4:

0

@
!4 !2 !2

0 4 8

0 0 !3

1

A
-4 -2 2
1/2 4 8
-1/2 1/4 -3

matrix

2
3
1

permutation vector

Done! Matrix interpretation of the data structures:

L D

0

@
1 0 0

1=2 1 0

!1=2 1=4 1

1

A ; U D

0

@
!4 !2 2

0 4 8

0 0 !3

1

A ; P D

0

@
0 1 0

0 0 1

1 0 0

1

A

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 26 / 43

Linear Systems Algorithms: LU factorization

LU factorization: example

LU D

0

@
1 0 0

1=2 1 0

!1=2 1=4 1

1

A

0

@
!4 !2 2

0 4 8

0 0 !3

1

A D

0

@
!4 !2 2

!2 3 9

2 2 !2

1

A

PA D

0

@
0 1 0

0 0 1

1 0 0

1

A

0

@
2 2 !2

!4 !2 2

!2 3 9

1

A D

0

@
!4 !2 2

!2 3 9

2 2 !2

1

A

I Conclusion: LU D PA

I No extra storage: L (except the diagonal) and U are stored in the
memory location of A

I The pivoting information is stored in the integer permutation vector (a
full matrix P with mostly zeros would be a waste of storage)

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 27 / 43

Linear Systems Effects of roundoff

Accuracy

Ax D b

I Exact solution x (usually unknown)

I Rounding errors accumulated during Gaussian elimination yields
computed solution Qx

I How accurate is the computed solution?

I “Natural” test: check whether the equations are satisfied!

I The residual

b ! A Qx
should be close to zeros!

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 28 / 43

Linear Systems Effects of roundoff

Residual and accuracy: example

A D
#

1:2969 0:8648

0:2161 0:1441

$
; b D

#
0:8642

0:1440

$

>> xe = single(A)\single(b)
xe =

1.3332
-1.0000

>> xd = A\b
xd =

2.0000
-2.0000

xe computed with A and b in single
precision

xd computed with A and b in the
“usual” double precision

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 29 / 43

Linear Systems Effects of roundoff

Residual and accuracy: example

>> res = b - A*xe
res =

1.0e-06 *
-0.1152
-0.0087

>> xd - xe
ans =

0.6668
-1.0000

>> cond(A)
ans =

2.4973e+08

The residual is small: “exact up to
roundoff”, i.e. around "M in single
precision

But the error is large!

Note that the so-called condition

number is high!

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 30 / 43

Linear Systems Effects of roundoff

Condition number and residual

I Conclusion: the size of the residual is not a reliable measure of
accuracy!

I Why?

I The example problem is ill conditioned (=sensible to perturbations)

I We need a better way of estimating the error than measuring the
residual!

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 31 / 43

Linear Systems Effects of roundoff

Well conditioned and ill conditioned problems

I The concepts of well conditioned and ill conditioned problems can
be illustrated graphically for linear systems in two unknowns:

x1 x1

x2x2

I The two lines depict which x1 and x2 values that satisfy the two
equations

I The solution to the system of equations is at the intersection between
the lines

I When the equations almost describe the same line, the lines are close
together even far away from the intersection point. Then the residual is
small even far away from the solution.

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 32 / 43

Linear Systems Effects of roundoff

Norms

I In order to measure errors, we need to be able to measure “sizes” of
vectors and matrices in a way that generalizes the concept of absolute

number for real numbers

I We will use norms, using the notation kxk for the norm of a vector x

I There are both vector norms and matrix norms

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 33 / 43

Linear Systems Effects of roundoff

Vector norms

The most common vector norms for x D .x1; : : : ; xn/T :

I 2-norm, Euclidian norm:

kxk2 D
q
jx1j2 C jx2j2 C & & &C jxnj2

I 1-norm
kxk1 D jx1j C jx2j C & & &C jxnj

I 1-norm, max norm

kxk1 D max.jx1j; jx2j; : : : ; jxnj/

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 34 / 43

Linear Systems Effects of roundoff

Vector norms

I Why are there different norms?

I One particular norm is sometimes more
appropriate than another:

I The 2 norm gives the direct route
(“fågelvägen”)

I The 1 norm gives the distance for the
shortest distance along the streets!

Permalink: Road Map of Manhattan (Manhattan, New York)

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 35 / 43

Linear Systems Effects of roundoff

Matrix norms

I Most commonly defined with the help of a given vector norm:

kAk D max
x¤0

kAxk
kxk

I Yields the maximal “amplification factor” that the matrix causes when it
is applied to a vector

I From the definition follows that for each x ¤ 0,

kAxk
kxk # max

x¤0

kAxk
kxk D kAk (1)

that is,
kAxk #k Akkxk 8x

I Simpler formulas than the definition itself can be derived for the 1,1,
and 2 norms

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 36 / 43

Linear Systems Effects of roundoff

Matrix norms

I It can be shown that:

kAk1 D max
j

X

i

jAij j
!

(the largest 1 norm of the column vectors)

kAk1 D max
i

0

@
X

j

jAij j

1

A (the largest 1 norm of the row vectors)

kAk2 D
q

max
i

.#i .ATA// (the square root of the largest eigenvalue of ATA)

I The 1 and1 norms are much simpler and faster to compute!

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 37 / 43

Linear Systems Effects of roundoff

Norms in Matlab

norm(x) the 2 norm of the row or column vector x
norm(A) the 2 norm of the matrix A
norm(A,1) the 1 norm of matrix A
norm(A,Inf) the1 norm of matrix A

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 38 / 43

Linear Systems Effects of roundoff

Errors and condition number
Let b a right-hand side, Qb a disturbed RHS (from rounding e.g.), and x ¤ 0, Qx
corresponding solutions of the linear system

Ax D b; A Qx D Qb) A.x ! Qx/ D b ! Qb ,
x ! Qx D A!1.b ! Qb/) kx ! Qxk D kA!1.b ! Qb/k #k A!1kkb ! Qbk

The last inequality uses property (1). Dividing with kxk yields

kx ! Qxk
kxk # kA

!1k
kxk kb ! Qbk (2)

Since kbk D kAxk #k Akkxk (again using (1)), we have

1

kxk # kAkkbk (3)

By substituting (3) into (2), we obtain following bound for the relative error in the
solution:

kx ! Qxk
kxk # kA!1kkAkkb ! Qbk

kbk
Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 39 / 43

Linear Systems Effects of roundoff

Errors and condition number

I We have thus proved following estimate of the relative error

kx ! Qxk
kxk # $.A/

kb ! Qbk
kbk

where $.A/ D kA!1kkAk is the condition number of matrix A

I In words: the relative error in x is bounded by the condition number
times the relative error in the right hand side

I Errors in b can thus be amplified with a factor $.A/ when solving the
linear system!

I Note that we have not made any assumptions on the nature of the
disturbances or on the method to solve the system

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 40 / 43

Linear Systems Effects of roundoff

Errors and condition number

I Note that the condition number of a matrix depends on the choice of matrix
norm!

I For our example

A D
#

1:2969 0:8648
0:2161 0:1441

$ $2.A/ D 2:5 % 108

$1.A/ D 3:3 % 108

$1.A/ D 3:3 % 108

I The relative error in b is in the best of cases bounded by machine epsilon, i.e.
about 10!16 (in single precision about 10!8)

I Thus, all accuracy can be lost in single precision (the relative error 1, i.e.
100 %), in double precision “half” of the accuracy

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 41 / 43

Linear Systems Effects of roundoff

Condition numbers

I Mathematically, a matrix is either singular or not singular. For
computational purposes, it is useful to talk also of “near singularity”

I A high condition number (an ill conditioned problem) indicates that the
matrix “almost” is singular

I A high condition number is a property of the underlying linear system!

I The condition number and the potential for sensitivity of disturbances
cannot be changed by choice of solution algorithm for the linear
system!

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 42 / 43

Linear Systems Effects of roundoff

Condition numbers

I Condition numbers act like a warning sign: the error may become large
when solving linear systems

I The error estimate involving the condition number consider the worst
case scenario: it may happen that the error will not become as large as
the estimate indicates

I It holds that

$.A/ D kA!1kkAk "k A!1Ak D kIk D 1

I The condition number is thus in the best case 1, which means no
amplification of the error in the right-hand side

Martin Berggren () Theme 2: Network Models and Linear Systems November 10, 2009 43 / 43

