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Interpolation

Common task: Need to draw a nice curve
through a set of points (for instance in
computer graphics)

The interpolation problem: given n + 1 pairs of numbers (x;, y;),
i=0,1,...,n, find afunction f suchthat f(x;) = y;

Function f is the interpolant of the point set

A classic choice: polynomial interpolation

f(x)=ao+a1x+a2x2+...+anxn
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Polynomial interpolation

Theorem

Let (x;, yi)!_, be an arbitrary set of pair of numbers where all the x; are
distinct. Then there is a unique polynomial p of degree < n such that

p(xi) = yi i=0,...,n

For the proof, see Theorem 5.2.1 in Eldén, Wittmeyer—Koch

Note: The number of coefficients in polynomial = the number of points to
interpolate. In Matlab:

p = polyfit(x, y, n);

> Vectors x, y (length n + 1) contain the coordinates
> n: polynomial order

> p: vector containing polynomial coefficients
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Polynomial interpolation
The polynomial coefficients easily determined by writing the polynomial as follows:

p(x) = bo + b1(x — xo) + ba(x — xo)(x —x1) + ...
+ bn(x — x0)(x — x1) -+ (X — Xp—1)

Conditions p(x;) = y;,i =0, ..., n, yield Newton’s interpolation formula:

Yo = b
Y1 = bo + b1(x1 — xo)
Y2 = bo + b1(x1 — x0) + ba(x2 — x0)(x2 — x1)

Yn =bo+ ... oo by (xn — x0) -+ (Xn — Xn—1)
An undertriangular system of equation for coefficients by, . .., by.

With Newton’s interpolation formula, it is easy to add additional points to an
already computed polynomial: just add one more row per point!
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Polynomial interpolation
How does polynomial approximation perform?
Check: interpolate the function
1
J& = 1305

Blue function f interpolated at n + 1 equispaced points (marked *) with
green polynomial p of degree n
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Polynomial interpolation

Runge’s phenomenon: Equispaced interpolation with polynomials tends to
generate oscillations at the boundaries that become worse with increasing
polynomial order

Conclusion:
> Interpolation with polynomials of high degree is often a terrible idea!

> Will often generate large oscillations between interpolation points

Cure 1:

> Change locations of the interpolation points by concentrating them
along the boundaries

> A good choice: Chebychev points

Cure 2: (the most common approach!)

> Glue together piecewise polynomials of low degree (splines)
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Cure 1: interpolation at Chebychev points
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Cure 2: splines

> Cannot choose interpolation points in many .
cases! Ex: drawing programs

» The most common interpolation method: 3
splines: piecewise polynomials of low
degree. More appropriate than polynomial
interpolation in most cases 1

> The simplest spline, linear splines, just .
continuous, piecewise-linear interpolation  ° ! 2 8 4

Definition: A spline is a function that is composed by piecewise
polynomials of degree k such that it is continuously differentiable k — 1 times

Most common, besides linear splines: cubic splines (e.g. CAD systems)
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Cubic splines

> Assume n + 1 pairs of numbers (x;, y;),
i=0,...,n

> The global function s is defined
piecewise on intervals [x;_1, x;]

» Fori =1,...,n, determine n cubic
functions

si(x) = a(()i) + agi)x + ag)x2 + ag)x3

on intervals [x;_1, x;] 0 1 2 3 2

» Thus, there are 4n coefficients to determine

> Need 4n equations (conditions) to determine these coefficients

Cubic splines

> Interpolation in both ends:

si(Xi—1) = yi—1

i=1,...,n
si(xi) = yi

2n conditions. Yields that the composite
function is continuous

» Continuous derivatives and second derivatives where neighboring
cubics are joined:

sj(xi) = 87 (x;)

si(xi) = 87 (x;)

2(n — 1) conditions

=1,...,n—1

> Totally 2n + 2(n — 1) = 4n — 2 conditions. Two more conditions

needed!
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Cubic splines Cubic splines
There are several choices for the two extra conditions:
(i) “Non-a-knot” spline. Default in Matlab’s spline. Imposes continuous
third derivative at x1 and x,_1:
" " " " ——: not-a-knot
S1 (X1) = 55 (X1 S,_1Xn—-1 =95, (Xn—1
1 (x1) 2 (x1), n—1(Xn—1) w(n-1) : natural

Note that s} = 6a§l) is piecewise constant!

(i) “Natural spline”. Impose zero curvature at the end points:
s{(x0) =0, s5,(xa) =0
(iii) Impose given slopes g1, gr at the end points:
si(x0) = gL, s,(xn) = gR

Option in Matlab’s spline.
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----- : prescribed slopes g1 = gr =0

Note that splines are “global”: local changes (for instance at the boundary)
can affect the function everywhere!
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Quadrature

Quadrature, also called numerical integration, concerns numerical
computation of the definite integral

b n
1) = [ f@d= Y wife)+ R

i=1 rest term (error)

(That is, we are not using primitive functions!)
In Matlab: use quad or quadl:

I = quad(func, a, b);

func is a function handle.
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Quadrature

We wish to compute the definite integral

b
1 :/ e dx
a

> Implement a Matlab function integrand in the file integrand.m

Typical procedure:

function f = integrand(x)

f = exp(-x.*x);

end

Note: Function must be written to accept vector arguments!
> Set func = @integrand. Then,

I = quad(func, a, b);

. . b 2
returns a numerical estimate of fa e ™ dx
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Quadrature
How is quadrature done? Two examples:

> Divide interval [a, b] into a number (here 8) of

Example 1:
intervals
> Interpolate f with continuous piecewise linears

> Sum up the areas of all right trapezoids
(paralleltrapetser)

> Called the trapezoidal rule (trapetsformeln)

Example 2: > Divide [a, b] into a number (here 4) of double
intervals

> Interpolate f with continuous piecewise quadratics

> Compute and sum up the integrals of the
interpolated function

> Called Simpson’s rule
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Quadrature

> Examples can be generalized to higher-order: called Newton—Cotes
rules when using piecewise polynomial interpolation with equispaced
interpolation points on each piece

> Software for quadrature (e.g. quad and quadl) accept an input
tolerance: the integral is computed within the given error tolerance by
adjusting the step length

> Often most efficient to use adaptive methods: the step length is varied
so that smaller steps are used where f changes rapidly. £x: Matlab’s
quad uses adaptive Simpson

> Question: How can the method compute the error without knowledge
of the exact solution?
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Quadrature rules

The Trapezoidal Rule:

Composite (sammansatta) rules

When using equidistant partitioning, we may sum up as below.

The Composite Trapezoidal Rule:

B S ) + f (k1) b n-1
dx ~ - h
@A (e =) > [ r@raex 5 S 100 + )
TG0+ flen) L
2 = 31/ @o) + 2/ 0) + -+ 2/ Cin) + S )] = 177 (. b)
The Simpson Rule:
The Composite Simpson Rule: (n odd, i.e. even number of intervals)
T2 S Ok) + 4 (ket1) + f (Kk42)
SO dx = (2 = i) - = b po
xk RGN SR VCAEREN R )
— o SOx) +4F (1) + f (Xk42) a k=0.2.4,..
- h
. . ¢ = T 1/(x0) + 47 (1) + 27(x2) + 4F () + 2f () + 4 Cnt) + S ()]
Note: double interval with h = x5 — Xp41 = Xg+1 — Xk 3
=1{a,b)
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Accuracy Error estimators

The quadrature error is a discretization error

Theorem

For twice continuously differentiable f hold

b
[ rea=1Pan-"o-are

for some & € [a, b].
For four time continuously differentiable f hold

b ) h* "
/a f(x)de = Ig (a,b)—ﬁ(b—a)f )

for some & € [a, b].

» Thus, the error is O(h?) and O(h*) for the trapezoidal and Simpson
rule, respectively

> The Simpson rule requires a more regular f!
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The error formulas can be used to estimate the error without knowledge of
the exact integral!

b 2
| reas= Wb~ Do-af 6 Gean M
b oh 4h2
[ rwa=1Pan-o-are@ bewn ©
Assume f(£1) ~ f"(&) and set ESP = 22 (h —a) 17 (&)).
Expressions (1) and (2) yield

1 a, by — 18 (a, b)

h

(“tredjedelsregeln”)

Thus, by performing two computations, with steps 2 and i, we can
estimate the error when using step £
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Error estimators

An analogous analysis yields for the Simpson rule:

h h
1P a, by — 18" (a, b)
15
In general, for a integration rule with error term O (h?):

E g = (“femtondelsregeln”)

h h
o _ 1@, by — 18 (a, b)
M 20 — 1

These estimates can be used in an adaptive process to locally refine in
places where needed
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Adaptive Simpson: a recursive algorithm

Want

<€

b
/ F(x)dx— Ius(a, b)

1. Compute Ig’ and Ig.h on actual interval
2. Estimate the error using the 1/15 rule

3. If the error < GW
> Accept Iéh)
> Take next interval, otherwise done
Otherwise
> Reject Iéh)
> Cut the interval in two halves
> For each subinterval, continue at 1. with i < h/2
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