Theme 5: Useful items in the numerical toolbox: Interpolation and Quadrature

Martin Berggren

December 9, 2009

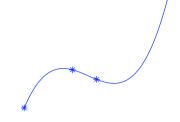
Martin Berggren ()

Interpolation & Quadrature

December 9, 2009 1 / 22

Interpolation

Common task: Need to draw a nice curve through a set of points (for instance in computer graphics)



The interpolation problem: given n+1 pairs of numbers (x_i, y_i) , i = 0, 1, ..., n, find a function f such that $f(x_i) = y_i$

Function f is the **interpolant** of the point set

A classic choice: polynomial interpolation

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Martin Berggren ()

Interpolation & Quadrature

December 9, 2009 2 / 22

Polynomial interpolation

Theorem

Let $(x_i, y_i)_{i=0}^n$ be an arbitrary set of pair of numbers where all the x_i are distinct. Then there is a unique polynomial p of degree < n such that

$$p(x_i) = y_i$$
 $i = 0, \ldots, n$

For the proof, see Theorem 5.2.1 in Eldén, Wittmeyer–Koch

Note: The number of coefficients in polynomial = the number of points to interpolate. In Matlab:

- \triangleright Vectors x, y (length n+1) contain the coordinates
- n: polynomial order
- p: vector containing polynomial coefficients

Polynomial interpolation

The polynomial coefficients easily determined by writing the polynomial as follows:

$$p(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + \dots + b_n(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

Conditions $p(x_i) = y_i$, i = 0, ..., n, yield **Newton's interpolation formula**:

$$y_0 = b_0$$

$$y_1 = b_0 + b_1(x_1 - x_0)$$

$$y_2 = b_0 + b_1(x_1 - x_0) + b_2(x_2 - x_0)(x_2 - x_1)$$

$$\vdots$$

$$y_n = b_0 + \dots$$

$$\dots + b_n(x_n - x_0) \cdots (x_n - x_{n-1})$$

An **undertriangular** system of equation for coefficients b_0, \ldots, b_n .

With Newton's interpolation formula, it is easy to add additional points to an already computed polynomial: just add one more row per point!

Martin Berggren ()

Interpolation & Quadrature

December 9, 2009 4 / 22

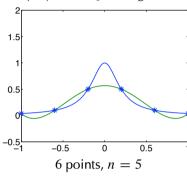
Polynomial interpolation

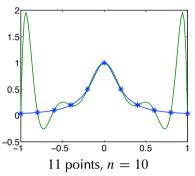
How does polynomial approximation perform?

Check: interpolate the function

$$f(x) = \frac{1}{1 + 25x^2}$$

Blue function f interpolated at n + 1 equispaced points (marked *) with green polynomial p of degree n





Martin Berggren ()

Interpolation & Quadrature

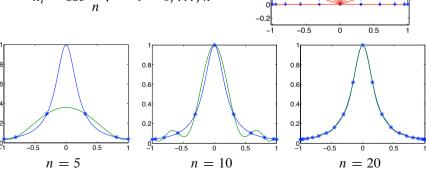
December 9, 2009

5 / 22

Cure 1: interpolation at Chebychev points

For interpolation on [-1, 1] of polynomials of degree n, interpolate at the points

$$x_i = \cos\frac{i\pi}{n}, \quad i = 0, \dots, n$$



Martin Berggren ()

Interpolation & Quadrature

December 9 2009

Polynomial interpolation

Runge's phenomenon: Equispaced interpolation with polynomials tends to generate oscillations at the boundaries that become worse with increasing polynomial order

Conclusion:

- ▶ Interpolation with polynomials of high degree is often a terrible idea!
- ▶ Will often generate large oscillations between interpolation points

Cure 1:

- ► Change locations of the interpolation points by concentrating them along the boundaries
- ► A good choice: *Chebychev points*

Cure 2: (the most common approach!)

► Glue together *piecewise* polynomials of *low* degree (**splines**)

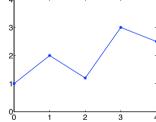
Martin Berggren ()

Interpolation & Quadrature

December 9, 2009 6 / 22

Cure 2: splines

- ► Cannot choose interpolation points in many cases! Ex: drawing programs
- ► The most common interpolation method: splines: piecewise polynomials of low degree. More appropriate than polynomial interpolation in most cases
- ► The simplest spline, linear splines, just continuous, piecewise-linear interpolation



Definition: A spline is a function that is composed by piecewise polynomials of degree k such that it is continuously differentiable k-1 times

Most common, besides linear splines: cubic splines (e.g. CAD systems)

Martin Berggren ()

Interpolation & Quadrature

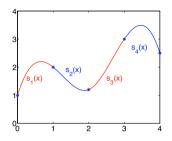
December 9 2009

Cubic splines

- Assume n + 1 pairs of numbers (x_i, y_i) , $i = 0, \ldots, n$
- ► The global function *s* is defined piecewise on intervals $[x_{i-1}, x_i]$
- For i = 1, ..., n, determine n cubic functions

$$s_i(x) = a_0^{(i)} + a_1^{(i)}x + a_2^{(i)}x^2 + a_3^{(i)}x^3$$

on intervals $[x_{i-1}, x_i]$



- \triangleright Thus, there are 4n coefficients to determine
- \triangleright Need 4n equations (conditions) to determine these coefficients

Martin Berggren ()

Interpolation & Quadrature

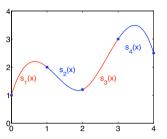
December 9, 2009 9 / 22

Cubic splines

► Interpolation in both ends:

$$\begin{cases} s_i(x_{i-1}) = y_{i-1} \\ s_i(x_i) = y_i \end{cases} i = 1, ..., n$$

2*n* conditions. Yields that the composite function is continuous



► Continuous derivatives and second derivatives where neighboring cubics are joined:

$$\begin{cases} s'_i(x_i) = s'_i(x_i) \\ s''_i(x_i) = s''_i(x_i) \end{cases} i = 1, \dots, n-1$$

2(n-1) conditions

► Totally 2n + 2(n - 1) = 4n - 2 conditions. Two more conditions needed!

Martin Berggren ()

Interpolation & Quadrature

December 9, 2009 10 / 22

Cubic splines

There are several choices for the two extra conditions:

(i) "Non-a-knot" spline. Default in Matlab's spline. Imposes continuous **third** derivative at x_1 and x_{n-1} :

$$s_1'''(x_1) = s_2'''(x_1), \qquad s_{n-1}'''(x_{n-1}) = s_n'''(x_{n-1})$$

Note that $s_i''' = 6a_3^{(i)}$ is piecewise constant!

(ii) "Natural spline". Impose zero curvature at the end points:

$$s_1''(x_0) = 0, \qquad s_n''(x_n) = 0$$

(iii) Impose given slopes g_L , g_R at the end points:

$$s_1'(x_0) = g_L, \qquad s_n'(x_n) = g_R$$

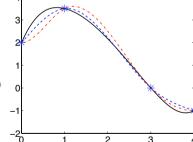
Option in Matlab's spline.

Cubic splines

---: not-a-knot

----: natural

----: prescribed slopes $g_L = g_R = 0$



Note that splines are "global": local changes (for instance at the boundary) can affect the function everywhere!

Quadrature

Quadrature, also called *numerical integration*, concerns numerical computation of the definite integral

$$I(f) = \int_{a}^{b} f(x) dx = \sum_{i=1}^{n} w_{i} f(x_{i}) + \underbrace{R_{n}}_{\text{rest term (error)}}$$

(That is, we are **not** using primitive functions!) In Matlab: use quad or quad1:

I = quad(func, a, b);

func is a function handle.

Martin Berggren ()

Interpolation & Quadrature

December 9, 2009

13 / 22

Ouadrature

We wish to compute the definite integral

$$I = \int_{a}^{b} e^{-x^2} dx$$

Typical procedure:

▶ Implement a Matlab function integrand in the file integrand.m

```
function f = integrand(x)
f = \exp(-x.*x);
end
```

Note: Function must be written to accept vector arguments!

► Set func = @integrand. Then, I = quad(func, a, b); returns a numerical estimate of $\int_a^b e^{-x^2} dx$

Martin Berggren ()

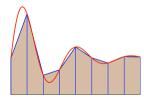
Interpolation & Quadrature

December 9, 2009

Ouadrature

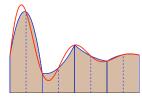
How is quadrature done? Two examples:

Example 1:



- ightharpoonup Divide interval [a, b] into a number (here 8) of intervals
- ► Interpolate f with continuous piecewise linears
- ► Sum up the areas of all right trapezoids (paralleltrapetser)
- ► Called the **trapezoidal rule** (*trapetsformeln*)

Example 2:



- Divide [a, b] into a number (here 4) of double intervals
- ► Interpolate *f* with continuous piecewise quadratics
- ► Compute and sum up the integrals of the interpolated function
- Called **Simpson's** rule

Martin Berggren () Interpolation & Quadrature

December 9, 2009

Ouadrature

- ► Examples can be generalized to higher-order: called **Newton–Cotes** rules when using piecewise polynomial interpolation with equispaced interpolation points on each piece
- ► Software for quadrature (e.g. quad and quad1) accept an input tolerance: the integral is computed within the given error tolerance by adjusting the step length
- ▶ Often most efficient to use adaptive methods: the step length is varied so that smaller steps are used where f changes rapidly. Ex: Matlab's quad uses adaptive Simpson
- Question: How can the method compute the error without knowledge of the exact solution?

Martin Berggren () Interpolation & Quadrature December 9 2009

Quadrature rules

The Trapezoidal Rule:

$$\int_{x_k}^{x_{k+1}} f(x) dx \approx (x_{k+1} - x_k) \frac{f(x_k) + f(x_{k+1})}{2}$$
$$= h \frac{f(x_k) + f(x_{k+1})}{2}$$

The Simpson Rule:

$$\int_{x_k}^{x_{k+2}} f(x) dx \approx (x_{k+2} - x_k) \frac{f(x_k) + 4f(x_{k+1}) + f(x_{k+2})}{6}$$
$$= 2h \frac{f(x_k) + 4f(x_{k+1}) + f(x_{k+2})}{6}$$

Note: double interval with $h = x_{k+2} - x_{k+1} = x_{k+1} - x_k$

Martin Berggren ()

Interpolation & Quadrature

December 9, 2009

17/2

Composite (sammansatta) rules

When using equidistant partitioning, we may sum up as below.

The Composite Trapezoidal Rule:

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} \sum_{k=0}^{n-1} [f(x_{k}) + f(x_{k+1})]$$

$$= \frac{h}{2} [f(x_{0}) + 2f(x_{1}) + \dots + 2f(x_{n-1}) + f(x_{n})] = I_{T}^{(h)}(a, b)$$

The Composite Simpson Rule: (*n* odd, i.e. even number of intervals)

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} \sum_{k=0,2,4,\dots}^{n-1} [f(x_{k}) + 4f(x_{k+1}) + f(x_{k+2})]$$

$$= \frac{h}{3} [f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n})]$$

$$= I_{S}^{(h)}(a,b)$$

Martin Berggren ()

Interpolation & Quadrature

December 9, 2009

Accuracy

The quadrature error is a discretization error

Theorem

For twice continuously differentiable f hold

$$\int_{a}^{b} f(x) dx = I_{T}^{(h)}(a, b) - \frac{h^{2}}{12}(b - a) f''(\xi)$$

for some $\xi \in [a, b]$.

For four time continuously differentiable f hold

$$\int_{a}^{b} f(x) dx = I_{S}^{(h)}(a, b) - \frac{h^{4}}{180}(b - a) f''''(\xi)$$

for some $\xi \in [a,b]$.

- ► Thus, the error is $O(h^2)$ and $O(h^4)$ for the trapezoidal and Simpson rule, respectively
- ightharpoonup The Simpson rule requires a more regular f!

Error estimators

Martin Berggren ()

The error formulas can be used to estimate the error *without knowledge of the exact integral!*

$$\int_{a}^{b} f(x) dx = I_{T}^{(h)}(a, b) - \frac{h^{2}}{12}(b - a) f''(\xi_{1}) \qquad \xi_{1} \in [a, b]$$
 (1)

$$\int_{a}^{b} f(x) dx = I_{T}^{(2h)}(a, b) - \frac{4h^{2}}{12}(b - a)f''(\xi_{2}) \qquad \xi_{2} \in [a, b]$$
 (2)

Assume $f''(\xi_1) \approx f''(\xi_2)$ and set $E_T^{(h)} = -\frac{h^2}{12}(b-a)f''(\xi_1)$. Expressions (1) and (2) yield

$$E_T^h = \frac{I_T^{(h)}(a,b) - I_T^{(2h)}(a,b)}{3} \qquad \text{("tredjedels regeln")}$$

Thus, by performing **two** computations, with steps 2h and h, we can estimate the error when using step h

Martin Berggren () Interpolation & Quadrature

December 9, 2009 19 / 22

Interpolation & Quadrature

December 9, 2009

Error estimators

An analogous analysis yields for the Simpson rule:

$$E_S^h = \frac{I_S^{(h)}(a,b) - I_S^{(2h)}(a,b)}{15} \qquad \textit{("femtondelsregeln")}$$

In general, for a integration rule with error term $O(h^p)$:

$$E_M^h = \frac{I_M^{(h)}(a,b) - I_M^{(2h)}(a,b)}{2^p - 1}$$

These estimates can be used in an adaptive process to locally refine in places where needed

Martin Berggren () Interpolation & Quadrature December 9, 2009

Adaptive Simpson: a recursive algorithm

Want

21 / 22

$$\left| \int_{a}^{b} f(x) \, dx - I_{AS}(a, b) \right| \le \epsilon$$

December 9, 2009

22 / 22

- 1. Compute I_S^h and I_S^{2h} on actual interval
- 2. Estimate the error using the 1/15 rule
- 3. If the error $< \epsilon \frac{\textit{interval length}}{b-a}$
 - ightharpoonup Accept $I_{S}^{(h)}$
 - ► Take next interval, otherwise done

Otherwise

- Reject I_S^(h)
 Cut the interval in two halves
- ▶ For each subinterval, continue at 1. with $h \leftarrow h/2$

Martin Berggren () Interpolation & Quadrature