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Final Theme: Reaction Kinetics

Rules:
* Each student should hand in an individually completed report at latest January 14, 2010.

* You may discuss the problem among fellow students. If you receive considerable help
from someone, say so in your solutions.

* Do not copy solutions or code from others. Do not lend your solution or your code to
other students.

Introduction to Reaction Kinetics

Quantitative interpretation of chemical reaction systems is frequently based on the construction
and analysis of kinetic mechanisms or models. These models are based on the idea of breaking
up the overall reaction into a number of components or elementary steps. An example is the
following between a hydrogen molecule and an oxygen molecule:

Hy+ 0y — 20H.

By the law of mass action, the rate (the number of reactions per time unit) of an elementary
step is given in terms of the product of the concentrations of the participating species. For
the reaction above the rate is given by k[H>][0-], where [H>] is the concentration of hydrogen
molecules, [0-] is the concentration of dioxygen, and the constant k is known as the reaction
rate coefficient or the reaction rate constant.! Thus for our current system 2k[H>][0,] mol of
hydroxide is formed each second; here, the factor 2 is due to that two molecules of hydroxide
are formed in each reaction. The number k[H;][O;] is called the propensity of the reaction.
Throughout this theme, the propensities are proportional to the reactant concentrations fol-
lowing the law of mass action. That is, the reaction rate is given by a constant multiplying the
product of the reacting concentrations (the concentrations of the species on the left hand side).
This is true for reactions involving only a single step (elementary reacations).? For the elemen-
tary step above, we can write down ordinary differential equations describing the change in
concentration of the participating species as

d[O3] _ d[OH]

d[HZ] — —k[HZ] [02]' —k[HZ] [OZ]; and

T 1 =2k[H][0-].

Typically, elementary steps are bimolecular, that is, they involve two species on the left hand
side. The reaction is considered to occur in a single collision between the reactants. However,

the formation of a hydrogen molecule from two hydrogen atoms is written as

1
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lTypically, rate constants are independent of concentration but depend on the temperature of the reacting mixture.
2For more general reactions, including more steps, the propensities depend nonlinearly on the reactant concentra-
tions.



where the k over the arrow denotes the reaction rate constant. Here the reaction rate is simply
given by k[H].2 The stoichiometric factor % tells us that we need 1 mol of H to form % mol of Hy
and is used to specify that the reaction rate depends linearly on the concentration of hydrogen
atoms.

By combining all individual elementary steps, we get a description of the full system. For
the hydrogen-oxygen system, an acceptable mechanism* is obtained using the following steps:

k1 ko ks 1
Hy+ 0, — 20H OH+H, — H,O+H H—'zHZ
(1)
H+0, ™ 0H+0 O0+H, 2 0H+H

From the reactions above, we can construct an ordinary differential equation describing the
evolution of the concentration of the included species. Let us now consider the change of
concentration of hydrogen atoms per time unit, summing up the contributions from the five
elementary steps listed above we arrive at the following equation

d[(H]

ar k2|OH][Hz] — k3[H] — ka[H][O2] + ks [O][Hz].
Note that all terms that remove hydrogen atoms depend on the concentration [H], thus if the
concentration is zero then the derivative d[H]/ d¢ is also zero ensuring that the concentration
stays non-negative.

Tasks
1. In this first problem, we study the the three step reaction

Ax g opfpic, B+cE a+c

Write the above reactions as a three dimensional ODE system on the form y' = f(y).
Solve the resulting ODE in the time interval 0 < ¢ < 60 using the following reaction rate
constants k; = 0.04, ko = 3-107, k3 = 10* and the initial condition is y(0) = (1,0,0)T. Try
various ODE solvers, try at least MATLAB’s build in solvers ode45 and ode15s. Plot the
concentrations for each component separately and all method simultaneously (there
will be only small amounts of B throughout the reaction) using a logaritmic scale for
the time variable (semilogx). For each solver report the number of function evalua-
tions/timesteps required to simulate the system during the first minute.

2. Perhaps the most widely used model for oscillation amongst chemists is the Brusselator
scheme?® of Prigogine® and Lefever. The model has two reactant species A and B that are
converted to products D and E via a sequence of irreversible reaction processes involving
two intermediates X and Y. The model has the form

AN x  Bix®piy ve2xBi3x xkE

Assuming that the concentrations of A and B are constant, and that k; = kp = ks = ks =1,
we want to study the concentrations of the intermediates X and Y.

31f the reaction would have been 2H k H>, the reaction rate would have been k[H12.

4According to Scott, Chemical Chaos, Oxford University Press 1991.

5The model was published in the article, Symmetry Breaking Instabilities in Dissipative Systems II, in The Journal of
Chemical Physics, 1968.

61lya Prigogine was awarded the Nobel Prize in chemistry in 1977 for his contributions to nonequilibrium thermody-
namics, particularly the theory of dissipative structures.



(a) Setup ODE system for the concentrations of X and Y.
(b) Find the stationary solutions to the system you formed in (a).

(c) Simulate the system varying the concentrations of A and B, try for example the
pairs [A4,B]T = [1,2]7, [A,B]T = [1,4]7, and [4, B]T = [2,4].

Small concentrations

In cases where the species are present in low copy numbers, it does not make sense to study
the concentrations. Instead we study the probabilitiy that the system is at a certain state at any
given time. First let us consider the birth-death problem,

@—A A—Q.

Here, we assume that at each moment in time, A can be formed at a constant probability
p1, and that an A vanishes with a probability p»|Al, where the copy number |A| denotes the
number of copies of A present in the system. Let P(t, x) denote the probability that we have x
copies of A at time ¢, then

%(I, x)=p1P(t,x—1)—p1P(t,x) + p2(x + )P (¢, x+ 1) — p2xP(¢, x). 2)

The first two terms correspond to the creation of a new A; the probability that we will have x
copies of A increases proportionally to the probability that we have x — 1 copies (the creation
of a new copy will give us x copies of A) and decreases proportionally to the probability that
we have x (here the creation of a new A results in a copy number of x + 1). Similarly the two
last terms pertain the death of an A. System (2) can be viewed as an infinite dimensional
ODE system. An attractive alternative to the ODE model above is to use a stochastic model to
simulate the system. The mathematical model we will use is a continuous time discrete space
Markov model—a fundamental mathematical formalism with applications in numerous fields
of applied mathematics, physics, chemistry, biology, and computer science.

A Markov process has the important property of not having memory. That is, if we know the
state at time , the state at a time 7 later than ¢ only depends on the state at time ¢ and not on
any state before ¢. In the stochastic model, we study the copy number of each species in the
system. That is, we are dealing with integers, and not reals as was the case for concentrations.
Each reaction is considered to be a discrete jump from one state to another, changing the state
by integer amounts. In the stochastic model, the propensity function is interpreted as the
probability per time unit that the reaction occurs.

Monte Carlo Method

There are many definitions of Monte Carlo methods and algorithms. However, they all have in
common that they use random sampling of a process to compute the result. The algorithms
typically rely on pseudo random numbers’ to compute or generate a realization, one possible
outcome, of the process. The main idea is to generate and observe the results from multiple
realizations of the process. The observed data is then used when performing statistical analysis
to answer various questions about the process. Monte Carlo relies heavily on the following two
important theorems from probability.

Theorem 1 ((weak) Law of Large Numbers). Let X, X, ..., X, be independent random variables
with mean p. and define X, = - ¥ X;. Then, for any 6 >0, P(X, -6 < p < X, +06) — 1 as
n — oo.

“Computer generated numbers mimicking true random numbers.



Theorem 2 (Central Limit Theorem). Let X3, Xo,..., X, be a sequence of independent identically
distributed random variables with finite mean p and variance 0> > 0 and let X,, = %2?21 X;.
Then X, = Vn(X, — /o converges in distribution to the standard normal distribution N(0,1)
as n — oo.

In essence, the two above theorems state that if we repeatedly sample a stochastic variable,
the sample mean converges to the expected value. Moreover, the central limit theorem implies
that the error in the approximation of the mean decays slowly (~1/v/N) as a function of the
sampe size N. Thus Monte Carlo methods converge very slowly, and are often computation-
ally intensive. However, the convergence rate does not depend on the dimensionality of the
problem.

Monte Carlo methods can be used to solve both stochastic and deterministic problems.
Monte Carlo methods have been extensively used to evaluate definite integrals. Here, the
integral is computed by repeatedly sampling the integrand and by identifying the integral
with a certain expected value. More precisely, we can approximate the integral by computing
the mean of the samples and multiplying this mean with the area of the integration domain.
For smooth problems in low dimensions traditional quadrature method outperform Monte
Carlo integration. However, Monte Carlo is more computationally efficient than traditional
quadrature rules in very high dimensions, especially for non-smooth problems.

Stochastic Simulation Algorithm

A popular use of Monte Carlo methods is to simulate chemical and biochemical reactions.
These simulations are particularly useful when the number of molecules of each kind is small.
Without going into any details the algorithm first samples the time until the next reaction
and then finds the next reaction that occurs. It can be shown that the inter event time is
exponentially distributed with mean 1/(sum of propensities) and that the probability for a
given reaction to occur is proportional to its propensity. The algorithm below simulates a
system with R reactions from time Ty to final time T’. In the listing w, denotes the propensity
of the of the rth reaction and n, denotes the stoichiometry vector (describing the change in
state) for reaction r
Set the initial state x = xy and time ¢t = T
while r < Ty do
Compute the sum of propensities a = Zle wr(x)
Draw two random numbers u and v between 0 and 1 from a uniform distribution.
Compute the time 7 = —log% to the next reaction.
Determine the next reaction k, by finding the smallest k such that av < Z’r‘:l wr(X).
Update the time ¢ = ¢ + 7 and state x = x + ny
end

Tasks

3. Numerically compute the integral

1 1
f Bedx=-
0 2

using Monte Carlo integration as well as the composite trapeziodal rule. Compare errors
and run times.®

8The Matlab commands tic and toc constitute a stopwatch timer.



4. In this final task, we study a circadian rhythm. This system is taken from a paper by Vilar
et al.? and consists of 9 species and 18 reactions

04 a, Ba
D,~~D, D,-—-D,+M, M;—>M,;+A

a
Da+AXSD, D, %Ds+M, D,%D +4

0 a) 0
D,—-D, D.-—5D,+M, D,—-D,+A

D,+AXD. D, 2D+ M, PRI
A+rYec M, ome g MM+ R
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The parameters of the above model are:

Qq ala ar a,r Ba Br Oma Omr 6a b6y Ya Yr Yec 0a O
50 500 0.01 50 50 5 10 0.5 1 46 1 1 2 50 100
Simulate the circadian rhythm using the ODE model as well as an implementation of
the stochastic simulation algorithm. Use the same initial concentration/population as
proposed by Vilar et al., thatis, D, =D, =l1and D, =M, =D, =M, =A=C=R=0.

Plot trajectories of A, C, and R corresponding to 6, =0.2, §, =0.08, and §, = 0.01.

9Vilar, Kueh, Barkai, and Leibler, Mechanisms of noise-resistance in genetic oscillators, Proc. Nat. Acad. Sci.,
99(9):5988-5992, 2002.



