
An Overview of Complexity Theory

5DV037 — Fundamentals of Computer Science
Ume̊a University

Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se

http://www.cs.umu.se/~hegner

An Overview of Complexity Theory 20101024 Slide 1 of 36



What is Complexity Theory

• Until this point, the focus has been on what can be done with a
particular computing model.

• Attention is now turned to how efficiently tasks can be performed.

• Time resources required (time complexity)

• Space resources required (space complexity)

• There are three levels at which these question may be asked:

Algorithm analysis: How well does a given algorithm perform a given task?

• How efficient is quicksort?

Problem complexity: What is the best performance possible for a given
problem?

• How efficient is the best possible sorting algorithm?

Complexity theory: How can different problems in general be classified in
terms of complexity?

• How does the complexity of sorting compare to that of finding
minimum spanning trees?

An Overview of Complexity Theory 20101024 Slide 2 of 36



Complexity Measures for Computations on TMs

• Turing machines provide an ideal framework for formulating abstract
complexity theory.

• The number of steps which such a machine takes in performing a
computation is inherent in the model.

• Just count the number of transitions..

• the length of the computation from initial configuration to the halt
configuration.

• The size of the input is the length of the input string.

• These parameters are independent of the problem and independent of the
representation of the input.

• Other models of computation do not always provide such flexibility.

An Overview of Complexity Theory 20101024 Slide 3 of 36



A Review of “Big-Oh” Notation

• Typically, the performance of an algorithm is measured in terms of the
size n of the input.

• Time or space usage may be measured; here time will be chosen since it
is the most common resource to be so measured.

• Recall: An algorithm is O(f (n)) If there is:

• a constant k > 0, and

• an n0 ∈ N, such that:

• for all n ≥ n0, the algorithm runs in at most k · f (n) time units.

Example: A “good” sorting algorithm runs in time O(n · log(n)).

• The parameter n measures the number of elements to be sorted.

• The time is measured in terms of some primitive execution units of
the computer (assign, compare, add, etc.).

• This model may be used for worst-case, average-case, and best-case time.

An Overview of Complexity Theory 20101024 Slide 4 of 36



Limitations of the Problem-Specific Approach

• This model works well when comparing different algorithms for the same
problem.

• However, it requires modification to be useful in comparing different
problems.

• Consider the assumptions made in modelling the sorting problem:

• Each element in the input sequence is of a fixed size.

• Operations such as comparison take fixed time regardless of the size
of the elements which are to be compared.

• These assumptions must fail as n becomes sufficiently large and the input
consists of distinct elements.

• Other problems may use other assumptions.

ó Such assumptions make it difficult to compare the complexity of
algorithms for different problems.

• Particularly, the techniques to be developed transform one problem
to another..

• and this requires a uniform method of problem encoding.

An Overview of Complexity Theory 20101024 Slide 5 of 36



Low-Level Measurement of Complexity

• In order to compare algorithms for different problems, a lower-level notion
of complexity is appropriate.

• This model is based upon the ubiquitous DTM.

• The size of the input is measured by the length of the representation as a
string in the input alphabet Σ.

• This may be larger than the conventional length.

Example; In a list of numbers to be sorted, the number m will
require log(m) bits in binary notation, rather than a constant
size regardless of m.

• The number of steps which an operation requires is measured by the
number of steps that the implementing DTM takes.

• This may be larger than the conventional programming-language
convention.

Example; The time required to compare two numbers will be
proportional to the lengths of the representations of those
numbers, rather than a constant.

An Overview of Complexity Theory 20101024 Slide 6 of 36



Reasonable Encodings

• A further issue is that algorithms may be made to look better than they
really are through the use of clever encoding.

Example: Encode numbers in unary and implement addition as
concatenation.

Example: Encode numbers as their prime factors and implement
multiplication as factor-by-factor addition.

• Both of these encoding schemes are “unreasonable” because they do not
work with standard representations which may be used in many different
problems.

• To obtain uniform results across diverse problems, and to ensure that
transformations of one problem to another are meaningful, it is necessary
that the encodings abide by certain constraints.

An Overview of Complexity Theory 20101024 Slide 7 of 36



Structured Strings

• It is usually required that all algorithms employ encodings based upon
structured strings, which are defined as follows.

Numbers: Any string of 0’s and 1’s (possibly preceded by a minus sign)
is a structured string which represents a number in base two.

Names: If σ is a structured string, then so too is [σ], which represents a
name encoded by σ.

Lists: If σ1, σ2, . . . , σk are structured strings, then so too is
〈σ1, σ2, . . . , σk〉, representing the corresponding list or tuple.

• This is enough to encode problem instances for most problems of interest.

• Since numbers, tuples, and names are encoded in a standard way,
comparison of input size for different problems becomes feasible.

• Note that this approach will not generally result in the “standard”
encoding for specific problems, such as sorting.

An Overview of Complexity Theory 20101024 Slide 8 of 36



Dependence upon the Specific Model of Turing Machine

• The Church-Turing thesis provides a common upper bound on what a
computing machine can do.

• However, it says nothing about complexity.

• Different models of computer can and do have vastly different
complexities for a given algorithm.

• To reconcile this, the standard definition of abstract complexity is based
upon a multi-tape Turing machine.

• In particular, the input in on a different tape than the working memory.

· · · · · ·

Finite-state control

tape head
external storage

input
w ∈ L

output
yes (1) or no (0)

An Overview of Complexity Theory 20101024 Slide 9 of 36



Problem Classes of the Form DTIME(T (n))

• A complexity function is any function f : N → R (here R is the real
numbers)

• which is eventually nonnegative in the sense that there is an n0 ∈ N

• such that for any n ≥ n0, f (n) ≥ 0.

• Fix the input alphabet to be {0, 1}.

• Given a complexity function f , define DTIME(f (n)) to be the set of all
languages (or decision problems) which can be decided on a multitape
DTM in O(f (n)) steps, with n representing Length(w).

• The name DTIME stands for deterministic time.

• Some authors use the notation TIME (f (n)) instead.

• Some authors view DTIME (f (n)) to mean those problems which can be
solved in at most f (n) steps on a multitape DTM for every input of
length at most n (with no requirement that n be large and with no
scaling by a constant).

An Overview of Complexity Theory 20101024 Slide 10 of 36



Relative Complexity for Different Models of DTM

• How dependent is this notion upon the particular model of DTM?

Theorem: Suppose that a given problem P may be solved in at most f (n)
steps for DTIME(f (n)) for some complexity function f .

• Then P may be solved on a DTM with only one tape in at most
(f (n))2 steps. �

• In other words, the “slowdown” in going from a multitape DTM to a
single-tape DTM is at most square in the original complexity.

Example: If a given problem may be solved in at most (Length(w))3 steps
on a multitape DTM, then it may be solved on a single-tape DTM in at
most (Length(w))6 steps.

• For the purposes of the framework to be developed, this is not of major
importance, as will be seen next.

An Overview of Complexity Theory 20101024 Slide 11 of 36



The Problem Class P

• Define
P =

⋃

i∈N

DTIME(ni )

• P is the set of all decision problems which can be solved in polynomial
time on a DTM.

• It is also said that P is the set of problems which may be solved in
deterministic polynomial time.

• Note that the f (n) f (n)2 “slowdown” for multi-tape to single-tape
DTMs does not affect the membership of this class.

• It would be the same were the definition of DTIME(f (n)) for single-tape
machines.

Keep in mind: Everything is decidable; this is about complexity, not about
halting!

An Overview of Complexity Theory 20101024 Slide 12 of 36



Which Problems Are in P?

• Membership in the class P is often taken as the gold standard for
whether or not a given problem admits a tractable solution or not.

• Unfortunately, for many problems of immense practical importance, no
(deterministic) polynomial-time algorithm is known.

• Yet, it has never been proven that no such algorithm can exist.

• The focus of this discussion is to try to understand this situation better.

• Many problems which fall into this class exhibit a unique behavior:

• Very efficient algorithms (typically O(n)) exist for verifying that a
candidate solution is correct.

• The best known algorithms for finding a solution are exponential
O(2n) or nearly so.

• Some examples will illustrate this situation.

An Overview of Complexity Theory 20101024 Slide 13 of 36



Example — Satisfiability of Boolean Expressions

• Let X = {x1, x2, . . . , xn} be a finite set of variables.

• A truth assignment to X is a mapping h : X → {0, 1}.

• xi is true for h if h(xi ) = 1, and false for h if h(xi) = 0.

• The Boolean expressions over X , denoted BE(X ), are built up from from
X in the usual way, using ¬, ∨, and ∧.

Examples:
ϕ1 = (x1∨x2)∧(¬x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨¬x2)∧(¬(¬x3∧x4))
ϕ2 = (x1∨x2)∧(¬x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨¬x2)∧(¬(¬x3∨x4))

• The truth assignment h : X → {0, 1} extends to Boolean expressions in
the obvious way h̄ : BE(X ) → {0, 1}.

• The formula ϕ is satisfiable if there is a truth assignment h for which
h̄(ϕ) = 1.

Examples: ϕ1 is satisfiable with (x1, x2, x3, x4) = (1, 0, 0, 0) or (0, 1, 0, 0).
ϕ2 is unsatisfiable.

• This general problem (as X ranges over all finite sets of variables) is
known as SAT (satisfiability of Boolean expressions).

An Overview of Complexity Theory 20101024 Slide 14 of 36



Finding vs. Verifying a Solution

• It is easy to verify that a proposed solution is valid:

Example: Verify that (x1, x2, x3, x4) = (1, 0, 0, 0) satisfies
ϕ1 = (x1∨x2)∧(¬x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∧¬x2)∧(¬(¬x3∧x4)).

• (1∨0)∧(¬1∨0∨¬0)∧(1∨¬0∨¬0)∧(¬1∨¬0)∧(¬(¬0∧0)) =
(1∨0)∧(0∨0∨1)∧(0∨1∨1)∧(¬(1∧0)) = (1)∧(1)∧(1)∧(¬0) =
(1)∧(1)∧(1)∧(1) = 1.

• Such verification can be performed in at most quadratic time on a
multi-tape DTM (better on a random-access machine).

• However, in order to

(a) find a solution, or to

(b) determine that no solution exists,

no approach which is substantially better than exhaustive search is
known.

• For a formula with n variables, the number of possibilities is 2n.

ó Determining unsatisfiability has exponential complexity in the worst
case.

An Overview of Complexity Theory 20101024 Slide 15 of 36



Other Problems which Have Similar Properties

• Many important problems exhibit these properties:

• Verification of a candidate solution is fast (typically no worse than
O(n2))

• The best known algorithms for finding a solution are exponential.

Example: The 0/1 Knapsack decision problem:

• A knapsack with capacity M.

• A set E of objects, with each object a having a weight wa and a
value va.

• A goal total value (or profit) P .

• Find a subset S ⊆ E with:

• value at least P :
∑

a∈S
va ≥ P .

• weight at most M:
∑

a∈S
wa ≤ M.

• Application: Optimization of resource usage.

• Value = profit.

• Weight = resource usage by the given object.

• Capacity = total amount of resources available.
An Overview of Complexity Theory 20101024 Slide 16 of 36



Other Problems which Have Similar Properties — 2

• Graph problems:

• vertex cover

• clique

• Hamiltonian circuit

• Allocation problems:

• partition

• three-dimensional matching.

• Plus thousands of others which have arisen over the years.

• All share this same property:

• Easy to verify a candidate solution.

• No known way which is substantially better in the worst case than
exhaustive search (exponential complexity) to find a solution.

• But no one has ever been able to show that they are not in P either.

An Overview of Complexity Theory 20101024 Slide 17 of 36



Common Properties of These Problems

• All of these problems have two properties in common.

• Each can be solved efficiently on a nondeterministic TM.

• They may each be transformed to the other efficiently (i.e., in
polynomial time).

• These properties will now be examined more closely, and their
implications assessed.

An Overview of Complexity Theory 20101024 Slide 18 of 36



Problem Solving Using Nondeterministic Turing Machines

• Recall that a nondeterministic TM (NDTM) can have many parallel or
alternative branches of execution.

• A string is accepted (or a problem answer is “yes”) if some branch ends
in an accepting state.

• A string is rejected (or a problem answer is “no”) if all branches end in a
rejecting state.

• Only deciders are considered; failure to halt is not a possibility.

initial
config reject

accept

accept

reject

reject

reject

reject

An Overview of Complexity Theory 20101024 Slide 19 of 36



Nondeterministic Solution of Satisfiability

• For a NDTM which tests for satisfiability of Boolean expressions, and a
four-variable formula such as
ϕ1 = (x1∨x2)∧(¬x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∧¬x2)∧(¬(¬x3∧x4))

• the alternatives of the machine will appear as shown below.

• Each path may be run in quadratic time, so the nondeterministic
complexity is O(n2) (on an NDTM; better on a random-access machine).

x4 = 0
x4 = 1x3 = 0

x4 = 0
x4 = 1

x3 = 1
x2 = 0

x4 = 0
x4 = 1x3 = 0

x4 = 0
x4 = 1

x3 = 1

x2 = 1
x1 = 0

x4 = 0
x4 = 1x3 = 0

x4 = 0
x4 = 1

x3 = 1
x2 = 0

x4 = 0
x4 = 1x3 = 0

x4 = 0
x4 = 1

x3 = 1

x2 = 1

x1 = 1

initial
config

An Overview of Complexity Theory 20101024 Slide 20 of 36



Problem Classes of the Form NTIME(T (n))

• The definition of NTIME is similar to that of DTIME , but for
nondeterministic machines.

• Given a complexity function f , define NTIME (f (n)) to be the set of all
languages (or decision problems) which can be decided on a multitape
NDTM in O(f (n)) steps, with n representing Length(w).

• The name NTIME stands for nondeterministic time.

• Some authors view NTIME (f (n)) to mean those problems which can be
solved in at most f (n) steps on a multitape NDTM for every input of
length at most n (with no requirement that n be large and with no
scaling by a constant).

• An f (n) f (n)2 “slowdown” for multi-tape to single-tape NDTMs
exists, in analogy to the DTM case.

An Overview of Complexity Theory 20101024 Slide 21 of 36



The Problem Class NP

• The definition of NP is similar to that of P, but using NTIME instead
of DTIME :

NP =
⋃

i∈N

NTIME (ni)

• NP is the set of all decision problems which can be solved in polynomial
time on a nondeterministic TM (NDTM).

• It is also said that NP is the set of problems which may be solved in
nondeterministic polynomial time.

• Note that the f (n) f (n)2 “slowdown” for multi-tape to single-tape
DTMs does not affect the membership of this class.

• Think of NP as the set of decision problems which may be solved in
polynomial time under the model of computation in which:

• Unbounded branching of alternatives is allowed; and

• Success of one branch is equivalent to success (a “yes” answer).

An Overview of Complexity Theory 20101024 Slide 22 of 36



The Question of P
?
= NP

• Clearly P ⊆ NP, since every DTM may be regarded as an NDTM.

Question: What about the reverse inclusion, NP ⊆ P ?

• It might seem “obvious” that this cannot be the case.

• Checking a solution is “obviously” less complex than determining whether
a solution exists (within exponentially many possibilities).

• Many computer scientists feel that this is the case.

• But (up to polynomial-time equivalence) is it?

• Despite the practical experience, no one has ever been able to come close
to showing that this is the case.

• It is perhaps the most famous and important open problem in theoretical
computer science.

An Overview of Complexity Theory 20101024 Slide 23 of 36



The Idea of NP-Completeness

• There is a further dimension to this story.

• Most of the decision problems of the form:

• it is easy to test a given solution for correctness; but

• no algorithm in P is known for finding such a solution

• are equivalent in a very compelling way.

• If an algorithm in P could be found for finding solutions to one of these
problems, then ...

• ... such an algorithm could be found for all such problems.

• This problems in this class are called NP-complete, and the class is
denoted NPC.

• This important issue warrants a closer look.

An Overview of Complexity Theory 20101024 Slide 24 of 36



Polynomial-Time Reduction

• A reduction of decision problem P1 to decision problem P2 is a
computable function which maps instances of P1 into instances of P2 and
which preserves “yes” and “no”.

• This needs to be made a bit more precise.

• View a decision problem as a pair P = (Inst(P), ρP), in which

• Inst(P) is the set of instances of P ; and

• ρP : Inst(P) → {0, 1} is the function which gives the answer “yes” or
“no” for each instance.

Example: For the problem SAT:

• Inst(SAT) is the set of all Boolean expressions (over finite sets of
variables);

• ρSAT sends the Boolean expression ϕ to 1 if it is satisfiable, and 0 if
it is not.

An Overview of Complexity Theory 20101024 Slide 25 of 36



Polynomial-Time Reduction — 2

• Formally, a reduction of P1 to P2 is a computable function
e : Inst(P1) → Inst(P2) which makes the following diagram commute:

Inst(P1)

Inst(P2)

{0, 1}

e

ρP1

ρP2

• This means that both paths from Inst(P2) to {0, 1} yield the same result.

• Think of using e as a subroutine in a decider for P2 in order to decide P1.

• The reduction e is polynomial or tractable if there exists a DTM which
computes it.

• Write P1 ∝ P2

just in case there is a polynomial reduction from P1 to P2.

• In this case, say that P1 polynomially reduces (or tractably reduces) to
P2.

An Overview of Complexity Theory 20101024 Slide 26 of 36



Example — Conjunctive Normal Form

• A literal is a Boolean expression of the form x or ¬x , with x a variable.

• A clause is an expression of the form (ℓ1∨ℓ2∨ . . . ∨ℓk) in which each ℓi is a
literal.

• A Boolean formula is in conjunctive normal form (CNF) if it is a
conjunction of clauses; i.e.,

(ℓ11∨ℓ12∨ . . . ∨ℓ1k1)∧(ℓ21∨ℓ22∨ . . . ∨ℓ2k2)∧ . . . ∧(ℓm1∨ℓm2∨ . . . ∨ℓmkm)

Example:
ϕ1 = (x1∨x2)∧(¬x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨¬x2)∧(¬(¬x3∧x4))

is not in CNF, while
ϕ′

1 = (x1∨x2)∧(¬x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨¬x2)∧(x3∨¬x4)
is in CNF.

• A Boolean formula in CNF is in 3-conjunctive normal form (3CNF) if
each clause contains at most three literals.

Example: ϕ′

1 above is in 3CNF.

• The corresponding satisfiability problems are called CNF-SAT and
3CNF-SAT.

An Overview of Complexity Theory 20101024 Slide 27 of 36



Example — Reduction of CNF-SAT to 3CNF-SAT

Proposition: CNF-SAT ∝ 3CNF-SAT.

Proof: It it suffices to give a reduction on clauses.

• This will be illustrated for a clause of five literals.

• The clause (ℓ1∨ℓ2∨ℓ3∨ℓ4∨ℓ5) is satisfiable iff the conjunction
(ℓ1∨ℓ2∨y1)∧(ℓ3∨¬y1∨y2)∧(ℓ4∨ℓ5∨¬y2) is.

• The yi ’s are new variables.

• This idea extends in a natural way, and may be performed in
deterministic polynomial time. �

Warning: You may have learned how to transform any Boolean expression
into one in CNF is another course.

• This transformation is not polynomial.

• However, SAT ∝ CNF-SAT.

An Overview of Complexity Theory 20101024 Slide 28 of 36



Formalization of NP-Completeness and the Class NPC

• A problem P is called NP-complete if

(a) it is in NP ; and

(b) for every other problem P ′ ∈ NP , P ′ ∝ P .

• The collection of all NP-complete problems is denoted NPC.

• Intuitively, an NP-complete problem is a “hardest” problem within NP .

Question: Do NP-complete problems exist?

Answer: Yes, there are many of them.

• The fundamental NP-complete problem is SAT.

• This is known as Cook’s theorem.

An Overview of Complexity Theory 20101024 Slide 29 of 36



Cook’s Theorem

Theorem (Stephen A. Cook, 1971): SAT ∈ NPC; i.e., the problem SAT is
NP-complete.

Proof idea: Let P ∈ NP, and let M be a (single-tape) NDTM which solves
P in nondeterministic polynomial time.

• Write a huge logical expression which describes the behavior of M for a
given input A ∈ Inst(P).

• This expression uses propositions of the following forms:

C (i , j , t) = 1 ⇔ tape cell i contains symbol j at time t.

S(k , t) = 1 ⇔ M is in state qk at time t.

H(i , t) = 1 ⇔ the tape head is scanning cell i at time t.

• The parameters i , j , k , and t are bounded in value, so these are just
(parameterized) propositions.

• The expression may be generated in deterministic polynomial time.

• The logical expression describing the behavior of M is satisfiable iff A is
true for P (the answer is “yes”). �

An Overview of Complexity Theory 20101024 Slide 30 of 36



Implications of Cook’s Theorem

Corollary: If SAT ∈ P, then every P ∈ NP is also in P. �

• In other words, if SAT ∈ P, then P = NP .

• Over the years, thousands of other important (and not so important)
problems have also been shown to be NP-complete, including:

• CNF-SAT and 3CNF-SAT,

• the discrete knapsack problem,

• the other problems on the list presented earlier.

• If any one of these problems could be shown to be in P, then they would
all be in P.

• Still, no one has been able to do this.

Question: Are there problems in NP which are not in NPC?

Answer: Excluding trivial problems (always “yes” or always “no”)...

• ... a positive answer would imply that P 6= NP .

• Nobody knows.
An Overview of Complexity Theory 20101024 Slide 31 of 36



NP-Incompleteness ⇒ P 6= NP

• Let Idprob = ({0, 1},1) be the identity problem with 1 : {0, 1} → {0, 1}
the identity function.

Observation: If P ∈ P, then P ∝ Idprob.

Proof: Let P = (Inst(P), ρP) be any problem in NP, and consider the
diagram below.

Inst(P)

{0, 1}

{0, 1}

e = ρP

ρP

1

• If P = NP, then every P ∝ Idprob for every P ∈ NP; i.e., Idprob is
NP-complete.

• From this it follows that, if P = NP, then any nontrivial decision
problem which is in NP is NP-complete if

• A decision problem is nontrivial if it is true for some of its instances and
false for others.

An Overview of Complexity Theory 20101024 Slide 32 of 36



Co-NP Problems

• In contrast to that of P, the definition of NP is asymmetric.

Example: Consider the problem SAT again.

• If a Boolean expression ϕ is satisfiable, this may be discovered in
nondeterministic polynomial time..

• However, to establish unsatisfiability requires that all possibilities fail.

• The branching behavior of the NDTM does not appear to help.

x4 = 0
x4 = 1x3 = 0

x4 = 0
x4 = 1

x3 = 1
x2 = 0

x4 = 0
x4 = 1x3 = 0

x4 = 0
x4 = 1

x3 = 1

x2 = 1
x1 = 0

x4 = 0
x4 = 1x3 = 0

x4 = 0
x4 = 1

x3 = 1
x2 = 0

x4 = 0
x4 = 1x3 = 0

x4 = 0
x4 = 1

x3 = 1

x2 = 1

x1 = 1

initial
config

An Overview of Complexity Theory 20101024 Slide 33 of 36



Co-NP Problems — 2

• The complement P of a decision problem just switches 0 and 1 (or “yes”
and “no”).

• ρP = 1− ρP .

Example: Unsatisfiability of Boolean expressions is the complement of
satisfiability.

• A problem P is in co-NP if its complement P ∈ NP .

• As illustrated, co-NP problems are “intuitively” more difficult than
problems which are in NPC.

• However ...

Theorem: If there is a problem P ∈ NP with P 6∈ NP, then P 6= NP .

• So, if it could be shown, for example, that unsatisfiability of Boolean
expressions cannot be solved in nondeterministic polynomial time, then
P 6= NP .

An Overview of Complexity Theory 20101024 Slide 34 of 36



NP-Hard Problems

• The terminology NP-hard is used in two distinct but related ways.

• It is used to describe decision problems which are at least as hard as
NP-complete problems.

• In this sense, all complements of NP-complete problems are
NP-hard.

• It is used to describe optimization (and other) problems which arise from
decision problems in NP.

Example: The 0/1 Knapsack optimization problem.

• A knapsack with capacity M.

• A set E of objects, with each object a having a weight wa and a
value va.

• Find the most value which can be placed in the knapsack without
exceeding the capacity.

• Rather than asking to meet a target value, find the most valuable
configuration.

An Overview of Complexity Theory 20101024 Slide 35 of 36



For More Information

• The following notes, from a course on the analysis of algorithms, present
a somewhat more formal and complete look at some of the topics of
these slides.
http://www8.cs.umu.se/~hegner/Courses/TDBC91/H08/Slides/cmplxthy9.pdf

• The slides from the whole course may be found here:
http://www8.cs.umu.se/~hegner/Courses/TDBC91/H08/Slides/index.html

An Overview of Complexity Theory 20101024 Slide 36 of 36

http://www8.cs.umu.se/~hegner/Courses/TDBC91/H08/Slides/cmplxthy9.pdf
http://www8.cs.umu.se/~hegner/Courses/TDBC91/H08/Slides/index.html

