An Overview of Complexity Theory 5DV037 — Fundamentals of Computer Science Umeå University Department of Computing Science Stephen J. Hegner hegner@cs.umu.se http://www.cs.umu.se/~hegner

What is Complexity Theory

- Until this point, the focus has been on what can be done with a particular computing model.
- Attention is now turned to how efficiently tasks can be performed.
 - Time resources required (time complexity)
 - Space resources required (space complexity)
- There are three levels at which these question may be asked:

Algorithm analysis: How well does a given algorithm perform a given task?

- How efficient is quicksort?
- Problem complexity: What is the best performance possible for a given problem?
 - How efficient is the best possible sorting algorithm?
- Complexity theory: How can different problems in general be classified in terms of complexity?
- How does the complexity of sorting compare to that of finding minimum spanning trees? An Overview of Complexity Theory

Complexity Measures for Computations on TMs

- Turing machines provide an ideal framework for formulating abstract complexity theory.
- The number of steps which such a machine takes in performing a computation is inherent in the model.
 - Just count the number of transitions..
 - the length of the computation from initial configuration to the halt configuration.
- The size of the input is the length of the input string.
- These parameters are independent of the problem and independent of the representation of the input.
- Other models of computation do not always provide such flexibility.

A Review of "Big-Oh" Notation

- Typically, the performance of an algorithm is measured in terms of the size *n* of the input.
- Time or space usage may be measured; here time will be chosen since it is the most common resource to be so measured.
- Recall: An algorithm is O(f(n)) If there is:
 - a constant k > 0, and
 - an $n_0 \in \mathbb{N}$, such that:
 - for all $n \ge n_0$, the algorithm runs in at most $k \cdot f(n)$ time units.

Example: A "good" sorting algorithm runs in time $O(n \cdot \log(n))$.

- The parameter *n* measures the number of elements to be sorted.
- The time is measured in terms of some primitive execution units of the computer (assign, compare, add, *etc.*).
- This model may be used for worst-case, average-case, and best-case time.

Limitations of the Problem-Specific Approach

- This model works well when comparing different algorithms for the same problem.
- However, it requires modification to be useful in comparing different problems.
- Consider the assumptions made in modelling the sorting problem:
 - Each element in the input sequence is of a fixed size.
 - Operations such as comparison take fixed time regardless of the size of the elements which are to be compared.
- These assumptions <u>must</u> fail as *n* becomes sufficiently large and the input consists of distinct elements.
- Other problems may use other assumptions.
 - ➤ Such assumptions make it difficult to compare the complexity of algorithms for different problems.
 - Particularly, the techniques to be developed transform one problem to another..
 - and this requires a uniform method of problem encoding.

An Overview of Complexity Theory

20101024 Slide 5 of 36

Low-Level Measurement of Complexity

- In order to compare algorithms for different problems, a lower-level notion of complexity is appropriate.
- This model is based upon the ubiquitous DTM.
- The size of the input is measured by the length of the representation as a string in the input alphabet $\boldsymbol{\Sigma}.$
 - This may be larger than the conventional length.
 Example; In a list of numbers to be sorted, the number m will require log(m) bits in binary notation, rather than a constant size regardless of m.
- The number of steps which an operation requires is measured by the number of steps that the implementing DTM takes.
 - This may be larger than the conventional programming-language convention.

Example; The time required to compare two numbers will be proportional to the lengths of the representations of those numbers, rather than a constant.

An Overview of Complexity Theory

20101024 Slide 6 of 36

Reasonable Encodings

- A further issue is that algorithms may be made to look better than they really are through the use of clever encoding.
- Example: Encode numbers in unary and implement addition as concatenation.
- Example: Encode numbers as their prime factors and implement multiplication as factor-by-factor addition.
 - Both of these encoding schemes are "unreasonable" because they do not work with standard representations which may be used in many different problems.
 - To obtain uniform results across diverse problems, and to ensure that transformations of one problem to another are meaningful, it is necessary that the encodings abide by certain constraints.

Structured Strings

- It is usually required that all algorithms employ encodings based upon *structured strings*, which are defined as follows.
 - Numbers: Any string of 0's and 1's (possibly preceded by a minus sign) is a structured string which represents a number in base two.
 - Names: If σ is a structured string, then so too is $[\sigma]$, which represents a name encoded by σ .

Lists: If $\sigma_1, \sigma_2, \ldots, \sigma_k$ are structured strings, then so too is $\langle \sigma_1, \sigma_2, \ldots, \sigma_k \rangle$, representing the corresponding *list* or *tuple*.

- This is enough to encode problem instances for most problems of interest.
- Since numbers, tuples, and names are encoded in a standard way, comparison of input size for different problems becomes feasible.
- Note that this approach will not generally result in the "standard" encoding for specific problems, such as sorting.

Dependence upon the Specific Model of Turing Machine

- The Church-Turing thesis provides a common upper bound on what a computing machine can do.
- However, it says nothing about complexity.
- Different models of computer can and do have vastly different complexities for a given algorithm.
- To reconcile this, the standard definition of abstract complexity is based upon a multi-tape Turing machine.
- In particular, the input in on a different tape than the working memory.

Problem Classes of the Form DTIME(T(n))

- A complexity function is any function f : N → R (here R is the real numbers)
 - which is *eventually nonnegative* in the sense that there is an $n_0 \in \mathbb{N}$
 - such that for any $n \ge n_0$, $f(n) \ge 0$.
- Fix the input alphabet to be $\{0,1\}$.
- Given a complexity function f, define DTIME(f(n)) to be the set of all languages (or decision problems) which can be decided on a multitape DTM in O(f(n)) steps, with n representing Length(w).
- The name *DTIME* stands for *deterministic time*.
- Some authors use the notation TIME(f(n)) instead.
- Some authors view DTIME(f(n)) to mean those problems which can be solved in at most f(n) steps on a multitape DTM for every input of length at most n (with no requirement that n be large and with no scaling by a constant).

Relative Complexity for Different Models of DTM

- How dependent is this notion upon the particular model of DTM?
- Theorem: Suppose that a given problem P may be solved in at most f(n) steps for DTIME(f(n)) for some complexity function f.
 - Then P may be solved on a DTM with only one tape in at most (f(n))² steps. □
 - In other words, the "slowdown" in going from a multitape DTM to a single-tape DTM is at most square in the original complexity.
- Example: If a given problem may be solved in at most $(\text{Length}(w))^3$ steps on a multitape DTM, then it may be solved on a single-tape DTM in at most $(\text{Length}(w))^6$ steps.
 - For the purposes of the framework to be developed, this is not of major importance, as will be seen next.

The Problem Class ${\cal P}$

• Define

$$\mathcal{P} = \bigcup_{i \in \mathbb{N}} DTIME(n^i)$$

- ${\cal P}$ is the set of all decision problems which can be solved in polynomial time on a DTM.
- It is also said that \mathcal{P} is the set of problems which may be solved in *deterministic polynomial time*.
- Note that the f(n) → f(n)² "slowdown" for multi-tape to single-tape DTMs does not affect the membership of this class.
- It would be the same were the definition of DTIME(f(n)) for single-tape machines.
- Keep in mind: Everything is decidable; this is about complexity, not about halting!

Which Problems Are in \mathcal{P} ?

- Membership in the class \mathcal{P} is often taken as the gold standard for whether or not a given problem admits a *tractable* solution or not.
- Unfortunately, for many problems of immense practical importance, no (deterministic) polynomial-time algorithm is known.
- Yet, it has never been proven that no such algorithm can exist.
- The focus of this discussion is to try to understand this situation better.
- Many problems which fall into this class exhibit a unique behavior:
 - Very efficient algorithms (typically O(n)) exist for verifying that a candidate solution is correct.
 - The best known algorithms for *finding* a solution are exponential $O(2^n)$ or nearly so.
 - Some examples will illustrate this situation.

Example — Satisfiability of Boolean Expressions

- Let $X = \{x_1, x_2, \dots, x_n\}$ be a finite set of variables.
- A *truth assignment* to X is a mapping $h: X \to \{0, 1\}$.
- x_i is *true* for *h* if $h(x_i) = 1$, and *false* for *h* if $h(x_i) = 0$.
- The Boolean expressions over X, denoted BE(X), are built up from from X in the usual way, using ¬, ∨, and ∧.

Examples:

$$\varphi_1 = (x_1 \lor x_2) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2) \land (\neg (\neg x_3 \land x_4))$$

$$\varphi_2 = (x_1 \lor x_2) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg (\neg x_3 \lor x_4))$$

- The truth assignment $h: X \to \{0, 1\}$ extends to Boolean expressions in the obvious way $\bar{h}: BE(X) \to \{0, 1\}.$
- The formula φ is *satisfiable* if there is a truth assignment *h* for which $\bar{h}(\varphi) = 1$.

Examples: φ_1 is satisfiable with $(x_1, x_2, x_3, x_4) = (1, 0, 0, 0)$ or (0, 1, 0, 0). φ_2 is unsatisfiable.

• This general problem (as X ranges over all finite sets of variables) is known as SAT (satisfiability of Boolean expressions).

An Overview of Complexity Theory

20101024 Slide 14 of 36

Finding vs. Verifying a Solution

• It is easy to verify that a proposed solution is valid:

Example: Verify that $(x_1, x_2, x_3, x_4) = (1, 0, 0, 0)$ satisfies $\varphi_1 = (x_1 \lor x_2) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \land \neg x_2) \land (\neg (\neg x_3 \land x_4)).$

- $(1 \lor 0) \land (\neg 1 \lor 0 \lor \neg 0) \land (1 \lor \neg 0 \lor \neg 0) \land (\neg 1 \lor \neg 0) \land (\neg (\neg 0 \land 0)) =$ $(1 \lor 0) \land (0 \lor 0 \lor 1) \land (0 \lor 1 \lor 1) \land (\neg (1 \land 0)) = (1) \land (1) \land (1) \land (\neg 0) =$ $(1) \land (1) \land (1) = 1.$
- Such verification can be performed in at most quadratic time on a multi-tape DTM (better on a random-access machine).
- $\bullet\,$ However, in order to

 $(a) \ \mbox{find} \ \mbox{a solution, or to}$

 $\left(b\right) % \left(b\right) =0$ determine that no solution exists,

no approach which is substantially better than exhaustive search is known.

- For a formula with n variables, the number of possibilities is 2^n .
 - \twoheadrightarrow Determining unsatisfiability has exponential complexity in the worst

case.

An Overview of Complexity Theory

Other Problems which Have Similar Properties

- Many important problems exhibit these properties:
 - Verification of a candidate solution is fast (typically no worse than $O(n^2)$)
 - The best known algorithms for finding a solution are exponential.

Example: The 0/1 Knapsack decision problem:

- A *knapsack* with capacity *M*.
- A set *E* of objects, with each object *a* having a *weight* w_{*a*} and a *value* v_{*a*}.
- A goal total value (or profit) P.
- Find a subset $S \subseteq E$ with:
 - value at least P: $\sum_{a \in S} v_a \ge P$.
 - weight at most M: $\sum_{a \in S} w_a \leq M$.
- Application: Optimization of resource usage.
 - Value = profit.
 - Weight = resource usage by the given object.
 - Capacity = total amount of resources available.

An Overview of Complexity Theory

20101024 Slide 16 of 36

Other Problems which Have Similar Properties — 2

- Graph problems:
 - vertex cover
 - clique
 - Hamiltonian circuit
- Allocation problems:
 - partition
 - three-dimensional matching.
- Plus thousands of others which have arisen over the years.
- All share this same property:
 - Easy to verify a candidate solution.
 - No known way which is substantially better in the worst case than exhaustive search (exponential complexity) to find a solution.
- $\bullet\,$ But no one has ever been able to show that they are not in ${\cal P}$ either.

Common Properties of These Problems

- All of these problems have two properties in common.
 - Each can be solved efficiently on a nondeterministic TM.
 - They may each be transformed to the other efficiently (*i.e.*, in polynomial time).
- These properties will now be examined more closely, and their implications assessed.

Problem Solving Using Nondeterministic Turing Machines

- Recall that a nondeterministic TM (NDTM) can have many parallel or alternative branches of execution.
- A string is accepted (or a problem answer is "yes") if <u>some</u> branch ends in an accepting state.
- A string is rejected (or a problem answer is "no") if <u>all</u> branches end in a rejecting state.
- Only *deciders* are considered; failure to halt is not a possibility.

Nondeterministic Solution of Satisfiability

• For a NDTM which tests for satisfiability of Boolean expressions, and a four-variable formula such as

$$\varphi_1 = (x_1 \lor x_2) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \land \neg x_2) \land (\neg (\neg x_3 \land x_4))$$

- the alternatives of the machine will appear as shown below.
- Each path may be run in quadratic time, so the <u>nondeterministic</u> complexity is $O(n^2)$ (on an NDTM; better on a random-access machine).

Problem Classes of the Form NTIME(T(n))

- The definition of *NTIME* is similar to that of *DTIME*, but for nondeterministic machines.
- Given a complexity function f, define NTIME(f(n)) to be the set of all languages (or decision problems) which can be decided on a multitape NDTM in O(f(n)) steps, with n representing Length(w).
- The name *NTIME* stands for *nondeterministic time*.
- Some authors view NTIME(f(n)) to mean those problems which can be solved in at most f(n) steps on a multitape NDTM for every input of length at most n (with no requirement that n be large and with no scaling by a constant).
- An f(n) → f(n)² "slowdown" for multi-tape to single-tape NDTMs exists, in analogy to the DTM case.

The Problem Class \mathcal{NP}

• The definition of \mathcal{NP} is similar to that of \mathcal{P} , but using *NTIME* instead of *DTIME*:

$$\mathcal{NP} = \bigcup_{i \in \mathbb{N}} \mathsf{NTIME}(n^i)$$

- \mathcal{NP} is the set of all decision problems which can be solved in polynomial time on a <u>nondeterministic</u> TM (NDTM).
- It is also said that \mathcal{NP} is the set of problems which may be solved in *nondeterministic polynomial time*.
- Note that the f(n) → f(n)² "slowdown" for multi-tape to single-tape DTMs does not affect the membership of this class.
- Think of \mathcal{NP} as the set of decision problems which may be solved in polynomial time under the model of computation in which:
 - Unbounded branching of alternatives is allowed; and
 - Success of one branch is equivalent to success (a "yes" answer).

The Question of $\mathcal{P} \stackrel{?}{=} \mathcal{NP}$

• Clearly $\mathcal{P}\subseteq\mathcal{NP},$ since every DTM may be regarded as an NDTM.

Question: What about the reverse inclusion, $\mathcal{NP} \subseteq \mathcal{P}$?

- It might seem "obvious" that this cannot be the case.
- Checking a solution is "obviously" less complex than determining whether a solution exists (within exponentially many possibilities).
- Many computer scientists feel that this is the case.
- But (up to polynomial-time equivalence) is it?
- Despite the practical experience, no one has ever been able to come close to showing that this is the case.
- It is perhaps the most famous and important open problem in theoretical computer science.

An Overview of Complexity Theory

20101024 Slide 23 of 36

The Idea of $\mathcal{NP}\text{-}\mathsf{Completeness}$

- There is a further dimension to this story.
- Most of the decision problems of the form:
 - it is easy to test a given solution for correctness; but
 - $\bullet\,$ no algorithm in ${\cal P}$ is known for finding such a solution
- are equivalent in a very compelling way.
- If an algorithm in ${\mathcal P}$ could be found for finding solutions to one of these problems, then \ldots
- ... such an algorithm could be found for all such problems.
- This problems in this class are called $\mathcal{NP}\text{-complete,}$ and the class is denoted $\mathcal{NPC}.$
- This important issue warrants a closer look.

Polynomial-Time Reduction

- A *reduction* of decision problem P_1 to decision problem P_2 is a computable function which maps instances of P_1 into instances of P_2 and which preserves "yes" and "no".
- This needs to be made a bit more precise.
- View a decision problem as a pair $P = (Inst(P), \rho_P)$, in which
 - Inst(P) is the set of *instances* of P; and
 - ρ_P : Inst(P) \rightarrow {0,1} is the function which gives the answer "yes" or "no" for each instance.

Example: For the problem SAT:

- Inst(SAT) is the set of all Boolean expressions (over finite sets of variables);
- $\rho_{\rm SAT}$ sends the Boolean expression φ to 1 if it is satisfiable, and 0 if it is not.

Polynomial-Time Reduction — 2

Formally, a *reduction* of P₁ to P₂ is a computable function
 e : Inst(P₁) → Inst(P₂) which makes the following diagram commute:

- This means that both paths from $Inst(P_2)$ to $\{0,1\}$ yield the same result.
- Think of using e as a subroutine in a decider for P_2 in order to decide P_1 .
- The reduction *e* is *polynomial* or *tractable* if there exists a DTM which computes it.
- Write $P_1 \propto P_2$

just in case there is a polynomial reduction from P_1 to P_2 .

• In this case, say that P_1 polynomially reduces (or tractably reduces) to P_2 . An Overview of Complexity Theory 20101024 Slide 26 of 36

Example — Conjunctive Normal Form

- A *literal* is a Boolean expression of the form x or $\neg x$, with x a variable.
- A *clause* is an expression of the form $(\ell_1 \lor \ell_2 \lor \ldots \lor \ell_k)$ in which each ℓ_i is a literal.
- A Boolean formula is in *conjunctive normal form (CNF*) if it is a conjunction of clauses; *i.e.*,

$$(\ell_{11} \lor \ell_{12} \lor \ldots \lor \ell_{1k_1}) \land (\ell_{21} \lor \ell_{22} \lor \ldots \lor \ell_{2k_2}) \land \ldots \land (\ell_{m1} \lor \ell_{m2} \lor \ldots \lor \ell_{mk_m})$$

Example:

$$\varphi_1 = (x_1 \lor x_2) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2) \land (\neg (\neg x_3 \land x_4))$$

is not in CNF, while
$$\varphi_1' = (x_1 \lor x_2) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2) \land (x_3 \lor \neg x_4)$$

is in CNF

- A Boolean formula in CNF is in 3-conjunctive normal form (3CNF) if each clause contains at most three literals.
- Example: φ'_1 above is in 3CNF.
- The corresponding satisfiability problems are called CNF-SAT and 3CNF-SAT.

An Overview of Complexity Theory

20101024 Slide 27 of 36

Example — Reduction of CNF-SAT to 3CNF-SAT

Proposition: CNF-SAT \propto 3CNF-SAT.

Proof: It it suffices to give a reduction on clauses.

- This will be illustrated for a clause of five literals.
- The clause $(\ell_1 \lor \ell_2 \lor \ell_3 \lor \ell_4 \lor \ell_5)$ is satisfiable iff the conjunction $(\ell_1 \lor \ell_2 \lor y_1) \land (\ell_3 \lor \neg y_1 \lor y_2) \land (\ell_4 \lor \ell_5 \lor \neg y_2)$ is.
- The y_i 's are new variables.
- This idea extends in a natural way, and may be performed in deterministic polynomial time. \Box
- Warning: You may have learned how to transform any Boolean expression into one in CNF is another course.
 - This transformation is not polynomial.
 - $\bullet\,$ However, SAT \propto CNF-SAT.

Formalization of \mathcal{NP} -Completeness and the Class \mathcal{NPC}

- A problem *P* is called \mathcal{NP} -complete if
 - (a) it is in \mathcal{NP} ; and
 - ${\rm (b)} \ \ \text{for every other problem} \ P' \in \mathcal{NP}, \ P' \propto P.$
- The collection of all \mathcal{NP} -complete problems is denoted \mathcal{NPC} .
- Intuitively, an \mathcal{NP} -complete problem is a "hardest" problem within \mathcal{NP} .

Question: Do \mathcal{NP} -complete problems exist?

Answer: Yes, there are many of them.

- $\bullet\,$ The fundamental $\mathcal{NP}\text{-complete}$ problem is SAT.
- This is known as *Cook's theorem*.

Cook's Theorem

- Theorem (Stephen A. Cook, 1971): SAT $\in NPC$; *i.e.*, the problem SAT is NP-complete.
- Proof idea: Let $P \in \mathcal{NP}$, and let M be a (single-tape) NDTM which solves P in nondeterministic polynomial time.
 - Write a huge logical expression which describes the behavior of M for a given input A ∈ Inst(P).
 - This expression uses propositions of the following forms:

 $C(i, j, t) = 1 \iff$ tape cell *i* contains symbol *j* at time *t*. $S(k, t) = 1 \iff M$ is in state q_k at time *t*. $H(i, t) = 1 \iff$ the tape head is scanning cell *i* at time *t*.

- The parameters *i*, *j*, *k*, and *t* are bounded in value, so these are just (parameterized) propositions.
- The expression may be generated in deterministic polynomial time.
- The logical expression describing the behavior of *M* is satisfiable iff *A* is true for *P* (the answer is "yes"). □

An Overview of Complexity Theory

20101024 Slide 30 of 36

Implications of Cook's Theorem

Corollary: If SAT $\in \mathcal{P}$, then every $P \in \mathcal{NP}$ is also in \mathcal{P} . \Box

- In other words, if SAT $\in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$.
- Over the years, thousands of other important (and not so important) problems have also been shown to be \mathcal{NP} -complete, including:
 - CNF-SAT and 3CNF-SAT,
 - the discrete knapsack problem,
 - the other problems on the list presented earlier.
- If any one of these problems could be shown to be in $\mathcal{P},$ then they would all be in $\mathcal{P}.$
- Still, no one has been able to do this.
- Question: Are there problems in \mathcal{NP} which are not in \mathcal{NPC} ?
- Answer: Excluding trivial problems (always "yes" or always "no")...
 - ... a positive answer would imply that $\mathcal{P} \neq \mathcal{NP}$.
 - Nobody knows.

An Overview of Complexity Theory

$\mathcal{NP}\text{-Incompleteness} \Rightarrow \mathcal{P} \neq \mathcal{NP}$

• Let Idprob = ({0,1},1) be the *identity problem* with $1 : \{0,1\} \rightarrow \{0,1\}$ the identity function.

Observation: If $P \in \mathcal{P}$, then $P \propto \text{Idprob}$.

Proof: Let $P = (Inst(P), \rho_P)$ be any problem in \mathcal{NP} , and consider the diagram below. ρ_P

- If $\mathcal{P} = \mathcal{NP}$, then every $P \propto \text{Idprob}$ for every $P \in \mathcal{NP}$; *i.e.*, Idprob is \mathcal{NP} -complete.
- From this it follows that, if $\mathcal{P} = \mathcal{NP}$, then any *nontrivial* decision problem which is in \mathcal{NP} is \mathcal{NP} -complete if
- A decision problem is *nontrivial* if it is true for some of its instances and false for others.

An Overview of Complexity Theory

20101024 Slide 32 of 36

$\mathsf{Co-}\mathcal{NP} \text{ Problems}$

- In contrast to that of \mathcal{P} , the definition of \mathcal{NP} is asymmetric. Example: Consider the problem SAT again.
 - If a Boolean expression φ is satisfiable, this may be discovered in nondeterministic polynomial time..
 - However, to establish unsatisfiability requires that all possibilities fail.
 - The branching behavior of the NDTM does not appear to help.

Co- \mathcal{NP} Problems — 2

- The *complement* \overline{P} of a decision problem just switches 0 and 1 (or "yes" and "no").
- $\rho_{\overline{P}} = 1 \rho_P$.

Example: Unsatisfiability of Boolean expressions is the complement of satisfiability.

- A problem *P* is in co- \mathcal{NP} if its complement $\overline{P} \in \mathcal{NP}$.
- As illustrated, co- \mathcal{NP} problems are "intuitively" more difficult than problems which are in \mathcal{NPC} .
- However ...

Theorem: If there is a problem $P \in \mathcal{NP}$ with $\overline{P} \notin \mathcal{NP}$, then $\mathcal{P} \neq \mathcal{NP}$.

• So, if it could be shown, for example, that unsatisfiability of Boolean expressions cannot be solved in nondeterministic polynomial time, then $\mathcal{P} \neq \mathcal{NP}$.

\mathcal{NP} -Hard Problems

- \bullet The terminology $\mathcal{NP}\text{-hard}$ is used in two distinct but related ways.
- It is used to describe decision problems which are at least as hard as $\mathcal{NP}\text{-}\mathsf{complete}$ problems.
 - In this sense, all complements of $\mathcal{NP}\text{-}\text{complete}$ problems are $\mathcal{NP}\text{-}\text{hard}.$
- It is used to describe optimization (and other) problems which arise from decision problems in \mathcal{NP} .
- Example: The 0/1 Knapsack *optimization* problem.
 - A *knapsack* with capacity *M*.
 - A set *E* of objects, with each object *a* having a *weight* w_{*a*} and a *value* v_{*a*}.
 - Find the most value which can be placed in the knapsack without exceeding the capacity.
- Rather than asking to meet a target value, find the most valuable configuration.

 An Overview of Complexity Theory 20101024 S

For More Information

• The following notes, from a course on the analysis of algorithms, present a somewhat more formal and complete look at some of the topics of these slides.

http://www8.cs.umu.se/~hegner/Courses/TDBC91/H08/Slides/cmplxthy9.pdf

 The slides from the whole course may be found here: http://www8.cs.umu.se/~hegner/Courses/TDBC91/H08/Slides/index.html