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What is Complexity Theory

• Until this point, the focus has been on what can be done with a
particular computing model.

• Attention is now turned to how efficiently tasks can be performed.

• Time resources required (time complexity)

• Space resources required (space complexity)

• There are three levels at which these question may be asked:

Algorithm analysis: How well does a given algorithm perform a given task?

• How efficient is quicksort?

Problem complexity: What is the best performance possible for a given
problem?

• How efficient is the best possible sorting algorithm?

Complexity theory: How can different problems in general be classified in
terms of complexity?

• How does the complexity of sorting compare to that of finding
minimum spanning trees?
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Complexity Measures for Computations on TMs

• Turing machines provide an ideal framework for formulating abstract
complexity theory.

• The number of steps which such a machine takes in performing a
computation is inherent in the model.

• Just count the number of transitions..

• the length of the computation from initial configuration to the halt
configuration.

• The size of the input is the length of the input string.

• These parameters are independent of the problem and independent of the
representation of the input.

• Other models of computation do not always provide such flexibility.
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A Review of “Big-Oh” Notation

• Typically, the performance of an algorithm is measured in terms of the
size n of the input.

• Time or space usage may be measured; here time will be chosen since it
is the most common resource to be so measured.

• Recall: An algorithm is O(f (n)) If there is:

• a constant k > 0, and

• an n0 ∈ N, such that:

• for all n ≥ n0, the algorithm runs in at most k · f (n) time units.

Example: A “good” sorting algorithm runs in time O(n · log(n)).

• The parameter n measures the number of elements to be sorted.

• The time is measured in terms of some primitive execution units of
the computer (assign, compare, add, etc.).

• This model may be used for worst-case, average-case, and best-case time.
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Limitations of the Problem-Specific Approach

• This model works well when comparing different algorithms for the same
problem.

• However, it requires modification to be useful in comparing different
problems.

• Consider the assumptions made in modelling the sorting problem:

• Each element in the input sequence is of a fixed size.

• Operations such as comparison take fixed time regardless of the size
of the elements which are to be compared.

• These assumptions must fail as n becomes sufficiently large and the input
consists of distinct elements.

• Other problems may use other assumptions.

ó Such assumptions make it difficult to compare the complexity of
algorithms for different problems.

• Particularly, the techniques to be developed transform one problem
to another..

• and this requires a uniform method of problem encoding.
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Low-Level Measurement of Complexity

• In order to compare algorithms for different problems, a lower-level notion
of complexity is appropriate.

• This model is based upon the ubiquitous DTM.

• The size of the input is measured by the length of the representation as a
string in the input alphabet Σ.

• This may be larger than the conventional length.

Example; In a list of numbers to be sorted, the number m will
require log(m) bits in binary notation, rather than a constant
size regardless of m.

• The number of steps which an operation requires is measured by the
number of steps that the implementing DTM takes.

• This may be larger than the conventional programming-language
convention.

Example; The time required to compare two numbers will be
proportional to the lengths of the representations of those
numbers, rather than a constant.
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Reasonable Encodings

• A further issue is that algorithms may be made to look better than they
really are through the use of clever encoding.

Example: Encode numbers in unary and implement addition as
concatenation.

Example: Encode numbers as their prime factors and implement
multiplication as factor-by-factor addition.

• Both of these encoding schemes are “unreasonable” because they do not
work with standard representations which may be used in many different
problems.

• To obtain uniform results across diverse problems, and to ensure that
transformations of one problem to another are meaningful, it is necessary
that the encodings abide by certain constraints.
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Structured Strings

• It is usually required that all algorithms employ encodings based upon
structured strings, which are defined as follows.

Numbers: Any string of 0’s and 1’s (possibly preceded by a minus sign)
is a structured string which represents a number in base two.

Names: If σ is a structured string, then so too is [σ], which represents a
name encoded by σ.

Lists: If σ1, σ2, . . . , σk are structured strings, then so too is
〈σ1, σ2, . . . , σk〉, representing the corresponding list or tuple.

• This is enough to encode problem instances for most problems of interest.

• Since numbers, tuples, and names are encoded in a standard way,
comparison of input size for different problems becomes feasible.

• Note that this approach will not generally result in the “standard”
encoding for specific problems, such as sorting.
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Dependence upon the Specific Model of Turing Machine

• The Church-Turing thesis provides a common upper bound on what a
computing machine can do.

• However, it says nothing about complexity.

• Different models of computer can and do have vastly different
complexities for a given algorithm.

• To reconcile this, the standard definition of abstract complexity is based
upon a multi-tape Turing machine.

• In particular, the input in on a different tape than the working memory.

· · · · · ·

Finite-state control

tape head
external storage

input
w ∈ L

output
yes (1) or no (0)
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Problem Classes of the Form DTIME(T (n))

• A complexity function is any function f : N → R (here R is the real
numbers)

• which is eventually nonnegative in the sense that there is an n0 ∈ N

• such that for any n ≥ n0, f (n) ≥ 0.

• Fix the input alphabet to be {0, 1}.

• Given a complexity function f , define DTIME(f (n)) to be the set of all
languages (or decision problems) which can be decided on a multitape
DTM in O(f (n)) steps, with n representing Length(w).

• The name DTIME stands for deterministic time.

• Some authors use the notation TIME (f (n)) instead.

• Some authors view DTIME (f (n)) to mean those problems which can be
solved in at most f (n) steps on a multitape DTM for every input of
length at most n (with no requirement that n be large and with no
scaling by a constant).
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Relative Complexity for Different Models of DTM

• How dependent is this notion upon the particular model of DTM?

Theorem: Suppose that a given problem P may be solved in at most f (n)
steps for DTIME(f (n)) for some complexity function f .

• Then P may be solved on a DTM with only one tape in at most
(f (n))2 steps. �

• In other words, the “slowdown” in going from a multitape DTM to a
single-tape DTM is at most square in the original complexity.

Example: If a given problem may be solved in at most (Length(w))3 steps
on a multitape DTM, then it may be solved on a single-tape DTM in at
most (Length(w))6 steps.

• For the purposes of the framework to be developed, this is not of major
importance, as will be seen next.
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The Problem Class P

• Define
P =

⋃

i∈N

DTIME(ni )

• P is the set of all decision problems which can be solved in polynomial
time on a DTM.

• It is also said that P is the set of problems which may be solved in
deterministic polynomial time.

• Note that the f (n) f (n)2 “slowdown” for multi-tape to single-tape
DTMs does not affect the membership of this class.

• It would be the same were the definition of DTIME(f (n)) for single-tape
machines.

Keep in mind: Everything is decidable; this is about complexity, not about
halting!
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Which Problems Are in P?

• Membership in the class P is often taken as the gold standard for
whether or not a given problem admits a tractable solution or not.

• Unfortunately, for many problems of immense practical importance, no
(deterministic) polynomial-time algorithm is known.

• Yet, it has never been proven that no such algorithm can exist.

• The focus of this discussion is to try to understand this situation better.

• Many problems which fall into this class exhibit a unique behavior:

• Very efficient algorithms (typically O(n)) exist for verifying that a
candidate solution is correct.

• The best known algorithms for finding a solution are exponential
O(2n) or nearly so.

• Some examples will illustrate this situation.
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Example — Satisfiability of Boolean Expressions

• Let X = {x1, x2, . . . , xn} be a finite set of variables.

• A truth assignment to X is a mapping h : X → {0, 1}.

• xi is true for h if h(xi ) = 1, and false for h if h(xi) = 0.

• The Boolean expressions over X , denoted BE(X ), are built up from from
X in the usual way, using ¬, ∨, and ∧.

Examples:
ϕ1 = (x1∨x2)∧(¬x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨¬x2)∧(¬(¬x3∧x4))
ϕ2 = (x1∨x2)∧(¬x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨¬x2)∧(¬(¬x3∨x4))

• The truth assignment h : X → {0, 1} extends to Boolean expressions in
the obvious way h̄ : BE(X ) → {0, 1}.

• The formula ϕ is satisfiable if there is a truth assignment h for which
h̄(ϕ) = 1.

Examples: ϕ1 is satisfiable with (x1, x2, x3, x4) = (1, 0, 0, 0) or (0, 1, 0, 0).
ϕ2 is unsatisfiable.

• This general problem (as X ranges over all finite sets of variables) is
known as SAT (satisfiability of Boolean expressions).
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Finding vs. Verifying a Solution

• It is easy to verify that a proposed solution is valid:

Example: Verify that (x1, x2, x3, x4) = (1, 0, 0, 0) satisfies
ϕ1 = (x1∨x2)∧(¬x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∧¬x2)∧(¬(¬x3∧x4)).

• (1∨0)∧(¬1∨0∨¬0)∧(1∨¬0∨¬0)∧(¬1∨¬0)∧(¬(¬0∧0)) =
(1∨0)∧(0∨0∨1)∧(0∨1∨1)∧(¬(1∧0)) = (1)∧(1)∧(1)∧(¬0) =
(1)∧(1)∧(1)∧(1) = 1.

• Such verification can be performed in at most quadratic time on a
multi-tape DTM (better on a random-access machine).

• However, in order to

(a) find a solution, or to

(b) determine that no solution exists,

no approach which is substantially better than exhaustive search is
known.

• For a formula with n variables, the number of possibilities is 2n.

ó Determining unsatisfiability has exponential complexity in the worst
case.
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Other Problems which Have Similar Properties

• Many important problems exhibit these properties:

• Verification of a candidate solution is fast (typically no worse than
O(n2))

• The best known algorithms for finding a solution are exponential.

Example: The 0/1 Knapsack decision problem:

• A knapsack with capacity M.

• A set E of objects, with each object a having a weight wa and a
value va.

• A goal total value (or profit) P .

• Find a subset S ⊆ E with:

• value at least P :
∑

a∈S
va ≥ P .

• weight at most M:
∑

a∈S
wa ≤ M.

• Application: Optimization of resource usage.

• Value = profit.

• Weight = resource usage by the given object.

• Capacity = total amount of resources available.
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Other Problems which Have Similar Properties — 2

• Graph problems:

• vertex cover

• clique

• Hamiltonian circuit

• Allocation problems:

• partition

• three-dimensional matching.

• Plus thousands of others which have arisen over the years.

• All share this same property:

• Easy to verify a candidate solution.

• No known way which is substantially better in the worst case than
exhaustive search (exponential complexity) to find a solution.

• But no one has ever been able to show that they are not in P either.
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Common Properties of These Problems

• All of these problems have two properties in common.

• Each can be solved efficiently on a nondeterministic TM.

• They may each be transformed to the other efficiently (i.e., in
polynomial time).

• These properties will now be examined more closely, and their
implications assessed.
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Problem Solving Using Nondeterministic Turing Machines

• Recall that a nondeterministic TM (NDTM) can have many parallel or
alternative branches of execution.

• A string is accepted (or a problem answer is “yes”) if some branch ends
in an accepting state.

• A string is rejected (or a problem answer is “no”) if all branches end in a
rejecting state.

• Only deciders are considered; failure to halt is not a possibility.

initial
config reject

accept

accept

reject

reject

reject

reject
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Nondeterministic Solution of Satisfiability

• For a NDTM which tests for satisfiability of Boolean expressions, and a
four-variable formula such as
ϕ1 = (x1∨x2)∧(¬x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∧¬x2)∧(¬(¬x3∧x4))

• the alternatives of the machine will appear as shown below.

• Each path may be run in quadratic time, so the nondeterministic
complexity is O(n2) (on an NDTM; better on a random-access machine).

x4 = 0
x4 = 1x3 = 0

x4 = 0
x4 = 1

x3 = 1
x2 = 0

x4 = 0
x4 = 1x3 = 0

x4 = 0
x4 = 1

x3 = 1

x2 = 1
x1 = 0

x4 = 0
x4 = 1x3 = 0

x4 = 0
x4 = 1

x3 = 1
x2 = 0

x4 = 0
x4 = 1x3 = 0

x4 = 0
x4 = 1

x3 = 1

x2 = 1

x1 = 1

initial
config
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Problem Classes of the Form NTIME(T (n))

• The definition of NTIME is similar to that of DTIME , but for
nondeterministic machines.

• Given a complexity function f , define NTIME (f (n)) to be the set of all
languages (or decision problems) which can be decided on a multitape
NDTM in O(f (n)) steps, with n representing Length(w).

• The name NTIME stands for nondeterministic time.

• Some authors view NTIME (f (n)) to mean those problems which can be
solved in at most f (n) steps on a multitape NDTM for every input of
length at most n (with no requirement that n be large and with no
scaling by a constant).

• An f (n) f (n)2 “slowdown” for multi-tape to single-tape NDTMs
exists, in analogy to the DTM case.
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The Problem Class NP

• The definition of NP is similar to that of P, but using NTIME instead
of DTIME :

NP =
⋃

i∈N

NTIME (ni)

• NP is the set of all decision problems which can be solved in polynomial
time on a nondeterministic TM (NDTM).

• It is also said that NP is the set of problems which may be solved in
nondeterministic polynomial time.

• Note that the f (n) f (n)2 “slowdown” for multi-tape to single-tape
DTMs does not affect the membership of this class.

• Think of NP as the set of decision problems which may be solved in
polynomial time under the model of computation in which:

• Unbounded branching of alternatives is allowed; and

• Success of one branch is equivalent to success (a “yes” answer).
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The Question of P
?
= NP

• Clearly P ⊆ NP, since every DTM may be regarded as an NDTM.

Question: What about the reverse inclusion, NP ⊆ P ?

• It might seem “obvious” that this cannot be the case.

• Checking a solution is “obviously” less complex than determining whether
a solution exists (within exponentially many possibilities).

• Many computer scientists feel that this is the case.

• But (up to polynomial-time equivalence) is it?

• Despite the practical experience, no one has ever been able to come close
to showing that this is the case.

• It is perhaps the most famous and important open problem in theoretical
computer science.
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The Idea of NP-Completeness

• There is a further dimension to this story.

• Most of the decision problems of the form:

• it is easy to test a given solution for correctness; but

• no algorithm in P is known for finding such a solution

• are equivalent in a very compelling way.

• If an algorithm in P could be found for finding solutions to one of these
problems, then ...

• ... such an algorithm could be found for all such problems.

• This problems in this class are called NP-complete, and the class is
denoted NPC.

• This important issue warrants a closer look.
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Polynomial-Time Reduction

• A reduction of decision problem P1 to decision problem P2 is a
computable function which maps instances of P1 into instances of P2 and
which preserves “yes” and “no”.

• This needs to be made a bit more precise.

• View a decision problem as a pair P = (Inst(P), ρP), in which

• Inst(P) is the set of instances of P ; and

• ρP : Inst(P) → {0, 1} is the function which gives the answer “yes” or
“no” for each instance.

Example: For the problem SAT:

• Inst(SAT) is the set of all Boolean expressions (over finite sets of
variables);

• ρSAT sends the Boolean expression ϕ to 1 if it is satisfiable, and 0 if
it is not.
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Polynomial-Time Reduction — 2

• Formally, a reduction of P1 to P2 is a computable function
e : Inst(P1) → Inst(P2) which makes the following diagram commute:

Inst(P1)

Inst(P2)

{0, 1}

e

ρP1

ρP2

• This means that both paths from Inst(P2) to {0, 1} yield the same result.

• Think of using e as a subroutine in a decider for P2 in order to decide P1.

• The reduction e is polynomial or tractable if there exists a DTM which
computes it.

• Write P1 ∝ P2

just in case there is a polynomial reduction from P1 to P2.

• In this case, say that P1 polynomially reduces (or tractably reduces) to
P2.
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Example — Conjunctive Normal Form

• A literal is a Boolean expression of the form x or ¬x , with x a variable.

• A clause is an expression of the form (ℓ1∨ℓ2∨ . . . ∨ℓk) in which each ℓi is a
literal.

• A Boolean formula is in conjunctive normal form (CNF) if it is a
conjunction of clauses; i.e.,

(ℓ11∨ℓ12∨ . . . ∨ℓ1k1)∧(ℓ21∨ℓ22∨ . . . ∨ℓ2k2)∧ . . . ∧(ℓm1∨ℓm2∨ . . . ∨ℓmkm)

Example:
ϕ1 = (x1∨x2)∧(¬x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨¬x2)∧(¬(¬x3∧x4))

is not in CNF, while
ϕ′

1 = (x1∨x2)∧(¬x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨¬x2)∧(x3∨¬x4)
is in CNF.

• A Boolean formula in CNF is in 3-conjunctive normal form (3CNF) if
each clause contains at most three literals.

Example: ϕ′

1 above is in 3CNF.

• The corresponding satisfiability problems are called CNF-SAT and
3CNF-SAT.
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Example — Reduction of CNF-SAT to 3CNF-SAT

Proposition: CNF-SAT ∝ 3CNF-SAT.

Proof: It it suffices to give a reduction on clauses.

• This will be illustrated for a clause of five literals.

• The clause (ℓ1∨ℓ2∨ℓ3∨ℓ4∨ℓ5) is satisfiable iff the conjunction
(ℓ1∨ℓ2∨y1)∧(ℓ3∨¬y1∨y2)∧(ℓ4∨ℓ5∨¬y2) is.

• The yi ’s are new variables.

• This idea extends in a natural way, and may be performed in
deterministic polynomial time. �

Warning: You may have learned how to transform any Boolean expression
into one in CNF is another course.

• This transformation is not polynomial.

• However, SAT ∝ CNF-SAT.
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Formalization of NP-Completeness and the Class NPC

• A problem P is called NP-complete if

(a) it is in NP ; and

(b) for every other problem P ′ ∈ NP , P ′ ∝ P .

• The collection of all NP-complete problems is denoted NPC.

• Intuitively, an NP-complete problem is a “hardest” problem within NP .

Question: Do NP-complete problems exist?

Answer: Yes, there are many of them.

• The fundamental NP-complete problem is SAT.

• This is known as Cook’s theorem.
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Cook’s Theorem

Theorem (Stephen A. Cook, 1971): SAT ∈ NPC; i.e., the problem SAT is
NP-complete.

Proof idea: Let P ∈ NP, and let M be a (single-tape) NDTM which solves
P in nondeterministic polynomial time.

• Write a huge logical expression which describes the behavior of M for a
given input A ∈ Inst(P).

• This expression uses propositions of the following forms:

C (i , j , t) = 1 ⇔ tape cell i contains symbol j at time t.

S(k , t) = 1 ⇔ M is in state qk at time t.

H(i , t) = 1 ⇔ the tape head is scanning cell i at time t.

• The parameters i , j , k , and t are bounded in value, so these are just
(parameterized) propositions.

• The expression may be generated in deterministic polynomial time.

• The logical expression describing the behavior of M is satisfiable iff A is
true for P (the answer is “yes”). �
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Implications of Cook’s Theorem

Corollary: If SAT ∈ P, then every P ∈ NP is also in P. �

• In other words, if SAT ∈ P, then P = NP .

• Over the years, thousands of other important (and not so important)
problems have also been shown to be NP-complete, including:

• CNF-SAT and 3CNF-SAT,

• the discrete knapsack problem,

• the other problems on the list presented earlier.

• If any one of these problems could be shown to be in P, then they would
all be in P.

• Still, no one has been able to do this.

Question: Are there problems in NP which are not in NPC?

Answer: Excluding trivial problems (always “yes” or always “no”)...

• ... a positive answer would imply that P 6= NP .

• Nobody knows.
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NP-Incompleteness ⇒ P 6= NP

• Let Idprob = ({0, 1},1) be the identity problem with 1 : {0, 1} → {0, 1}
the identity function.

Observation: If P ∈ P, then P ∝ Idprob.

Proof: Let P = (Inst(P), ρP) be any problem in NP, and consider the
diagram below.

Inst(P)

{0, 1}

{0, 1}

e = ρP

ρP

1

• If P = NP, then every P ∝ Idprob for every P ∈ NP; i.e., Idprob is
NP-complete.

• From this it follows that, if P = NP, then any nontrivial decision
problem which is in NP is NP-complete if

• A decision problem is nontrivial if it is true for some of its instances and
false for others.
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Co-NP Problems

• In contrast to that of P, the definition of NP is asymmetric.

Example: Consider the problem SAT again.

• If a Boolean expression ϕ is satisfiable, this may be discovered in
nondeterministic polynomial time..

• However, to establish unsatisfiability requires that all possibilities fail.

• The branching behavior of the NDTM does not appear to help.

x4 = 0
x4 = 1x3 = 0

x4 = 0
x4 = 1

x3 = 1
x2 = 0

x4 = 0
x4 = 1x3 = 0

x4 = 0
x4 = 1

x3 = 1

x2 = 1
x1 = 0

x4 = 0
x4 = 1x3 = 0

x4 = 0
x4 = 1

x3 = 1
x2 = 0

x4 = 0
x4 = 1x3 = 0

x4 = 0
x4 = 1

x3 = 1

x2 = 1

x1 = 1

initial
config
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Co-NP Problems — 2

• The complement P of a decision problem just switches 0 and 1 (or “yes”
and “no”).

• ρP = 1− ρP .

Example: Unsatisfiability of Boolean expressions is the complement of
satisfiability.

• A problem P is in co-NP if its complement P ∈ NP .

• As illustrated, co-NP problems are “intuitively” more difficult than
problems which are in NPC.

• However ...

Theorem: If there is a problem P ∈ NP with P 6∈ NP, then P 6= NP .

• So, if it could be shown, for example, that unsatisfiability of Boolean
expressions cannot be solved in nondeterministic polynomial time, then
P 6= NP .
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NP-Hard Problems

• The terminology NP-hard is used in two distinct but related ways.

• It is used to describe decision problems which are at least as hard as
NP-complete problems.

• In this sense, all complements of NP-complete problems are
NP-hard.

• It is used to describe optimization (and other) problems which arise from
decision problems in NP.

Example: The 0/1 Knapsack optimization problem.

• A knapsack with capacity M.

• A set E of objects, with each object a having a weight wa and a
value va.

• Find the most value which can be placed in the knapsack without
exceeding the capacity.

• Rather than asking to meet a target value, find the most valuable
configuration.
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For More Information

• The following notes, from a course on the analysis of algorithms, present
a somewhat more formal and complete look at some of the topics of
these slides.
http://www8.cs.umu.se/~hegner/Courses/TDBC91/H08/Slides/cmplxthy9.pdf

• The slides from the whole course may be found here:
http://www8.cs.umu.se/~hegner/Courses/TDBC91/H08/Slides/index.html
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