An Overview of Complexity Theory

 5DV037 - Fundamentals of Computer Science Umeå University Department of Computing Science Stephen J. Hegner hegner@cs.umu.se http://www.cs.umu.se/~hegner
What is Complexity Theory

- Until this point, the focus has been on what can be done with a particular computing model.
- Attention is now turned to how efficiently tasks can be performed.
- Time resources required (time complexity)
- Space resources required (space complexity)
- There are three levels at which these question may be asked:

Algorithm analysis: How well does a given algorithm perform a given task?

- How efficient is quicksort?

Problem complexity: What is the best performance possible for a given problem?

- How efficient is the best possible sorting algorithm?

Complexity theory: How can different problems in general be classified in terms of complexity?

- How does the complexity of sorting compare to that of finding minimum spanning trees?

Complexity Measures for Computations on TMs

- Turing machines provide an ideal framework for formulating abstract complexity theory.
- The number of steps which such a machine takes in performing a computation is inherent in the model.
- Just count the number of transitions..
- the length of the computation from initial configuration to the halt configuration.
- The size of the input is the length of the input string.
- These parameters are independent of the problem and independent of the representation of the input.
- Other models of computation do not always provide such flexibility.

A Review of "Big-Oh" Notation

- Typically, the performance of an algorithm is measured in terms of the size n of the input.
- Time or space usage may be measured; here time will be chosen since it is the most common resource to be so measured.
- Recall: An algorithm is $O(f(n))$ If there is:
- a constant $k>0$, and
- an $n_{0} \in \mathbb{N}$, such that:
- for all $n \geq n_{0}$, the algorithm runs in at most $k \cdot f(n)$ time units.

Example: A "good" sorting algorithm runs in time $O(n \cdot \log (n))$.

- The parameter n measures the number of elements to be sorted.
- The time is measured in terms of some primitive execution units of the computer (assign, compare, add, etc.).
- This model may be used for worst-case, average-case, and best-case time.

Limitations of the Problem-Specific Approach

- This model works well when comparing different algorithms for the same problem.
- However, it requires modification to be useful in comparing different problems.
- Consider the assumptions made in modelling the sorting problem:
- Each element in the input sequence is of a fixed size.
- Operations such as comparison take fixed time regardless of the size of the elements which are to be compared.
- These assumptions must fail as n becomes sufficiently large and the input consists of distinct $\overline{\text { elements. }}$
- Other problems may use other assumptions.
. Such assumptions make it difficult to compare the complexity of algorithms for different problems.
- Particularly, the techniques to be developed transform one problem to another..
- and this requires a uniform method of problem encoding.

Low-Level Measurement of Complexity

- In order to compare algorithms for different problems, a lower-level notion of complexity is appropriate.
- This model is based upon the ubiquitous DTM.
- The size of the input is measured by the length of the representation as a string in the input alphabet Σ.
- This may be larger than the conventional length.

Example; In a list of numbers to be sorted, the number m will require $\log (m)$ bits in binary notation, rather than a constant size regardless of m.

- The number of steps which an operation requires is measured by the number of steps that the implementing DTM takes.
- This may be larger than the conventional programming-language convention.
Example; The time required to compare two numbers will be proportional to the lengths of the representations of those numbers, rather than a constant.

Reasonable Encodings

- A further issue is that algorithms may be made to look better than they really are through the use of clever encoding.

Example: Encode numbers in unary and implement addition as concatenation.

Example: Encode numbers as their prime factors and implement multiplication as factor-by-factor addition.

- Both of these encoding schemes are "unreasonable" because they do not work with standard representations which may be used in many different problems.
- To obtain uniform results across diverse problems, and to ensure that transformations of one problem to another are meaningful, it is necessary that the encodings abide by certain constraints.

Structured Strings

- It is usually required that all algorithms employ encodings based upon structured strings, which are defined as follows.
Numbers: Any string of 0's and 1's (possibly preceded by a minus sign) is a structured string which represents a number in base two.
Names: If σ is a structured string, then so too is [σ], which represents a name encoded by σ.
Lists: If $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$ are structured strings, then so too is $\left\langle\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right\rangle$, representing the corresponding list or tuple.
- This is enough to encode problem instances for most problems of interest.
- Since numbers, tuples, and names are encoded in a standard way, comparison of input size for different problems becomes feasible.
- Note that this approach will not generally result in the "standard" encoding for specific problems, such as sorting.

Dependence upon the Specific Model of Turing Machine

- The Church-Turing thesis provides a common upper bound on what a computing machine can do.
- However, it says nothing about complexity.
- Different models of computer can and do have vastly different complexities for a given algorithm.
- To reconcile this, the standard definition of abstract complexity is based upon a multi-tape Turing machine.
- In particular, the input in on a different tape than the working memory.

Problem Classes of the Form $\operatorname{DTIME}(T(n))$

- A complexity function is any function $f: \mathbb{N} \rightarrow \mathbb{R}$ (here \mathbb{R} is the real numbers)
- which is eventually nonnegative in the sense that there is an $n_{0} \in \mathbb{N}$
- such that for any $n \geq n_{0}, f(n) \geq 0$.
- Fix the input alphabet to be $\{0,1\}$.
- Given a complexity function f, define $\operatorname{DTIME}(f(n))$ to be the set of all languages (or decision problems) which can be decided on a multitape DTM in $O(f(n))$ steps, with n representing Length (w).
- The name DTIME stands for deterministic time.
- Some authors use the notation $\operatorname{TIME}(f(n))$ instead.
- Some authors view $\operatorname{DTIME}(f(n))$ to mean those problems which can be solved in at most $f(n)$ steps on a multitape DTM for every input of length at most n (with no requirement that n be large and with no scaling by a constant).

Relative Complexity for Different Models of DTM

- How dependent is this notion upon the particular model of DTM?

Theorem: Suppose that a given problem P may be solved in at most $f(n)$ steps for $\operatorname{DTIME}(f(n))$ for some complexity function f.

- Then P may be solved on a DTM with only one tape in at most $(f(n))^{2}$ steps. \square
- In other words, the "slowdown" in going from a multitape DTM to a single-tape DTM is at most square in the original complexity.
Example: If a given problem may be solved in at most (Length $(w))^{3}$ steps on a multitape DTM, then it may be solved on a single-tape DTM in at most (Length $(w))^{6}$ steps.
- For the purposes of the framework to be developed, this is not of major importance, as will be seen next.

The Problem Class \mathcal{P}

- Define

$$
\mathcal{P}=\bigcup_{i \in \mathbb{N}} D \operatorname{TIME}\left(n^{i}\right)
$$

- \mathcal{P} is the set of all decision problems which can be solved in polynomial time on a DTM.
- It is also said that \mathcal{P} is the set of problems which may be solved in deterministic polynomial time.
- Note that the $f(n) \rightsquigarrow f(n)^{2}$ "slowdown" for multi-tape to single-tape DTMs does not affect the membership of this class.
- It would be the same were the definition of $\operatorname{DTIME}(f(n))$ for single-tape machines.

Keep in mind: Everything is decidable; this is about complexity, not about halting!

Which Problems Are in \mathcal{P} ?

- Membership in the class \mathcal{P} is often taken as the gold standard for whether or not a given problem admits a tractable solution or not.
- Unfortunately, for many problems of immense practical importance, no (deterministic) polynomial-time algorithm is known.
- Yet, it has never been proven that no such algorithm can exist.
- The focus of this discussion is to try to understand this situation better.
- Many problems which fall into this class exhibit a unique behavior:
- Very efficient algorithms (typically $O(n)$) exist for verifying that a candidate solution is correct.
- The best known algorithms for finding a solution are exponential $O\left(2^{n}\right)$ or nearly so.
- Some examples will illustrate this situation.

Example - Satisfiability of Boolean Expressions

- Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite set of variables.
- A truth assignment to X is a mapping $h: X \rightarrow\{0,1\}$.
- x_{i} is true for h if $h\left(x_{i}\right)=1$, and false for h if $h\left(x_{i}\right)=0$.
- The Boolean expressions over X, denoted $\operatorname{BE}(X)$, are built up from from X in the usual way, using \neg, \vee, and \wedge.

Examples:

$$
\begin{aligned}
& \varphi_{1}=\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(\neg\left(\neg x_{3} \wedge x_{4}\right)\right) \\
& \varphi_{2}=\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(\neg\left(\neg x_{3} \vee x_{4}\right)\right)
\end{aligned}
$$

- The truth assignment $h: X \rightarrow\{0,1\}$ extends to Boolean expressions in the obvious way $\bar{h}: \operatorname{BE}(X) \rightarrow\{0,1\}$.
- The formula φ is satisfiable if there is a truth assignment h for which $\bar{h}(\varphi)=1$.
Examples: φ_{1} is satisfiable with $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,0,0)$ or $(0,1,0,0)$. φ_{2} is unsatisfiable.
- This general problem (as X ranges over all finite sets of variables) is known as SAT (satisfiability of Boolean expressions).

Finding vs. Verifying a Solution

- It is easy to verify that a proposed solution is valid:

Example: Verify that $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,0,0)$ satisfies
$\varphi_{1}=\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \wedge \neg x_{2}\right) \wedge\left(\neg\left(\neg x_{3} \wedge x_{4}\right)\right)$.

- $(1 \vee 0) \wedge(\neg 1 \vee 0 \vee \neg 0) \wedge(1 \vee \neg 0 \vee \neg 0) \wedge(\neg 1 \vee \neg 0) \wedge(\neg(\neg 0 \wedge 0))=$ $(1 \vee 0) \wedge(0 \vee 0 \vee 1) \wedge(0 \vee 1 \vee 1) \wedge(\neg(1 \wedge 0))=(1) \wedge(1) \wedge(1) \wedge(\neg 0)=$ $(1) \wedge(1) \wedge(1) \wedge(1)=1$.
- Such verification can be performed in at most quadratic time on a multi-tape DTM (better on a random-access machine).
- However, in order to
(a) find a solution, or to
(b) determine that no solution exists,
no approach which is substantially better than exhaustive search is known.
- For a formula with n variables, the number of possibilities is 2^{n}.
*- Determining unsatisfiability has exponential complexity in the worst case.

Other Problems which Have Similar Properties

- Many important problems exhibit these properties:
- Verification of a candidate solution is fast (typically no worse than $\left.O\left(n^{2}\right)\right)$
- The best known algorithms for finding a solution are exponential.

Example: The 0/1 Knapsack decision problem:

- A knapsack with capacity M.
- A set E of objects, with each object a having a weight w_{a} and a value v_{a}.
- A goal total value (or profit) P.
- Find a subset $S \subseteq E$ with:
- value at least $P: \quad \sum_{a \in S} \vee_{a} \geq P$.
- weight at most M : $\quad \sum_{a \in S} w_{a} \leq M$.
- Application: Optimization of resource usage.
- Value = profit.
- Weight = resource usage by the given object.
- Capacity $=$ total amount of resources available.

Other Problems which Have Similar Properties - 2

- Graph problems:
- vertex cover
- clique
- Hamiltonian circuit
- Allocation problems:
- partition
- three-dimensional matching.
- Plus thousands of others which have arisen over the years.
- All share this same property:
- Easy to verify a candidate solution.
- No known way which is substantially better in the worst case than exhaustive search (exponential complexity) to find a solution.
- But no one has ever been able to show that they are not in \mathcal{P} either.

Common Properties of These Problems

- All of these problems have two properties in common.
- Each can be solved efficiently on a nondeterministic TM.
- They may each be transformed to the other efficiently (i.e., in polynomial time).
- These properties will now be examined more closely, and their implications assessed.

Problem Solving Using Nondeterministic Turing Machines

- Recall that a nondeterministic TM (NDTM) can have many parallel or alternative branches of execution.
- A string is accepted (or a problem answer is "yes") if some branch ends in an accepting state.
- A string is rejected (or a problem answer is "no") if all branches end in a rejecting state.
- Only deciders are considered; failure to halt is not a possibility.

Nondeterministic Solution of Satisfiability

- For a NDTM which tests for satisfiability of Boolean expressions, and a four-variable formula such as

$$
\varphi_{1}=\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \wedge \neg x_{2}\right) \wedge\left(\neg\left(\neg x_{3} \wedge x_{4}\right)\right)
$$

- the alternatives of the machine will appear as shown below.
- Each path may be run in quadratic time, so the nondeterministic complexity is $O\left(n^{2}\right)$ (on an NDTM; better on a random-access machine).

Problem Classes of the Form NTIME $(T(n))$

- The definition of NTIME is similar to that of DTIME, but for nondeterministic machines.
- Given a complexity function f, define $\operatorname{NTIME}(f(n))$ to be the set of all languages (or decision problems) which can be decided on a multitape NDTM in $O(f(n))$ steps, with n representing Length (w).
- The name NTIME stands for nondeterministic time.
- Some authors view $\operatorname{NTIME}(f(n))$ to mean those problems which can be solved in at most $f(n)$ steps on a multitape NDTM for every input of length at most n (with no requirement that n be large and with no scaling by a constant).
- An $f(n) \rightsquigarrow f(n)^{2}$ "slowdown" for multi-tape to single-tape NDTMs exists, in analogy to the DTM case.

The Problem Class $\mathcal{N} \mathcal{P}$

- The definition of $\mathcal{N} \mathcal{P}$ is similar to that of \mathcal{P}, but using NTIME instead of DTIME:

$$
\mathcal{N P}=\bigcup_{i \in \mathbb{N}} \operatorname{NTIME}\left(n^{i}\right)
$$

- $\mathcal{N P}$ is the set of all decision problems which can be solved in polynomial time on a nondeterministic TM (NDTM).
- It is also said that $\mathcal{N P}$ is the set of problems which may be solved in nondeterministic polynomial time.
- Note that the $f(n) \rightsquigarrow f(n)^{2}$ "slowdown" for multi-tape to single-tape DTMs does not affect the membership of this class.
- Think of $\mathcal{N P}$ as the set of decision problems which may be solved in polynomial time under the model of computation in which:
- Unbounded branching of alternatives is allowed; and
- Success of one branch is equivalent to success (a "yes" answer).

The Question of $\mathcal{P} \stackrel{?}{=} \mathcal{N} \mathcal{P}$

- Clearly $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$, since every DTM may be regarded as an NDTM.

Question: What about the reverse inclusion, $\mathcal{N} \mathcal{P} \subseteq \mathcal{P}$?

- It might seem "obvious" that this cannot be the case.
- Checking a solution is "obviously" less complex than determining whether a solution exists (within exponentially many possibilities).
- Many computer scientists feel that this is the case.
- But (up to polynomial-time equivalence) is it?
- Despite the practical experience, no one has ever been able to come close to showing that this is the case.
- It is perhaps the most famous and important open problem in theoretical computer science.

The Idea of $\mathcal{N} \mathcal{P}$-Completeness

- There is a further dimension to this story.
- Most of the decision problems of the form:
- it is easy to test a given solution for correctness; but
- no algorithm in \mathcal{P} is known for finding such a solution
- are equivalent in a very compelling way.
- If an algorithm in \mathcal{P} could be found for finding solutions to one of these problems, then ...
- ... such an algorithm could be found for all such problems.
- This problems in this class are called $\mathcal{N} \mathcal{P}$-complete, and the class is denoted $\mathcal{N} \mathcal{P C}$.
- This important issue warrants a closer look.

Polynomial-Time Reduction

- A reduction of decision problem P_{1} to decision problem P_{2} is a computable function which maps instances of P_{1} into instances of P_{2} and which preserves "yes" and "no".
- This needs to be made a bit more precise.
- View a decision problem as a pair $P=\left(\operatorname{lnst}(P), \rho_{P}\right)$, in which
- $\operatorname{lnst}(P)$ is the set of instances of P; and
- $\rho_{P}: \operatorname{lnst}(P) \rightarrow\{0,1\}$ is the function which gives the answer "yes" or "no" for each instance.

Example: For the problem SAT:

- Inst(SAT) is the set of all Boolean expressions (over finite sets of variables);
- $\rho_{\text {SAT }}$ sends the Boolean expression φ to 1 if it is satisfiable, and 0 if it is not.

Polynomial-Time Reduction - 2

- Formally, a reduction of P_{1} to P_{2} is a computable function $e: \operatorname{Inst}\left(P_{1}\right) \rightarrow \operatorname{Inst}\left(P_{2}\right)$ which makes the following diagram commute:

- This means that both paths from $\operatorname{Inst}\left(P_{2}\right)$ to $\{0,1\}$ yield the same result.
- Think of using e as a subroutine in a decider for P_{2} in order to decide P_{1}.
- The reduction e is polynomial or tractable if there exists a DTM which computes it.
- Write

$$
P_{1} \propto P_{2}
$$

just in case there is a polynomial reduction from P_{1} to P_{2}.

- In this case, say that P_{1} polynomially reduces (or tractably reduces) to P_{2}.

Example - Conjunctive Normal Form

- A literal is a Boolean expression of the form x or $\neg x$, with x a variable.
- A clause is an expression of the form $\left(\ell_{1} \vee \ell_{2} \vee \ldots \vee \ell_{k}\right)$ in which each ℓ_{i} is a literal.
- A Boolean formula is in conjunctive normal form (CNF) if it is a conjunction of clauses; i.e.,

$$
\left(\ell_{11} \vee \ell_{12} \vee \ldots \vee \ell_{1 k_{1}}\right) \wedge\left(\ell_{21} \vee \ell_{22} \vee \ldots \vee \ell_{2 k_{2}}\right) \wedge \ldots \wedge\left(\ell_{m 1} \vee \ell_{m 2} \vee \ldots \vee \ell_{m k_{m}}\right)
$$

Example:

$$
\begin{aligned}
\varphi_{1} & =\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(\neg\left(\neg x_{3} \wedge x_{4}\right)\right) \\
& \text { is not in CNF, while } \\
\varphi_{1}^{\prime} & =\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee \neg x_{4}\right) .
\end{aligned}
$$

is in CNF.

- A Boolean formula in CNF is in 3-conjunctive normal form (3CNF) if each clause contains at most three literals.
Example: φ_{1}^{\prime} above is in 3CNF.
- The corresponding satisfiability problems are called CNF-SAT and 3CNF-SAT.

Example - Reduction of CNF-SAT to 3CNF-SAT

Proposition: CNF-SAT \propto 3CNF-SAT.

Proof: It it suffices to give a reduction on clauses.

- This will be illustrated for a clause of five literals.
- The clause $\left(\ell_{1} \vee \ell_{2} \vee \ell_{3} \vee \ell_{4} \vee \ell_{5}\right)$ is satisfiable iff the conjunction $\left(\ell_{1} \vee \ell_{2} \vee y_{1}\right) \wedge\left(\ell_{3} \vee \neg y_{1} \vee y_{2}\right) \wedge\left(\ell_{4} \vee \ell_{5} \vee \neg y_{2}\right)$ is.
- The y_{i} 's are new variables.
- This idea extends in a natural way, and may be performed in deterministic polynomial time. \square

Warning: You may have learned how to transform any Boolean expression into one in CNF is another course.

- This transformation is not polynomial.
- However, SAT \propto CNF-SAT.

Formalization of $\mathcal{N} \mathcal{P}$-Completeness and the Class $\mathcal{N} \mathcal{P C}$

- A problem P is called $\mathcal{N} \mathcal{P}$-complete if
(a) it is in $\mathcal{N P}$; and
(b) for every other problem $P^{\prime} \in \mathcal{N} \mathcal{P}, P^{\prime} \propto P$.
- The collection of all $\mathcal{N P}$-complete problems is denoted $\mathcal{N P} \mathcal{C}$.
- Intuitively, an $\mathcal{N} \mathcal{P}$-complete problem is a "hardest" problem within $\mathcal{N} \mathcal{P}$.

Question: Do $\mathcal{N} \mathcal{P}$-complete problems exist?
Answer: Yes, there are many of them.

- The fundamental $\mathcal{N} \mathcal{P}$-complete problem is SAT.
- This is known as Cook's theorem.

Cook's Theorem

Theorem (Stephen A. Cook, 1971): SAT $\in \mathcal{N P} \mathcal{P C}$; i.e., the problem SAT is $\mathcal{N} \mathcal{P}$-complete.
Proof idea: Let $P \in \mathcal{N} \mathcal{P}$, and let M be a (single-tape) NDTM which solves P in nondeterministic polynomial time.

- Write a huge logical expression which describes the behavior of M for a given input $A \in \operatorname{Inst}(P)$.
- This expression uses propositions of the following forms:

$$
\begin{aligned}
C(i, j, t)=1 & \Leftrightarrow \text { tape cell } i \text { contains symbol } j \text { at time } t . \\
S(k, t)=1 & \Leftrightarrow M \text { is in state } q_{k} \text { at time } t . \\
H(i, t)=1 & \Leftrightarrow \text { the tape head is scanning cell } i \text { at time } t .
\end{aligned}
$$

- The parameters i, j, k, and t are bounded in value, so these are just (parameterized) propositions.
- The expression may be generated in deterministic polynomial time.
- The logical expression describing the behavior of M is satisfiable iff A is true for P (the answer is "yes"). \square

Implications of Cook's Theorem

Corollary: If SAT $\in \mathcal{P}$, then every $P \in \mathcal{N P}$ is also in \mathcal{P}. \square

- In other words, if $\mathrm{SAT} \in \mathcal{P}$, then $\mathcal{P}=\mathcal{N} \mathcal{P}$.
- Over the years, thousands of other important (and not so important) problems have also been shown to be $\mathcal{N} \mathcal{P}$-complete, including:
- CNF-SAT and 3CNF-SAT,
- the discrete knapsack problem,
- the other problems on the list presented earlier.
- If any one of these problems could be shown to be in \mathcal{P}, then they would all be in \mathcal{P}.
- Still, no one has been able to do this.

Question: Are there problems in $\mathcal{N P}$ which are not in $\mathcal{N P C}$?
Answer: Excluding trivial problems (always "yes" or always "no")...

- ... a positive answer would imply that $\mathcal{P} \neq \mathcal{N} \mathcal{P}$.
- Nobody knows.

$\mathcal{N} \mathcal{P}$-Incompleteness $\Rightarrow \mathcal{P} \neq \mathcal{N} \mathcal{P}$

- Let Idprob $=(\{0,1\}, \mathbf{1})$ be the identity problem with $\mathbf{1}:\{0,1\} \rightarrow\{0,1\}$ the identity function.
Observation: If $P \in \mathcal{P}$, then $P \propto$ Idprob.
Proof: Let $P=\left(\operatorname{lnst}(P), \rho_{P}\right)$ be any problem in $\mathcal{N} \mathcal{P}$, and consider the diagram below.

- If $\mathcal{P}=\mathcal{N} \mathcal{P}$, then every $P \propto$ Idprob for every $P \in \mathcal{N} \mathcal{P}$; i.e., Idprob is $\mathcal{N} \mathcal{P}$-complete.
- From this it follows that, if $\mathcal{P}=\mathcal{N} \mathcal{P}$, then any nontrivial decision problem which is in $\mathcal{N P}$ is $\mathcal{N} \mathcal{P}$-complete if
- A decision problem is nontrivial if it is true for some of its instances and false for others.

Co- $\mathcal{N} \mathcal{P}$ Problems

- In contrast to that of \mathcal{P}, the definition of $\mathcal{N} \mathcal{P}$ is asymmetric.

Example: Consider the problem SAT again.

- If a Boolean expression φ is satisfiable, this may be discovered in nondeterministic polynomial time..
- However, to establish unsatisfiability requires that all possibilities fail.
- The branching behavior of the NDTM does not appear to help.

Co- $\mathcal{N P}$ Problems - 2

- The complement \bar{P} of a decision problem just switches 0 and 1 (or "yes" and "no").
- $\rho_{\bar{P}}=1-\rho_{P}$.

Example: Unsatisfiability of Boolean expressions is the complement of satisfiability.

- A problem P is in co- $\mathcal{N P}$ if its complement $\bar{P} \in \mathcal{N} \mathcal{P}$.
- As illustrated, co- $\mathcal{N} \mathcal{P}$ problems are "intuitively" more difficult than problems which are in $\mathcal{N} \mathcal{P C}$.
- However ...

Theorem: If there is a problem $P \in \mathcal{N} \mathcal{P}$ with $\bar{P} \notin \mathcal{N} \mathcal{P}$, then $\mathcal{P} \neq \mathcal{N P}$.

- So, if it could be shown, for example, that unsatisfiability of Boolean expressions cannot be solved in nondeterministic polynomial time, then $\mathcal{P} \neq \mathcal{N} \mathcal{P}$.

$\mathcal{N} \mathcal{P}$-Hard Problems

- The terminology $\mathcal{N} \mathcal{P}$-hard is used in two distinct but related ways.
- It is used to describe decision problems which are at least as hard as $\mathcal{N} \mathcal{P}$-complete problems.
- In this sense, all complements of $\mathcal{N} \mathcal{P}$-complete problems are $\mathcal{N} \mathcal{P}$-hard.
- It is used to describe optimization (and other) problems which arise from decision problems in $\mathcal{N} \mathcal{P}$.

Example: The $0 / 1$ Knapsack optimization problem.

- A knapsack with capacity M.
- A set E of objects, with each object a having a weight w_{a} and a value v_{a}.
- Find the most value which can be placed in the knapsack without exceeding the capacity.
- Rather than asking to meet a target value, find the most valuable configuration.

For More Information

- The following notes, from a course on the analysis of algorithms, present a somewhat more formal and complete look at some of the topics of these slides.
http://www8.cs.umu.se/~hegner/Courses/TDBC91/H08/Slides/cmplxthy9.pdf
- The slides from the whole course may be found here:
http://www8.cs.umu.se/ ${ }^{\sim}$ hegner/Courses/TDBC91/H08/Slides/index.html

