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Language Hierarchies

• The classes of languages which have been studied in this course fit into a
natural hierarchy.

Example: The regular languages are a subset of the context-free languages.

• In this presentation, such hierarchies will be formulated more carefully.

• Two main hierarchies will be considered:

• The Chomsky hierarchy:

• formulated by the eminent linguist Noam Chomsky during the
1950’s;

• somewhat incomplete but still important to know because of the
widespread use of the associated terminology.

• A full hierarchy summarizing all of the classes which have been studied in
the course, together with an additional class present in the Chomsky
hierarchy.
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The Classical Chomsky Hierarchy

• This hierarchy was forwarded by Noam Chomsky during the 1950s.

• It is summarized in the following table.

Chomsky
Name

Modern
Name Accepter Grammar

type-3 regular DFA/NFA regular

type-2 context free NPDA context free

type-1 context sensitive LBA context sensitive

type-0 Turing enumerable DTM/NDTM phrase structure

• Each line in the table identifies a class which is a proper subset of the line
below it.

• The third line introduces unfamiliar notions.

• LBA stands for linear-bounded automaton.

• LBAs and context-sensitive grammars and languages will be introduced
on the following slide.
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Context-Sensitive Grammars and Languages and LBAs

• The grammar G = (V,Σ,S,P) is context sensitive (a CSG) if every
production α → β has the the property that Length(α) ≤ Length(β).

• Thus, a CSG cannot have any null rules (A → λ).

• Note that a context-free grammar is context sensitive provided it has no
null rules.

• A language L is context sensitive (a CSL) if L \ {λ} is generated by a
CSG.

• Thus, the empty string is treated as a special case.

• A linear-bounded automaton (or LBA) is a DTM M which has the
restriction that for any input of the form I〈M, α〉, the tape head is only
allowed to scan and rewrite the tape squares containing α.

• Thus, the memory allowed an LBA is bounded by the length of the input
string.

• This model is largely of historical interest and will not be studied further
in this course.
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The Hierarchy Studied in the Course

• Each row in the table is a proper subset of the row below it.

Name Accepter Grammar

regular language DFA/NFA regular grammar

deterministic CFL DPDA LR(k)

unambiguous CFL - unambiguous CFG

CFL NPDA CFG

CSL LBA CSG
(Turing) decidable /

recursive DTM/NDTM decider -
Turing acceptable /

recursively enumerable /
semidecidable DTM/NDTM PSG
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Some Closure Results

• L, L1, L2 = language in the class; R = regular language.

Name L1 ∪ L2 L1 ∩ L2 L L ∩ R

regular language Y Y Y Y

deterministic CFL N N Y Y

unambiguous CFL N N N Y

CFL Y N N Y

CSL Y Y O U
(Turing) decidable /

recursive Y Y Y Y
Turing acceptable /

recursively enumerable /
semidecidable Y Y N Y

• O = Open problem, to the best of my knowledge.
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Some Decidability Results

• D = decidable; N= undecidable.

Name L = ∅ L = Σ∗ L1 = L2 L1 ∩ L2 = ∅

regular language D D D D

deterministic CFL D D D U

unambiguous CFL D ? ? U

CFL D U U U

CSL D U U U
(Turing) decidable /

recursive D U U U
Turing acceptable /

recursively enumerable /
semidecidable U U U U

• ? = I am not sure, but I think that the answer is U.
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The Utility of a Formal Language Hierarchy

Question: What is the practical use of such a hierarchy and all of the
theoretical results?

• All real computers have finite memory and thus are modelled using finite
automata.

Answer: Although undecidable problems become “decidable” with finite
memory,

• the amount of time required to determine that a program which has
not halted is really looping would in general be enormous;

• enormous as in “the sun will burn out first and all life as we know it
will cease”.

• The theory thus provides a way to distinguish between problems which
are solvable only by exhaustive simulation and problems which can be
solved by a “smart” program.
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