The Limits of Algorithmic Computation

5DV037 - Fundamentals of Computer Science Umeå University
Department of Computing Science
Stephen J. Hegner
hegner@cs.umu.se
http://www.cs.umu.se/ ${ }^{\sim}$ hegner

Background: das Entscheidungsproblem

- In 1928, the eminent German mathematician David Hilbert (with Wilhelm Ackermann) posed das Entscheidungsproblem (the decision problem).
- The goal was to have an algorithm which would solve all mathematical problems. (A universal theorem prover.)
- In 1931, the Austrian mathematician Kurt Gödel showed that this is impossible via the incompleteness theorem for arithmetic of the natural numbers.
- In 1936, the British mathematician Alan Turing used a simple computer model to show that there are well-defined language problems which cannot be solved by computer.
- In 1937, the US mathematician Alonzo Church independently showed similar result for first-order logic.

Why Should You Care?

- Real systems in Al use theorem provers to make decisions on what to do.
- The result shows that theorem provers for first-order predicate logic (a very common modelling tool) cannot always decide on the truth value of an assertion.
- It might run forever (but it is not possible to tell whether it will.)
- Proving that a program is "correct" (that it satisfies certain conditions) is also very important in software engineering of critical systems.
- The result shows that this is not possible in the general case.

Why Should You Care? - 2

Example: Here is a practical example.

- Suppose that you are an assistant in an introductory programming course.
- You must grade 300 programs which are supposed to sort a list of numbers.
- You decide instead that you will write a program which will take as input the program of each student and decide whether or not it is correct.
- Unfortunately, the theory shows that this is not possible.
- The problem is that your program might run forever, but you cannot tell that it will.
- You could still write a program which would work in certain cases (e.g., the student program must sort a list of 1000 element in less than a second), but the theory shows that you cannot write a general solution.

The Number of Strings over Σ

Context: A finite nonempty alphabet Σ.

- The number of strings in Σ^{*} is countable.
- This means that they may be put into bijective (one-to-one) correspondence with the natural numbers \mathbb{N}.
- List the strings in order of increasing length.

Example: $\Sigma=\{a, b\}$

- All strings of length $0:\{\lambda\}$.
- All strings of length $1:\{a, b\}$.
- All strings of length 2: $\{a a, a b, b a, b b\}$.
- All strings of length 3: $\{a a a, a a b, a b a, a b b, b a a, b a b, b b a, b b b\}$.
- :
- Just list the shorter strings before the longer ones in lexicographic order.

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	\cdots
α	λ	a	b	$a a$	$a b$	$b a$	$b b$	$a a a$	$a a b$	$a b a$	$a b b$	$b a a$	$b a b$	$b b a$	$b b b$	\cdots

- Such a list is called an enumeration of the strings, and the set is called enumerable.

Enumeration Procedures

Context: A finite nonempty alphabet Σ and a language $L \subseteq \Sigma^{*}$.

- A DTM $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \square, F\right)$ is an enumerator for L if there is a distinguished state $q_{s} \in Q$ with the property that if the machine is started in configuration $\mathcal{I}\langle M, \lambda\rangle=\left\langle q_{0}, \lambda, \square, \lambda\right\rangle$ then it will execute a computation sequence

$$
\mathcal{I}\langle M, \lambda\rangle \vdash_{M}^{*} D_{1} \vdash_{M}^{*} D_{2} \vdash_{M}^{*} \ldots \vdash_{M}^{*} D_{i} \ldots \vdash_{M}^{*} \ldots
$$

in which:

- Each D_{i} is an output configuration in state q_{s} for some $\alpha_{i} \in L$;
- Every string in L is one of the α_{i} 's.
- Every configuration of the computation which is in state q_{S} is one of the D_{i} 's;
- If L is infinite, this computation must also be infinite.
- The computation is called a (recursive) enumeration of L,
- and L is said to be (recursively) enumerable.

Selection from an Enumeration

- Given an enumerator $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \square, F\right)$ for a language L, it is easy to build a machine $M^{\prime}=\left(Q^{\prime}, \Sigma, \Gamma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, \square, F^{\prime}\right)$ which takes as input $i \in \mathbb{N}$ and computes the $i^{\text {th }}$ element in the enumeration.
- Just run the enumerator, and keep a counter of how many strings have been found.
- It is also possible to eliminate duplicates, by keeping a list of those strings which have already been found (on a second tape or some other region of a single tape).
- Invoke the Church-Turing thesis!

The Number of Languages over Σ

Context: A finite nonempty alphabet Σ.
Fact: The number of languages over Σ is not countable.
Proof outline: Suppose, to the contrary, that $L_{0}, L_{1}, L_{2}, \ldots L_{i}, \ldots, \ldots$ is such an enumeration.

- Let $\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{i} \ldots$ be an enumeration of Σ^{*}.
- Define L to be the language which includes α_{i} iff $\alpha_{i} \notin L_{i}$ (for each $i \in \mathbb{N}$).
- Then L cannot be L_{i} for any $i \in \mathbb{N}$, because $\alpha_{i} \in L$ iff $\alpha_{i} \notin L_{i}$. \square
- This is a diagonalization argument.

Encoding the DTMs over Σ as Strings in $\{0,1\}^{*}$

Context: A DTM $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \square, F\right)$ over Σ with $\{0,1\} \subseteq \Sigma$.

- Without loss of generality, assume that M has exactly one final state.
- For n states, represent them $1, \ldots, n$, with 1 the start state and n the final state.
- Represent 「 as $\{1,2, \ldots, m\}$, with 1 representing .
- Encode states and tape symbols in unary using this convention.
- $1 \rightsquigarrow 1,2 \rightsquigarrow 11,3 \rightsquigarrow 111$, etc..
- Represent L, R, and S as 1,11 , and 111 , respectively.
- Represent the transition $\delta(q, a)=\left(q^{\prime}, a^{\prime}, d\right)$ as

Code(q)0Code(a)0Code($\left.q^{\prime}\right) 0 \operatorname{Code}\left(a^{\prime}\right) 0 \operatorname{Code}(d)$
in which $\operatorname{Code}(x)$ is the code of x in unary, as described above.

- Represent the DTM $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \square, F\right)$ as a string $\left\langle T_{1}, T_{2}, \ldots, T_{k}\right\rangle$ in which
- each T_{i} describes one entry of δ as indicated above;
- each comma is represented by a 0 ;
- n and m may be recovered from the T_{i} 's.

The Number of DTMs over Σ

Context: A finite nonempty alphabet Σ containing $\{0,1\}$.
A useful naming convention: Let DTM_{Σ} denote the set of all DTMs over Σ, using the encoding described on the previous slide.

- Thus, DTM Σ is a language over Σ.
- It encodes canonical representations of DTMs, up to a renaming of states.

Observation: DTM_{Σ} is a recursively enumerable language.
Proof: Use the representation given on the previous slide as the basis for an enumeration.

- Generate machines with smaller n and m before machines with larger values. \square
- There are (many) more languages than there are DTMs.
- Most languages are not Turing acceptable. \square

The Universal DTM for Σ

Context: Fix:

- A finite alphabet Σ with $\{0,1\} \subseteq \Sigma$ (rename if necessary).
- A (recursive) enumeration $M_{0}, M_{1}, \ldots, M_{i}, \ldots$ of the DTMs with input alphabet Σ (as just described).
- A (recursive) enumeration $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{i}, \ldots$, of the strings in Σ^{*}.
- A universal DTM (or universal Turing machine) for alphabet Σ takes two arguments:
- An index i identifying the DTM M_{i}; and
- An index j identifying the string α_{j};
- and:
- halts in an accepting state if $\alpha_{j} \in \mathcal{L}\left(M_{i}\right)$;
- halts in a rejecting state if $\alpha_{j} \notin \mathcal{L}\left(M_{i}\right)$ and M_{i} halts on input α_{i};
- does not halt if M_{i} does not halt on input α_{j}.
- Thus, a universal Turing machine is essentially an interpreter for DTMs.
- But, for simplicity, the definition deals with acceptance only, and not with computation of functions.

Building a Universal DTM for Σ

- It is straightforward to build such a machine.
- It has three main steps to compute $M_{i}\left(\alpha_{j}\right)$, defined by subroutines:
- Compute the representation of M_{i} (by running an enumerator).
- Compute the representation of α_{j} (by running an enumerator).
- Run a "DTM interpreter" on $\left(M_{i}, \alpha_{j}\right)$.
- The easiest way to argue that this can be done is to appeal to the Church-Turing thesis.
- You can write a program in C to do this, can't you?
- Tedious, but certainly possible.
- Build the machine explicitly as a three-tape DTM, and then appeal to the equivalence to a one-tape machine.

Notation: Let UDTM $_{\Sigma}$ denote a universal DTM over Σ.

- Write $\mathrm{UDTM}_{\Sigma}\langle i, j\rangle$ for the result of running $\operatorname{UDTM}_{\Sigma}$ on input $\langle i, j\rangle$.
- i.e., simulate M_{i} on input α_{j}.

The Halting Problem

Definition: The halting problem for DTMs over Σ is, given arbitrary $i, j \in \mathbb{N}$, determine whether UDTM_{Σ} halts on input $\langle i, j\rangle$.

- In other words, determine whether M_{i} halts when run from initial configuration $\mathcal{I}\left\langle M_{i}, \alpha_{j}\right\rangle$.
- The goal is to show that there is no DTM which can compute the answer to this question.
- To show this, begin by defining a modified universal DTM which only cares about halting.
Notation: Let HUDTM Σ denote the DTM which takes two inputs and computes

$$
\operatorname{HUDTM}_{\Sigma}\langle i, j\rangle= \begin{cases}1 & \text { if } \text { UDTM }_{\Sigma} \text { halts on input }\langle i, j\rangle \\ \text { undefined } & \text { if } \text { UDTM }_{\Sigma} \text { does not halt on input }\langle i, j\rangle\end{cases}
$$

- It is trivial to build $\operatorname{HUDTM}_{\Sigma}$ from UDTM $_{\Sigma}$.

The Halting Problem - 2

Notation: Let HUDTM Σ denote the DTM which takes two inputs and computes

$$
\operatorname{HUDTM}_{\Sigma}\langle i, j\rangle= \begin{cases}1 & \text { if } \text { UDTM }_{\Sigma} \text { halts on input }\langle i, j\rangle \\ \text { undefined } & \text { if } \text { UDTM }_{\Sigma} \text { does not halt on input }\langle i, j\rangle\end{cases}
$$

- Now, conjecture that a machine which computes the function obtained by replacing "undefined" by 0 in the definition of $\operatorname{HUDTM}_{\Sigma}$ could be built:

$$
\text { Halt }_{\Sigma}\langle i, j\rangle= \begin{cases}1 & \text { if } \mathrm{UDTM}_{\Sigma} \text { halts on input }\langle i, j\rangle \\ 0 & \text { if } \mathrm{UDTM}_{\Sigma} \text { does not halt on input }\langle i, j\rangle\end{cases}
$$

- Such a machine would solve the halting problem.

Diagonalization and the Halting Problem

$$
\text { Halt }_{\Sigma}\langle i, j\rangle= \begin{cases}1 & \text { if UDTM } M_{\Sigma} \text { halts on input }\langle i, j\rangle \\ 0 & \text { if UDTM } \Sigma \text { does not halt on input }\langle i, j\rangle\end{cases}
$$

- The values computed by Halt Σ may be viewed as entries in a matrix.
- Row i describes the halting pattern of M_{i}.
- Of special interest is the diagonal.
- Call the function so defined Δ-Halt $\Sigma: \quad \Delta$-Halt ${ }_{\Sigma}\langle i\rangle=$ Halt $_{\Sigma}\langle i, i\rangle$.

Diagonalization and the Halting Problem

$$
\text { Halt }_{\Sigma}\langle i, j\rangle= \begin{cases}1 & \text { if UDTM } M_{\Sigma} \text { halts on input }\langle i, j\rangle \\ 0 & \text { if UDTM } \Sigma \text { does not halt on input }\langle i, j\rangle\end{cases}
$$

- The values computed by Halt Σ may be viewed as entries in a matrix.
- Row i describes the halting pattern of M_{i}.
- Of special interest is the diagonal.
- Call the function so defined Δ-Halt $\Sigma: \quad \Delta$-Halt $\Sigma\langle i\rangle=$ Halt $_{\Sigma}\langle i, i\rangle$.

Diagonalization and the Halting Problem

$$
\text { Halt }_{\Sigma}\langle i, j\rangle= \begin{cases}1 & \text { if UDTM } M_{\Sigma} \text { halts on input }\langle i, j\rangle \\ 0 & \text { if UDTM } \Sigma \text { does not halt on input }\langle i, j\rangle\end{cases}
$$

- The values computed by Halt Σ_{Σ} may be viewed as entries in a matrix.
- Row i describes the halting pattern of M_{i}.
- Of special interest is the diagonal.
- Call the function so defined Δ-Halt $\Sigma: \quad \Delta$-Halt $\Sigma\langle i\rangle=$ Halt $_{\Sigma}\langle i, i\rangle$.

Diagonalization and the Halting Problem - 2

- Now consider the function $\bar{\Delta}$-Halt $_{\Sigma}: \quad \bar{\Delta}$-Halt $\Sigma\langle i\rangle=1-\Delta$-Halt $\Sigma\langle i\rangle$.
- This function cannot describe the halting pattern of any of the M_{i}.
- $\bar{\Delta}$-Halt $\Sigma\left\langle\alpha_{i}\right\rangle \neq$ Halt $_{\Sigma}\left\langle M_{i}, \alpha_{i}\right\rangle$.
- But it describes the halting pattern of Δ^{\prime}-Halt ${ }_{\Sigma}$:

$$
\Delta^{\prime}-\text { Halt }_{\Sigma}\langle i\rangle= \begin{cases}\text { undefined } & \text { if } \mathrm{UDTM}_{\Sigma} \text { halts on input }\langle i, i\rangle \\ 0 & \text { if } \mathrm{UDTM}_{\Sigma} \text { does not halt on input }\langle i, i\rangle\end{cases}
$$

- Hence Δ^{\prime}-Halt Σ_{Σ} cannot be computed by any DTM.

Diagonalization and the Halting Problem - 2

- Now consider the function $\bar{\Delta}$-Halt $_{\Sigma}: \quad \bar{\Delta}$-Halt $\Sigma\langle i\rangle=1-\Delta$-Halt $\Sigma\langle i\rangle$.
- This function cannot describe the halting pattern of any of the M_{i}.
- $\bar{\Delta}$-Halt $\Sigma\left\langle\alpha_{i}\right\rangle \neq$ Halt $_{\Sigma}\left\langle M_{i}, \alpha_{i}\right\rangle$.
- But it describes the halting pattern of Δ^{\prime}-Halt ${ }_{\Sigma}$:

$$
\Delta^{\prime}-\text { Halt }_{\Sigma}\langle i\rangle= \begin{cases}\text { undefined } & \text { if } \mathrm{UDTM}_{\Sigma} \text { halts on input }\langle i, i\rangle \\ 0 & \text { if } \mathrm{UDTM}_{\Sigma} \text { does not halt on input }\langle i, i\rangle\end{cases}
$$

- Hence Δ^{\prime}-Halt Σ_{Σ} cannot be computed by any DTM.

Diagonalization and the Halting Problem - 2

Theorem (The halting problem is unsolvable): The function Halt Σ which determines whether an arbitrary DTM M_{i} halts on an arbitrary input α_{j} is not computable by any DTM.
Proof: $\bullet \Delta^{\prime}$-Halt Σ is not computable by any DTM.

- But Δ^{\prime}-Halt Σ_{Σ} is trivially obtainable from Δ-Halt ${ }_{\Sigma}$, so the latter cannot be computable either.
- Since Δ-Halt ${ }_{\Sigma}$ is just Halt ${ }_{\Sigma}$ restricted to the diagonal, so if Δ-Halt Σ is not computable, neither can be Halt Σ. \square
Corollary: There exists a language over Σ which is semidecidable (Turing acceptable) but not decidable.
Proof: Just use the language $L=\left\{\langle i, j\rangle \in \mathbb{N} \times \mathbb{N} \mid \operatorname{HUDTM}_{\Sigma}\langle i, j\rangle=1\right\}$.
Encode the numbers in binary with 00 separating them. \square
Note: The proof given works for any Σ with at least two elements (regarded as 0 and 1).
- It is possible to establish an undecidability result for Σ containing only one element (will be done shortly).

Proving that Other Problems are Undecidable

- Equipped with the knowledge that the halting problem is undecidable, it is not difficult to establish that many other problems are undecidable as well.
- The most common technique is reduction, whose idea is as follows:
- Let L be a language which defines the problem to be shown undecidable.
- Assume, to the contrary, that there is a decider M for L.
- Use M as a component in the construction of a machine which solves the halting problem, a contradiction.

An Example of Reduction

Problem: Show that there is no decider which determines whether or not a given DTM M computes the total successor function $n \mapsto n+1$.

- Let M be any DTM which computes this function.
- Construct the following machine with single input $i \in \mathbb{N}$:
begin
Determine M_{i} using an enumerator;
Determine α_{i} using an enumerator;
Run M_{i} on $\alpha_{i} ;$ /* Only halting matters */ *
Run M on input $i ; /^{*}$ Only reached if M_{i} halts on $\alpha_{i}^{*} /$
end
- This machine computes the function which is $i+1$ if M_{i} halts on α_{i} and undefined otherwise.
- Feed a description of this DTM to a decider for the successor function to compute Δ-Halt Σ.
- So, no such decider can exist.

Black-Box Properties of Computations

- The main idea of the example on the previous slide is not tied to the particular function $n \mapsto n+1$.
- With minor modifications, it applies to a very wide class of problems.

Definition: A black-box property of a DTM M is any statement which concerns solely:
(a) the language which M accepts; and/or
(b) the functions which M computes (of any number of variables).

- A black-box property may not depend upon how M computes.

Examples: $\mathrm{Y}=$ black-box property; $\mathrm{N}=$ not black-box property.

- M halts on all inputs. (Y)
- $\mathcal{L}(M)=L$ for a given language L. (Y)
- M computes a given partial function f. (Y)
- M returns to its starting state during some computation. (N)
- M uses at most 1000 tape squares during any computation. (N)

Rice's Theorem for Recursive Languages

- An black-box property is called nontrivial is some DTMs have that property while others do not.

Theorem (H. Gordon Rice 1953): Let P be a nontrivial black-box property of DTMs. Then the question of whether a given DTM M has that property is undecidable.

- In layman's words, this theorem says that almost nothing about the behavior of DTMs is decidable.

Proof sketch: The general idea follows the reduction example for the successor function $n \mapsto n+1$.

- Use a decider M for a nontrivial black-box property P do build a decider for the halting problem.
- The resulting contradiction establishes that the decider for P cannot exist.
- There are a few more details to consider; they are sketched briefly on the following slide. \square

Proof Idea for Rice's Theorem

- Let P a nontrivial black-box property of DTMs.
- This property partitions the DTMs into:
- $S_{1}=$ all DTMs with property P.
- $S_{2}=$ all DTMs without property P.
- The DTM which never halts on any input must be in one of these classes.
- Assume, without loss of generality, that it is in S_{2}.
- Let M be any machine in S_{1}.
- Construct the following machine which takes input $i \in \mathbb{N}$:

begin

Determine M_{i} using an enumerator;
Determine α_{i} using an enumerator;
Run M_{i} on $\alpha_{i} ;$ /* Only halting matters */
Run M on a suitable input obtained from $i ; /^{*}$ Only reached if M_{i} halts on $\alpha_{i}{ }^{*} /$ end

- This machine is in S_{1} if M_{i} halts on input α_{i} and in S_{2} if not.
- Thus, a decider for P may be used to solve the halting problem.

A Practical Application of Rice's Theorem

- Recall the following example situation, posed earlier.
- Suppose that you are an assistant in an introductory programming course.
- You must grade 300 programs which are supposed to sort a list of numbers.
- You decide instead that you will write a program which will take as input the program of each student and decide whether or not it is correct.
- An application of Rice's Theorem establishes that it is not possible to write such a program.
- It defines a nontrivial black-box property of machines (programs).

The Application of Rice's Theorem to Functions

- The following questions about a DTM M are undecidable:
- Is the function f_{M} which M computes total?
- Is $f_{M}(i)$ defined for a given fixed i ?
- Is $f_{M}(i)$ defined for some $i \in \mathbb{N}$?
- Is $f_{M}(i)$ defined for only finitely many $i \in \mathbb{N}$?
- Is $f_{M}=g$ for some given function g ?
- Note that the last element in the list above is a special case of the "grading program" problem identified earlier.
- It is not possible build a decider which takes as input another program and decides whether or not it computes a specified function.

Total vs. Partial Correctness of Programs

- In a property of the form

$$
f_{M}=g \text { for some given total function } g
$$

g may be thought of as a program specification which M must satisfy.

- In program verification, there are two notions of satisfaction of a specification.
Total correctness: f_{M} agrees with g everywhere (i.e., $f_{M}=g$). Partial correctness: f_{M} agrees with g whenever M halts.
- Think of this in terms of a concrete example of a total function. Example: The successor function succ : $n \mapsto n+1$.
- Even the machine which never halts agrees with succ whenever it halts, so it is a partially correct realization of that function.
- Although partial correctness is "weaker" than total correctness, both are undecidable in the general case, in view of Rice's Theorem.

The Application of Rice's Theorem to Languages

- The following questions about a DTM M are undecidable:
- Is $\mathcal{L}(M)=L$ for a given fixed L ?
- Is $\mathcal{L}(M)=\emptyset$?
- Is $\mathcal{L}(M)=\Sigma^{*}$?
- Is $\mathcal{L}(M) \subseteq L$ for a given fixed $L \neq \Sigma^{*}$?
- Is $L \subseteq \mathcal{L}(M)$ for a given fixed $L \neq \emptyset$?
- Is $\mathcal{L}(M)$ a regular language?
- Is $\mathcal{L}(M)$ a context-free language?
- Is $\mathcal{L}(M)$ the intersection of two CFLs?
- Is $\mathcal{L}(M)$ the complement of a CFL?
- Is $\mathcal{L}(M)$ a deterministic CFL?
- Is $\mathcal{L}(M)$ an inherently ambiguous CFL?
- Is $\mathcal{L}(M)$ a recursive language?
- Is $\mathcal{L}(M)=\mathcal{L}(M)^{R}$?
- and many more...

More Complex Applications of Rice's Theorem

- Consider the question Q :

$$
\text { Given two DTMs } M \text { and } M^{\prime} \text {, is } \mathcal{L}(M)=\mathcal{L}\left(M^{\prime}\right)
$$

- Such questions can often be answered in the negative by showing that a subproblem is not decidable.
- For example, from the previous slide it is known that the following question is undecidable:

For a given DTM M, is $\mathcal{L}(M)=\emptyset$?

- Thus, fixing M^{\prime} to be any DTM for which $\mathcal{L}\left(M^{\prime}\right)=\emptyset$, a special case of the question Q is obtained which is known to be undecidable.
- If it is not possible to decide $\mathcal{L}(M)=\emptyset$, then it is certainly not possible to decide $\mathcal{L}(M)=\mathcal{L}\left(M^{\prime}\right)$ for arbitrary M^{\prime}.

Problems for Which Rice's Theorem is not Applicable

- Rice's theorem is not directly applicable to questions which ask how rather than just what.
Example: Does an arbitrary DTM $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \square, F\right)$ return to its initial state q_{0} during the computation for input string $\alpha \in \Sigma^{*}$?
- Such problems may often be solved by choosing an appropriate reduction.
- Let $M^{\prime}=\left(Q^{\prime}, \Sigma, \Gamma, \delta^{\prime}, q_{0}^{\prime}, \square, F\right)$ be the DTM with
- $Q^{\prime}=Q \cup\left\{q_{0}^{\prime}\right\}\left(q_{0}^{\prime} \notin Q\right)$,
- $\delta^{\prime}=$ everything in δ plus:
- $\delta\left(q_{0}^{\prime}, a\right)=\left(q_{0}, a, S\right)$ for each $a \in \Gamma$.
- $\delta^{\prime}(q, a)=\left(q_{0}^{\prime}, a, S\right)$ whenever $\delta(q, a)$ is undefined.
- M^{\prime} returns to its initial state q_{0}^{\prime} precisely from the configurations for which M halts.
- Thus if the question of returning to the initial state were decidable, so too would be the halting problem.
- Thus, this question is undecidable.

Showing Semidecidability

- It is often possible to show semidecidability directly by describing how an accepter would work.

Example: Consider $\left\{M \in \mathrm{DTM}_{\Sigma} \mid f_{M}(i)\right.$ is defined for some $\left.i>10\right\}$.

- Build a machine which searches for an $i>10$ with f_{M} defined:

Run M on $i=10$ for 10 steps.
Run M on $i=10,11$ for 11 steps.
Run M on $i=10,11,12$ for 12 steps.

Run M on $i=10,11,12, \ldots, i$ for i steps.

- Now consider $\left\{M \in \operatorname{DTM}_{\Sigma} \mid f_{M}(i)\right.$ is defined for all $\left.i>10\right\}$.
- This technique does not work!
- This language is not semidecidable.

Languages Which are Not Semidecidable

- Contrast the following two questions about a arbitrary DTM M, relative to a fixed total function g :
Q1: Is $f_{M}(i)=g(i)$ for all $i \in\{0,1, \ldots, 9\}$?
Q2: Is $f_{M}(i)=g(i)$ for all $i \in \mathbb{N}$?
- Both problems are undecidable, in view of Rice's theorem.
- However, Q2 is "more undecidable" than Q1.
- Q1 is semidecidable; if the answer is "yes", that fact can be uncovered by a computation.
- Run a machine which simulates M on the inputs in $\{0,1, \ldots, 9\}$, time sharing equitably. If f_{M} is defined on all ten inputs, this will eventually be determined.
- Neither Q2 nor its complement are semidecidable; any attempt to answer either "yes" or "no" many not halt.
- It is not possible to timeshare equitably amongst an infinite set of possibilities.
- This is not a formal argument!

Completely Undecidable Languages

- Call a language $L \subseteq \Sigma^{*}$ completely undecidable if neither L nor its complement $\bar{L}=\Sigma^{*} \backslash L$ is semidecidable (Turing enumerable).
- To extend this idea to properties of functions requires a little care.
- Recall that DTM_{Σ} denotes the encodings of all DTMs over Σ.
- Let P be a property of functions, and let $\mathrm{DTM}_{\Sigma}\langle P\rangle$ denote $\left\{M \in \mathrm{DTM}_{\Sigma} \mid f_{M}\right.$ has property $\left.P\right\}$.
- As a language, the complement of $\mathrm{DTM}_{\Sigma}\langle P\rangle$ may be divided into two parts.
- $\mathrm{DTM}_{\Sigma}\langle\bar{P}\rangle=\left\{M \in \mathrm{DTM}_{\Sigma} \mid f_{M}\right.$ does not have property $\left.P\right\}$.
- $\left\{\alpha \in \Sigma^{*} \mid \alpha \notin \mathrm{DTM}_{\Sigma}\right\}$ (i.e., α does not encode a DTM.)
- The second set is always decidable, and almost always uninteresting.
- Thus, it is more direct to call a property P completely undecidable if neither $\mathrm{DTM}_{\Sigma}\langle P\rangle$ nor $\mathrm{DTM}_{\Sigma}\langle\bar{P}\rangle$ is semidecidable.
- This idea extends naturally to multi-argument functions and other properties of DTMs, but the details are not elaborated here.

Determining Complete Undecidability

- There are tools for establishing that languages and properties are completely undecidable.
- A second Rice's theorem (for recursively enumerable languages).
- This theorem is beyond the scope of this course.
- An informal approach is to consider both the language and its complement, and argue that neither can be recursively enumerable.
- As noted on the previous slide, a "practical" example of a problem which fall into this category is the question of whether $f_{M}=g$ for a fixed function g.
- This is essentially the problem of determining whether a program (M) meets a total specification g.
- That it is totally undecidable says that not only that:
- it is not possible to determine that a program meets a given specification g, but also
- it is not possible to determine that a program does not meet a given specification g.

Decision Problems Which Require Other Techniques

Example: Given two CFGs G_{1} and G_{2}, is $\mathcal{L}\left(G_{1}\right)=\mathcal{L}\left(G_{2}\right)$?

- It turns out that it is an undecidable question, but....
- Rice's Theorem, and the other reduction techniques which have been presented, cannot address this problem.
- It is a question about a more restricted class of languages.
- Compare it to:

Example: Given two regular grammars G_{1} and G_{2}, is $\mathcal{L}\left(G_{1}\right)=\mathcal{L}\left(G_{2}\right)$?

- This question is decidable, as was shown earlier in the course.
- The corresponding question for deterministic CFGs was recently shown to be decidable as well [Géraud Sénizergues 1997].
- Techniques for addressing such problems will not be covered in this course.

Decidable Questions about DTMs

- There are some questions about DTMs which are decidable.

Example: For fixed $n \in \mathbb{N}$ and $\alpha \in \Sigma^{*}$, does the DTM M visit more than n tape squares during the computation with initial configuration $\mathcal{I}\langle M, \alpha\rangle$?

- The number of configurations which the machine can reach is bounded by these conditions.
- Hence, if it runs long enough, it must return to a previous configuration.
- At that point, it is known that the machine will loop forever and hence cannot reach any new configurations.
- Thus, it cannot visit any new tape squares either.

Grammars and Semidecidable Languages

- Recall that a language $L \subseteq \Sigma^{*}$ is:
- $\mathcal{L}(M)$ for some NFA M iff it is $\mathcal{L}(G)$ for some regular grammar G;
- $\mathcal{L}(M)$ for some NPDA M iff it is $\mathcal{L}(G)$ for some CFG G.

Question: Is there a corresponding characterization for DTMs?

- Recall that an (unrestricted) phrase-structure grammar (PSG) $G=(V, \Sigma, S, P)$ has productions of the form $\alpha \rightarrow \beta$ for $\alpha \in(V \cup \Sigma)^{*} \backslash\{\lambda\}$ and $\beta \in(V \cup \Sigma)^{*}$.
Theorem: The language $L \subseteq \Sigma^{*}$ is accepted by some DTM M iff it is generated by some phrase-structure grammar G.
- More formally, $L=\mathcal{L}(M)$ for some DTM M iff $L=\mathcal{L}(G)$ for some phrase-structure grammar $G . \square$

Decidability for Languages over a Single Letter

- The ideas which have been developed surrounding undecidability are based upon an alphabet Σ with at least two letters.
- However, the two letters are needed only to encode DTMs.
- The results themselves apply to single-letter alphabets (e.g., $\Sigma=\{a\})$.
- The argument is simple and is illustrated by example.

Example: Let $L=\left\{\alpha \in\{a\}^{*} \mid\right.$ Length $\left.(\alpha) \geq 3\right\}$.

- To show that this language is not Turing decidable, let $L^{\prime}=L$, but with L^{\prime} regarded as a subset of $\{0,1, a, b\}^{*}$.
- If L were decidable, the following scheme would yield a decider for L^{\prime}. begin

Run a preprocessor which discards all strings containing $b, 0$, or 1 ;
If the input makes it past this preprocessor, run a decider M for L on it; end

Enumerators and Semidecidable Languages

- Recall that M is a (recursive) enumerator for the language $L \subseteq \Sigma^{*}$ if M produces the strings of L, one after the other, in a systematic way.
- In this case, the language L is said to be recursively enumerable.

Theorem: The language L is recursively enumerable iff it is semidecidable (i.e., Turing enumerable). \square

Summary of equivalent properties: Let $L \subseteq \Sigma^{*}$. The following are equivalent: (a) $L=\mathcal{L}(M)$ for some DTM M (Turing acceptable, semidecidable).
(b) L is recursively enumerable (by some DTM M).
(c) $L=\mathcal{L}(G)$ for some phrase-structure grammar $G . \square$

Rice's Theorem in Perspective

- Rice's theorem says that nothing nontrivial about the "black-box" behavior of DTMs (and hence programs in a general-purpose language) is decidable.
- This does not mean that nothing is decidable.
- Every algorithm defines a general form of decider.
- Computer scientists develop and implement algorithms for a living.

Principle: Keep in mind, Rice's theorem says that if the inputs to a process are to be all programs or all machines, then no black-box property can be decided.

- By restricting the scope of the objects being evaluated, many properties are decidable.

