
The Limits of Algorithmic Computation

5DV037 — Fundamentals of Computer Science

Ume̊a University

Department of Computing Science

Stephen J. Hegner

hegner@cs.umu.se

http://www.cs.umu.se/~hegner

The Limits of Algorithmic Computation 20101018 Slide 1 of 38

Background: das Entscheidungsproblem

• In 1928, the eminent German mathematician David Hilbert (with Wilhelm
Ackermann) posed das Entscheidungsproblem (the decision problem).

• The goal was to have an algorithm which would solve all mathematical
problems. (A universal theorem prover.)

• In 1931, the Austrian mathematician Kurt Gödel showed that this is
impossible via the incompleteness theorem for arithmetic of the natural
numbers.

• In 1936, the British mathematician Alan Turing used a simple computer
model to show that there are well-defined language problems which
cannot be solved by computer.

• In 1937, the US mathematician Alonzo Church independently showed
similar result for first-order logic.

The Limits of Algorithmic Computation 20101018 Slide 2 of 38

Why Should You Care?

• Real systems in AI use theorem provers to make decisions on what to do.

• The result shows that theorem provers for first-order predicate logic (a
very common modelling tool) cannot always decide on the truth value of
an assertion.

• It might run forever (but it is not possible to tell whether it will.)

• Proving that a program is “correct” (that it satisfies certain conditions)
is also very important in software engineering of critical systems.

• The result shows that this is not possible in the general case.

The Limits of Algorithmic Computation 20101018 Slide 3 of 38

Why Should You Care? — 2

Example: Here is a practical example.

• Suppose that you are an assistant in an introductory programming course.

• You must grade 300 programs which are supposed to sort a list of
numbers.

• You decide instead that you will write a program which will take as input
the program of each student and decide whether or not it is correct.

• Unfortunately, the theory shows that this is not possible.

• The problem is that your program might run forever, but you cannot tell
that it will.

• You could still write a program which would work in certain cases (e.g.,
the student program must sort a list of 1000 element in less than a
second), but the theory shows that you cannot write a general solution.

The Limits of Algorithmic Computation 20101018 Slide 4 of 38

The Number of Strings over Σ

Context: A finite nonempty alphabet Σ.

• The number of strings in Σ∗ is countable.

• This means that they may be put into bijective (one-to-one)
correspondence with the natural numbers N.

• List the strings in order of increasing length.

Example: Σ = {a, b}

• All strings of length 0: {λ}.

• All strings of length 1: {a, b}.

• All strings of length 2: {aa, ab, ba, bb}.

• All strings of length 3: {aaa, aab, aba, abb, baa, bab, bba, bbb}.

•
...

• Just list the shorter strings before the longer ones in lexicographic order.
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 · · ·

α λ a b aa ab ba bb aaa aab aba abb baa bab bba bbb · · ·

• Such a list is called an enumeration of the strings, and the set is called
enumerable.

The Limits of Algorithmic Computation 20101018 Slide 5 of 38

Enumeration Procedures

Context: A finite nonempty alphabet Σ and a language L ⊆ Σ∗.

• A DTM M = (Q,Σ, Γ, δ, q0 ,k,F) is an enumerator for L if there is a
distinguished state qs ∈ Q with the property that if the machine is
started in configuration I〈M, λ〉 = 〈q0, λ,k, λ〉 then it will execute a
computation sequence

I〈M, λ〉 ⊢∗M D1 ⊢∗M D2 ⊢∗M . . . ⊢∗M Di . . . ⊢∗M . . .

in which:

• Each Di is an output configuration in state qs for some αi ∈ L;

• Every string in L is one of the αi ’s.

• Every configuration of the computation which is in state qS is one of
the Di ’s;

• If L is infinite, this computation must also be infinite.

• The computation is called a (recursive) enumeration of L,

• and L is said to be (recursively) enumerable.

The Limits of Algorithmic Computation 20101018 Slide 6 of 38

Selection from an Enumeration

• Given an enumerator M = (Q,Σ, Γ, δ, q0 ,k,F) for a language L, it is easy
to build a machine M ′ = (Q ′,Σ, Γ′, δ′, q′0 ,k,F ′) which takes as input

i ∈ N and computes the ith element in the enumeration.

• Just run the enumerator, and keep a counter of how many strings have
been found.

• It is also possible to eliminate duplicates, by keeping a list of those
strings which have already been found (on a second tape or some other
region of a single tape).

• Invoke the Church-Turing thesis!

The Limits of Algorithmic Computation 20101018 Slide 7 of 38

The Number of Languages over Σ

Context: A finite nonempty alphabet Σ.

Fact: The number of languages over Σ is not countable.

Proof outline: Suppose, to the contrary, that L0, L1, L2, . . . Li , . . . , ... is such
an enumeration.

• Let α0, α1, α2, . . . , αi . . . be an enumeration of Σ∗.

• Define L to be the language which includes αi iff αi 6∈ Li (for each
i ∈ N).

• Then L cannot be Li for any i ∈ N, because αi ∈ L iff αi 6∈ Li . �

• This is a diagonalization argument.

The Limits of Algorithmic Computation 20101018 Slide 8 of 38

Encoding the DTMs over Σ as Strings in {0, 1}∗

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F) over Σ with {0, 1} ⊆ Σ.

• Without loss of generality, assume that M has exactly one final state.

• For n states, represent them 1, . . . , n, with 1 the start state and n the
final state.

• Represent Γ as {1, 2, . . . ,m}, with 1 representing k.
• Encode states and tape symbols in unary using this convention.

• 1 1, 2 11, 3 111, etc..

• Represent L, R , and S as 1, 11, and 111, respectively.

• Represent the transition δ(q, a) = (q′, a′, d) as
Code(q)0Code(a)0Code(q′)0Code(a′)0Code(d)

in which Code(x) is the code of x in unary, as described above.

• Represent the DTM M = (Q,Σ, Γ, δ, q0 ,k,F) as a string
〈T1,T2, . . . ,Tk〉 in which

• each Ti describes one entry of δ as indicated above;

• each comma is represented by a 0;

• n and m may be recovered from the Ti ’s.

The Limits of Algorithmic Computation 20101018 Slide 9 of 38

The Number of DTMs over Σ

Context: A finite nonempty alphabet Σ containing {0, 1}.

A useful naming convention: Let DTMΣ denote the set of all DTMs over Σ,
using the encoding described on the previous slide.

• Thus, DTMΣ is a language over Σ.

• It encodes canonical representations of DTMs, up to a renaming of
states.

Observation: DTMΣ is a recursively enumerable language.

Proof: Use the representation given on the previous slide as the basis for an
enumeration.

• Generate machines with smaller n and m before machines with larger
values. �

• There are (many) more languages than there are DTMs.

• Most languages are not Turing acceptable. �

The Limits of Algorithmic Computation 20101018 Slide 10 of 38

The Universal DTM for Σ

Context: Fix:

• A finite alphabet Σ with {0, 1} ⊆ Σ (rename if necessary).

• A (recursive) enumeration M0,M1, . . . ,Mi , . . . of the DTMs with
input alphabet Σ (as just described).

• A (recursive) enumeration α0, α1, . . . , αi , . . . , of the strings in Σ∗.

• A universal DTM (or universal Turing machine) for alphabet Σ takes two
arguments:

• An index i identifying the DTM Mi ; and

• An index j identifying the string αj ;

• and:

• halts in an accepting state if αj ∈ L(Mi);

• halts in a rejecting state if αj 6∈ L(Mi) and Mi halts on input αi ;

• does not halt if Mi does not halt on input αj .

• Thus, a universal Turing machine is essentially an interpreter for DTMs.

• But, for simplicity, the definition deals with acceptance only, and not with
computation of functions.

The Limits of Algorithmic Computation 20101018 Slide 11 of 38

Building a Universal DTM for Σ

• It is straightforward to build such a machine.

• It has three main steps to compute Mi(αj), defined by subroutines:

• Compute the representation of Mi (by running an enumerator).

• Compute the representation of αj (by running an enumerator).

• Run a “DTM interpreter” on (Mi , αj).

• The easiest way to argue that this can be done is to appeal to the
Church-Turing thesis.

• You can write a program in C to do this, can’t you?

• Tedious, but certainly possible.

• Build the machine explicitly as a three-tape DTM, and then appeal to
the equivalence to a one-tape machine.

Notation: Let UDTMΣ denote a universal DTM over Σ.

• Write UDTMΣ〈i , j〉 for the result of running UDTMΣ on input 〈i , j〉.

• i.e., simulate Mi on input αj .

The Limits of Algorithmic Computation 20101018 Slide 12 of 38

The Halting Problem

Definition: The halting problem for DTMs over Σ is, given arbitrary i , j ∈ N,
determine whether UDTMΣ halts on input 〈i , j〉.

• In other words, determine whether Mi halts when run from initial
configuration I〈Mi , αj 〉.

• The goal is to show that there is no DTM which can compute the answer
to this question.

• To show this, begin by defining a modified universal DTM which only
cares about halting.

Notation: Let HUDTMΣ denote the DTM which takes two inputs and
computes

HUDTMΣ〈i , j〉 =

{

1 if UDTMΣ halts on input 〈i , j〉

undefined if UDTMΣ does not halt on input 〈i , j〉

• It is trivial to build HUDTMΣ from UDTMΣ.

The Limits of Algorithmic Computation 20101018 Slide 13 of 38

The Halting Problem — 2

Notation: Let HUDTMΣ denote the DTM which takes two inputs and
computes

HUDTMΣ〈i , j〉 =

{

1 if UDTMΣ halts on input 〈i , j〉

undefined if UDTMΣ does not halt on input 〈i , j〉

• Now, conjecture that a machine which computes the function obtained by
replacing “undefined” by 0 in the definition of HUDTMΣ could be built:

HaltΣ〈i , j〉 =

{

1 if UDTMΣ halts on input 〈i , j〉

0 if UDTMΣ does not halt on input 〈i , j〉

• Such a machine would solve the halting problem.

The Limits of Algorithmic Computation 20101018 Slide 14 of 38

Diagonalization and the Halting Problem

HaltΣ〈i , j〉 =

{

1 if UDTMΣ halts on input 〈i , j〉

0 if UDTMΣ does not halt on input 〈i , j〉

• The values computed by HaltΣ may be viewed as entries in a matrix.

• Row i describes the halting pattern of Mi .

• Of special interest is the diagonal.

• Call the function so defined ∆-HaltΣ: ∆-HaltΣ〈i〉 = HaltΣ〈i , i〉.

α0 α1 α2 . . . αi . . . αj . . .

M0

M1

M2

...

Mi HaltΣ〈i , j〉 · · ·

...
. . .

...

The Limits of Algorithmic Computation 20101018 Slide 15 of 38

Diagonalization and the Halting Problem

HaltΣ〈i , j〉 =

{

1 if UDTMΣ halts on input 〈i , j〉

0 if UDTMΣ does not halt on input 〈i , j〉

• The values computed by HaltΣ may be viewed as entries in a matrix.

• Row i describes the halting pattern of Mi .

• Of special interest is the diagonal.

• Call the function so defined ∆-HaltΣ: ∆-HaltΣ〈i〉 = HaltΣ〈i , i〉.

α0 α1 α2 . . . αi . . . αj . . .

M0 HaltΣ〈0, 0〉

M1 HaltΣ〈1, 1〉

M2 HaltΣ〈2, 2〉

...
. . .

Mi HaltΣ〈i , i〉 HaltΣ〈i , j〉 · · ·

...
. . .

...

The Limits of Algorithmic Computation 20101018 Slide 15 of 38

Diagonalization and the Halting Problem

HaltΣ〈i , j〉 =

{

1 if UDTMΣ halts on input 〈i , j〉

0 if UDTMΣ does not halt on input 〈i , j〉

• The values computed by HaltΣ may be viewed as entries in a matrix.

• Row i describes the halting pattern of Mi .

• Of special interest is the diagonal.

• Call the function so defined ∆-HaltΣ: ∆-HaltΣ〈i〉 = HaltΣ〈i , i〉.

α0 α1 α2 . . . αi . . . αj . . .

M0 ∆-HaltΣ〈0〉

M1 ∆-HaltΣ〈1〉

M2 ∆-HaltΣ〈2〉

...
. . .

Mi ∆-HaltΣ〈i〉 HaltΣ〈i , j〉 · · ·

...
. . .

...

The Limits of Algorithmic Computation 20101018 Slide 15 of 38

Diagonalization and the Halting Problem — 2

• Now consider the function ∆-HaltΣ: ∆-HaltΣ〈i〉 = 1−∆-HaltΣ〈i〉.

• This function cannot describe the halting pattern of any of the Mi .

• ∆-HaltΣ〈αi 〉 6= HaltΣ〈Mi , αi 〉.

• But it describes the halting pattern of ∆′-HaltΣ:

∆′-HaltΣ〈i〉 =

{

undefined if UDTMΣ halts on input 〈i , i〉

0 if UDTMΣ does not halt on input 〈i , i〉

• Hence ∆′-HaltΣ cannot be computed by any DTM.

α0 α1 α2 . . . αi . . . αj . . .

M0 ∆-HaltΣ〈0〉

M1 ∆-HaltΣ〈1〉

M2 ∆-HaltΣ〈2〉

...
. . .

Mi ∆-HaltΣ〈i〉 HaltΣ〈i , j〉 · · ·

...
. . .

...
The Limits of Algorithmic Computation 20101018 Slide 16 of 38

Diagonalization and the Halting Problem — 2

• Now consider the function ∆-HaltΣ: ∆-HaltΣ〈i〉 = 1−∆-HaltΣ〈i〉.

• This function cannot describe the halting pattern of any of the Mi .

• ∆-HaltΣ〈αi 〉 6= HaltΣ〈Mi , αi 〉.

• But it describes the halting pattern of ∆′-HaltΣ:

∆′-HaltΣ〈i〉 =

{

undefined if UDTMΣ halts on input 〈i , i〉

0 if UDTMΣ does not halt on input 〈i , i〉

• Hence ∆′-HaltΣ cannot be computed by any DTM.

α0 α1 α2 . . . αi . . . αj . . .

M01−∆-HaltΣ〈0〉

M1 1−∆-HaltΣ〈1〉

M2 1−∆-HaltΣ〈2〉

...
. . .

Mi 1−∆-HaltΣ〈i〉1−∆-HaltΣ〈i〉 HaltΣ〈i , j〉 · · ·

...
. . .

...
The Limits of Algorithmic Computation 20101018 Slide 16 of 38

Diagonalization and the Halting Problem — 2

Theorem (The halting problem is unsolvable): The function HaltΣ which
determines whether an arbitrary DTM Mi halts on an arbitrary input αj

is not computable by any DTM.

Proof: • ∆′-HaltΣ is not computable by any DTM.

• But ∆′-HaltΣ is trivially obtainable from ∆-HaltΣ, so the
latter cannot be computable either.

• Since ∆-HaltΣ is just HaltΣ restricted to the diagonal, so
if ∆-HaltΣ is not computable, neither can be HaltΣ. �

Corollary: There exists a language over Σ which is semidecidable (Turing
acceptable) but not decidable.

Proof: Just use the language L = {〈i , j〉 ∈ N×N | HUDTMΣ〈i , j〉 = 1}.
Encode the numbers in binary with 00 separating them. �

Note: The proof given works for any Σ with at least two elements (regarded
as 0 and 1).

• It is possible to establish an undecidability result for Σ containing only
one element (will be done shortly).

The Limits of Algorithmic Computation 20101018 Slide 17 of 38

Proving that Other Problems are Undecidable

• Equipped with the knowledge that the halting problem is undecidable, it
is not difficult to establish that many other problems are undecidable as
well.

• The most common technique is reduction, whose idea is as follows:

• Let L be a language which defines the problem to be shown
undecidable.

• Assume, to the contrary, that there is a decider M for L.

• Use M as a component in the construction of a machine which
solves the halting problem, a contradiction.

The Limits of Algorithmic Computation 20101018 Slide 18 of 38

An Example of Reduction

Problem: Show that there is no decider which determines whether or not a
given DTM M computes the total successor function n 7→ n + 1.

• Let M be any DTM which computes this function.

• Construct the following machine with single input i ∈ N:

begin

Determine Mi using an enumerator;
Determine αi using an enumerator;
Run Mi on αi ; /* Only halting matters */
Run M on input i ; /* Only reached if Mi halts on αi */

end

• This machine computes the function which is i + 1 if Mi halts on αi and
undefined otherwise.

• Feed a description of this DTM to a decider for the successor function to
compute ∆-HaltΣ.

• So, no such decider can exist.

The Limits of Algorithmic Computation 20101018 Slide 19 of 38

Black-Box Properties of Computations

• The main idea of the example on the previous slide is not tied to the
particular function n 7→ n + 1.

• With minor modifications, it applies to a very wide class of problems.

Definition: A black-box property of a DTM M is any statement which
concerns solely:

(a) the language which M accepts; and/or

(b) the functions which M computes (of any number of variables).

• A black-box property may not depend upon how M computes.

Examples: Y = black-box property; N = not black-box property.

• M halts on all inputs. (Y)

• L(M) = L for a given language L. (Y)

• M computes a given partial function f . (Y)

• M returns to its starting state during some computation. (N)

• M uses at most 1000 tape squares during any computation. (N)

The Limits of Algorithmic Computation 20101018 Slide 20 of 38

Rice’s Theorem for Recursive Languages

• An black-box property is called nontrivial is some DTMs have that
property while others do not.

Theorem (H. Gordon Rice 1953): Let P be a nontrivial black-box property of
DTMs. Then the question of whether a given DTM M has that property
is undecidable.

• In layman’s words, this theorem says that almost nothing about the
behavior of DTMs is decidable.

Proof sketch: The general idea follows the reduction example for the
successor function n 7→ n + 1.

• Use a decider M for a nontrivial black-box property P do build a
decider for the halting problem.

• The resulting contradiction establishes that the decider for P cannot
exist.

• There are a few more details to consider; they are sketched briefly on
the following slide. �

The Limits of Algorithmic Computation 20101018 Slide 21 of 38

Proof Idea for Rice’s Theorem

• Let P a nontrivial black-box property of DTMs.

• This property partitions the DTMs into:

• S1 = all DTMs with property P .

• S2 = all DTMs without property P .

• The DTM which never halts on any input must be in one of these classes.

• Assume, without loss of generality, that it is in S2.

• Let M be any machine in S1.
• Construct the following machine which takes input i ∈ N:

begin

Determine Mi using an enumerator;
Determine αi using an enumerator;
Run Mi on αi ; /* Only halting matters */
Run M on a suitable input obtained from i ; /* Only reached if Mi halts on αi */

end

• This machine is in S1 if Mi halts on input αi and in S2 if not.

• Thus, a decider for P may be used to solve the halting problem.

The Limits of Algorithmic Computation 20101018 Slide 22 of 38

A Practical Application of Rice’s Theorem

• Recall the following example situation, posed earlier.

• Suppose that you are an assistant in an introductory programming course.

• You must grade 300 programs which are supposed to sort a list of
numbers.

• You decide instead that you will write a program which will take as input
the program of each student and decide whether or not it is correct.

• An application of Rice’s Theorem establishes that it is not possible to
write such a program.

• It defines a nontrivial black-box property of machines (programs).

The Limits of Algorithmic Computation 20101018 Slide 23 of 38

The Application of Rice’s Theorem to Functions

• The following questions about a DTM M are undecidable:

• Is the function fM which M computes total?

• Is fM(i) defined for a given fixed i?

• Is fM(i) defined for some i ∈ N?

• Is fM(i) defined for only finitely many i ∈ N?

• Is fM = g for some given function g?

• Note that the last element in the list above is a special case of the
“grading program” problem identified earlier.

• It is not possible build a decider which takes as input another program
and decides whether or not it computes a specified function.

The Limits of Algorithmic Computation 20101018 Slide 24 of 38

Total vs. Partial Correctness of Programs

• In a property of the form
fM = g for some given total function g

g may be thought of as a program specification which M must satisfy.

• In program verification, there are two notions of satisfaction of a
specification.

Total correctness: fM agrees with g everywhere (i.e., fM = g).

Partial correctness: fM agrees with g whenever M halts.

• Think of this in terms of a concrete example of a total function.

Example: The successor function succ : n 7→ n + 1.

• Even the machine which never halts agrees with succ whenever it halts,
so it is a partially correct realization of that function.

• Although partial correctness is “weaker” than total correctness, both are
undecidable in the general case, in view of Rice’s Theorem.

The Limits of Algorithmic Computation 20101018 Slide 25 of 38

The Application of Rice’s Theorem to Languages

• The following questions about a DTM M are undecidable:

• Is L(M) = L for a given fixed L?

• Is L(M) = ∅?

• Is L(M) = Σ∗?

• Is L(M) ⊆ L for a given fixed L 6= Σ∗?

• Is L ⊆ L(M) for a given fixed L 6= ∅?

• Is L(M) a regular language?

• Is L(M) a context-free language?

• Is L(M) the intersection of two CFLs?

• Is L(M) the complement of a CFL?

• Is L(M) a deterministic CFL?

• Is L(M) an inherently ambiguous CFL?

• Is L(M) a recursive language?

• Is L(M) = L(M)R?

• and many more...

The Limits of Algorithmic Computation 20101018 Slide 26 of 38

More Complex Applications of Rice’s Theorem

• Consider the question Q:
Given two DTMs M and M ′, is L(M) = L(M ′).

• Such questions can often be answered in the negative by showing that a
subproblem is not decidable.

• For example, from the previous slide it is known that the following
question is undecidable:

For a given DTM M, is L(M) = ∅?

• Thus, fixing M ′ to be any DTM for which L(M ′) = ∅, a special case of
the question Q is obtained which is known to be undecidable.

• If it is not possible to decide L(M) = ∅, then it is certainly not possible
to decide L(M) = L(M ′) for arbitrary M ′.

The Limits of Algorithmic Computation 20101018 Slide 27 of 38

Problems for Which Rice’s Theorem is not Applicable

• Rice’s theorem is not directly applicable to questions which ask how
rather than just what.

Example: Does an arbitrary DTM M = (Q,Σ, Γ, δ, q0 ,k,F) return to its
initial state q0 during the computation for input string α ∈ Σ∗?

• Such problems may often be solved by choosing an appropriate reduction.

• Let M ′ = (Q ′,Σ, Γ, δ′, q′0,k,F) be the DTM with

• Q ′ = Q ∪ {q′0} (q′0 6∈ Q),

• δ′ = everything in δ plus:

• δ(q′0, a) = (q0, a,S) for each a ∈ Γ.

• δ′(q, a) = (q′0, a,S) whenever δ(q, a) is undefined.

• M ′ returns to its initial state q′0 precisely from the configurations for
which M halts.

• Thus if the question of returning to the initial state were decidable, so
too would be the halting problem.

• Thus, this question is undecidable.

The Limits of Algorithmic Computation 20101018 Slide 28 of 38

Showing Semidecidability

• It is often possible to show semidecidability directly by describing how an
accepter would work.

Example: Consider {M ∈ DTMΣ | fM(i) is defined for some i > 10}.

• Build a machine which searches for an i > 10 with fM defined:
Run M on i = 10 for 10 steps.
Run M on i = 10, 11 for 11 steps.
Run M on i = 10, 11, 12 for 12 steps.
...
Run M on i = 10, 11, 12, . . . , i for i steps.
...

• Now consider {M ∈ DTMΣ | fM(i) is defined for all i > 10}.

• This technique does not work!

• This language is not semidecidable.

The Limits of Algorithmic Computation 20101018 Slide 29 of 38

Languages Which are Not Semidecidable

• Contrast the following two questions about a arbitrary DTM M, relative
to a fixed total function g :

Q1: Is fM(i) = g(i) for all i ∈ {0, 1, . . . , 9}?

Q2: Is fM(i) = g(i) for all i ∈ N?

• Both problems are undecidable, in view of Rice’s theorem.

• However, Q2 is “more undecidable” than Q1.

• Q1 is semidecidable; if the answer is “yes”, that fact can be uncovered by
a computation.

• Run a machine which simulates M on the inputs in {0, 1, . . . , 9},
time sharing equitably. If fM is defined on all ten inputs, this will
eventually be determined.

• Neither Q2 nor its complement are semidecidable; any attempt to answer
either “yes” or “no” many not halt.

• It is not possible to timeshare equitably amongst an infinite set of
possibilities.

• This is not a formal argument!

The Limits of Algorithmic Computation 20101018 Slide 30 of 38

Completely Undecidable Languages

• Call a language L ⊆ Σ∗ completely undecidable if neither L nor its
complement L = Σ∗ \ L is semidecidable (Turing enumerable).

• To extend this idea to properties of functions requires a little care.

• Recall that DTMΣ denotes the encodings of all DTMs over Σ.

• Let P be a property of functions, and let DTMΣ〈P〉 denote
{M ∈ DTMΣ | fM has property P}.

• As a language, the complement of DTMΣ〈P〉 may be divided into two
parts.

• DTMΣ〈P〉 = {M ∈ DTMΣ | fM does not have property P}.

• {α ∈ Σ∗ | α 6∈ DTMΣ} (i.e., α does not encode a DTM.)

• The second set is always decidable, and almost always uninteresting.

• Thus, it is more direct to call a property P completely undecidable if
neither DTMΣ〈P〉 nor DTMΣ〈P〉 is semidecidable.

• This idea extends naturally to multi-argument functions and other
properties of DTMs, but the details are not elaborated here.

The Limits of Algorithmic Computation 20101018 Slide 31 of 38

Determining Complete Undecidability

• There are tools for establishing that languages and properties are
completely undecidable.

• A second Rice’s theorem (for recursively enumerable languages).

• This theorem is beyond the scope of this course.

• An informal approach is to consider both the language and its
complement, and argue that neither can be recursively enumerable.

• As noted on the previous slide, a “practical” example of a problem which
fall into this category is the question of whether fM = g for a fixed
function g .

• This is essentially the problem of determining whether a program (M)
meets a total specification g .

• That it is totally undecidable says that not only that:

• it is not possible to determine that a program meets a given
specification g , but also

• it is not possible to determine that a program does not meet a given
specification g .

The Limits of Algorithmic Computation 20101018 Slide 32 of 38

Decision Problems Which Require Other Techniques

Example: Given two CFGs G1 and G2, is L(G1) = L(G2)?

• It turns out that it is an undecidable question, but....

• Rice’s Theorem, and the other reduction techniques which have been
presented, cannot address this problem.

• It is a question about a more restricted class of languages.

• Compare it to:

Example: Given two regular grammars G1 and G2, is L(G1) = L(G2)?

• This question is decidable, as was shown earlier in the course.

• The corresponding question for deterministic CFGs was recently shown to
be decidable as well [Géraud Sénizergues 1997].

• Techniques for addressing such problems will not be covered in this
course.

The Limits of Algorithmic Computation 20101018 Slide 33 of 38

Decidable Questions about DTMs

• There are some questions about DTMs which are decidable.

Example: For fixed n ∈ N and α ∈ Σ∗, does the DTM M visit more than n
tape squares during the computation with initial configuration I〈M, α〉?

• The number of configurations which the machine can reach is bounded
by these conditions.

• Hence, if it runs long enough, it must return to a previous configuration.

• At that point, it is known that the machine will loop forever and hence
cannot reach any new configurations.

• Thus, it cannot visit any new tape squares either.

The Limits of Algorithmic Computation 20101018 Slide 34 of 38

Grammars and Semidecidable Languages

• Recall that a language L ⊆ Σ∗ is:

• L(M) for some NFA M iff it is L(G) for some regular grammar G ;

• L(M) for some NPDA M iff it is L(G) for some CFG G .

Question: Is there a corresponding characterization for DTMs?

• Recall that an (unrestricted) phrase-structure grammar (PSG)
G = (V,Σ,S,P) has productions of the form α → β for

α ∈ (V ∪ Σ)∗ \ {λ} and β ∈ (V ∪ Σ)∗.

Theorem: The language L ⊆ Σ∗ is accepted by some DTM M iff it is
generated by some phrase-structure grammar G .

• More formally, L = L(M) for some DTM M iff L = L(G) for some
phrase-structure grammar G . �

The Limits of Algorithmic Computation 20101018 Slide 35 of 38

Decidability for Languages over a Single Letter

• The ideas which have been developed surrounding undecidability are
based upon an alphabet Σ with at least two letters.

• However, the two letters are needed only to encode DTMs.

• The results themselves apply to single-letter alphabets (e.g., Σ = {a}).

• The argument is simple and is illustrated by example.

Example: Let L = {α ∈ {a}∗ | Length(α) ≥ 3}.

• To show that this language is not Turing decidable, let L′ = L, but with
L′ regarded as a subset of {0, 1, a, b}∗.

• If L were decidable, the following scheme would yield a decider for L′.

begin

Run a preprocessor which discards all strings containing b, 0, or 1;
If the input makes it past this preprocessor, run a decider M for L on it;

end

The Limits of Algorithmic Computation 20101018 Slide 36 of 38

Enumerators and Semidecidable Languages

• Recall that M is a (recursive) enumerator for the language L ⊆ Σ∗ if M
produces the strings of L, one after the other, in a systematic way.

• In this case, the language L is said to be recursively enumerable.

Theorem: The language L is recursively enumerable iff it is semidecidable
(i.e., Turing enumerable). �

Summary of equivalent properties: Let L ⊆ Σ∗. The following are equivalent:

(a) L = L(M) for some DTM M (Turing acceptable, semidecidable).

(b) L is recursively enumerable (by some DTM M).

(c) L = L(G) for some phrase-structure grammar G . �

The Limits of Algorithmic Computation 20101018 Slide 37 of 38

Rice’s Theorem in Perspective

• Rice’s theorem says that nothing nontrivial about the “black-box”
behavior of DTMs (and hence programs in a general-purpose language) is
decidable.

• This does not mean that nothing is decidable.

• Every algorithm defines a general form of decider.

• Computer scientists develop and implement algorithms for a living.

Principle: Keep in mind, Rice’s theorem says that if the inputs to a process
are to be all programs or all machines, then no black-box property can be
decided.

• By restricting the scope of the objects being evaluated, many properties
are decidable.

The Limits of Algorithmic Computation 20101018 Slide 38 of 38

