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Background: das Entscheidungsproblem

• In 1928, the eminent German mathematician David Hilbert (with Wilhelm
Ackermann) posed das Entscheidungsproblem (the decision problem).

• The goal was to have an algorithm which would solve all mathematical
problems. (A universal theorem prover.)

• In 1931, the Austrian mathematician Kurt Gödel showed that this is
impossible via the incompleteness theorem for arithmetic of the natural
numbers.

• In 1936, the British mathematician Alan Turing used a simple computer
model to show that there are well-defined language problems which
cannot be solved by computer.

• In 1937, the US mathematician Alonzo Church independently showed
similar result for first-order logic.
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Why Should You Care?

• Real systems in AI use theorem provers to make decisions on what to do.

• The result shows that theorem provers for first-order predicate logic (a
very common modelling tool) cannot always decide on the truth value of
an assertion.

• It might run forever (but it is not possible to tell whether it will.)

• Proving that a program is “correct” (that it satisfies certain conditions)
is also very important in software engineering of critical systems.

• The result shows that this is not possible in the general case.
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Why Should You Care? — 2

Example: Here is a practical example.

• Suppose that you are an assistant in an introductory programming course.

• You must grade 300 programs which are supposed to sort a list of
numbers.

• You decide instead that you will write a program which will take as input
the program of each student and decide whether or not it is correct.

• Unfortunately, the theory shows that this is not possible.

• The problem is that your program might run forever, but you cannot tell
that it will.

• You could still write a program which would work in certain cases (e.g.,
the student program must sort a list of 1000 element in less than a
second), but the theory shows that you cannot write a general solution.
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The Number of Strings over Σ

Context: A finite nonempty alphabet Σ.

• The number of strings in Σ∗ is countable.

• This means that they may be put into bijective (one-to-one)
correspondence with the natural numbers N.

• List the strings in order of increasing length.

Example: Σ = {a, b}

• All strings of length 0: {λ}.

• All strings of length 1: {a, b}.

• All strings of length 2: {aa, ab, ba, bb}.

• All strings of length 3: {aaa, aab, aba, abb, baa, bab, bba, bbb}.

•
...

• Just list the shorter strings before the longer ones in lexicographic order.
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 · · ·

α λ a b aa ab ba bb aaa aab aba abb baa bab bba bbb · · ·

• Such a list is called an enumeration of the strings, and the set is called
enumerable.
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Enumeration Procedures

Context: A finite nonempty alphabet Σ and a language L ⊆ Σ∗.

• A DTM M = (Q,Σ, Γ, δ, q0 ,k,F) is an enumerator for L if there is a
distinguished state qs ∈ Q with the property that if the machine is
started in configuration I〈M, λ〉 = 〈q0, λ,k, λ〉 then it will execute a
computation sequence

I〈M, λ〉 ⊢∗M D1 ⊢∗M D2 ⊢∗M . . . ⊢∗M Di . . . ⊢∗M . . .

in which:

• Each Di is an output configuration in state qs for some αi ∈ L;

• Every string in L is one of the αi ’s.

• Every configuration of the computation which is in state qS is one of
the Di ’s;

• If L is infinite, this computation must also be infinite.

• The computation is called a (recursive) enumeration of L,

• and L is said to be (recursively) enumerable.
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Selection from an Enumeration

• Given an enumerator M = (Q,Σ, Γ, δ, q0 ,k,F) for a language L, it is easy
to build a machine M ′ = (Q ′,Σ, Γ′, δ′, q′0 ,k,F ′) which takes as input

i ∈ N and computes the ith element in the enumeration.

• Just run the enumerator, and keep a counter of how many strings have
been found.

• It is also possible to eliminate duplicates, by keeping a list of those
strings which have already been found (on a second tape or some other
region of a single tape).

• Invoke the Church-Turing thesis!
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The Number of Languages over Σ

Context: A finite nonempty alphabet Σ.

Fact: The number of languages over Σ is not countable.

Proof outline: Suppose, to the contrary, that L0, L1, L2, . . . Li , . . . , ... is such
an enumeration.

• Let α0, α1, α2, . . . , αi . . . be an enumeration of Σ∗.

• Define L to be the language which includes αi iff αi 6∈ Li (for each
i ∈ N).

• Then L cannot be Li for any i ∈ N, because αi ∈ L iff αi 6∈ Li . �

• This is a diagonalization argument.

The Limits of Algorithmic Computation 20101018 Slide 8 of 38



Encoding the DTMs over Σ as Strings in {0, 1}∗

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F) over Σ with {0, 1} ⊆ Σ.

• Without loss of generality, assume that M has exactly one final state.

• For n states, represent them 1, . . . , n, with 1 the start state and n the
final state.

• Represent Γ as {1, 2, . . . ,m}, with 1 representing k.
• Encode states and tape symbols in unary using this convention.

• 1 1, 2 11, 3 111, etc..

• Represent L, R , and S as 1, 11, and 111, respectively.

• Represent the transition δ(q, a) = (q′, a′, d) as
Code(q)0Code(a)0Code(q′)0Code(a′)0Code(d)

in which Code(x) is the code of x in unary, as described above.

• Represent the DTM M = (Q,Σ, Γ, δ, q0 ,k,F) as a string
〈T1,T2, . . . ,Tk〉 in which

• each Ti describes one entry of δ as indicated above;

• each comma is represented by a 0;

• n and m may be recovered from the Ti ’s.
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The Number of DTMs over Σ

Context: A finite nonempty alphabet Σ containing {0, 1}.

A useful naming convention: Let DTMΣ denote the set of all DTMs over Σ,
using the encoding described on the previous slide.

• Thus, DTMΣ is a language over Σ.

• It encodes canonical representations of DTMs, up to a renaming of
states.

Observation: DTMΣ is a recursively enumerable language.

Proof: Use the representation given on the previous slide as the basis for an
enumeration.

• Generate machines with smaller n and m before machines with larger
values. �

• There are (many) more languages than there are DTMs.

• Most languages are not Turing acceptable. �
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The Universal DTM for Σ

Context: Fix:

• A finite alphabet Σ with {0, 1} ⊆ Σ (rename if necessary).

• A (recursive) enumeration M0,M1, . . . ,Mi , . . . of the DTMs with
input alphabet Σ (as just described).

• A (recursive) enumeration α0, α1, . . . , αi , . . . , of the strings in Σ∗.

• A universal DTM (or universal Turing machine) for alphabet Σ takes two
arguments:

• An index i identifying the DTM Mi ; and

• An index j identifying the string αj ;

• and:

• halts in an accepting state if αj ∈ L(Mi);

• halts in a rejecting state if αj 6∈ L(Mi ) and Mi halts on input αi ;

• does not halt if Mi does not halt on input αj .

• Thus, a universal Turing machine is essentially an interpreter for DTMs.

• But, for simplicity, the definition deals with acceptance only, and not with
computation of functions.
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Building a Universal DTM for Σ

• It is straightforward to build such a machine.

• It has three main steps to compute Mi(αj), defined by subroutines:

• Compute the representation of Mi (by running an enumerator).

• Compute the representation of αj (by running an enumerator).

• Run a “DTM interpreter” on (Mi , αj ).

• The easiest way to argue that this can be done is to appeal to the
Church-Turing thesis.

• You can write a program in C to do this, can’t you?

• Tedious, but certainly possible.

• Build the machine explicitly as a three-tape DTM, and then appeal to
the equivalence to a one-tape machine.

Notation: Let UDTMΣ denote a universal DTM over Σ.

• Write UDTMΣ〈i , j〉 for the result of running UDTMΣ on input 〈i , j〉.

• i.e., simulate Mi on input αj .
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The Halting Problem

Definition: The halting problem for DTMs over Σ is, given arbitrary i , j ∈ N,
determine whether UDTMΣ halts on input 〈i , j〉.

• In other words, determine whether Mi halts when run from initial
configuration I〈Mi , αj 〉.

• The goal is to show that there is no DTM which can compute the answer
to this question.

• To show this, begin by defining a modified universal DTM which only
cares about halting.

Notation: Let HUDTMΣ denote the DTM which takes two inputs and
computes

HUDTMΣ〈i , j〉 =

{

1 if UDTMΣ halts on input 〈i , j〉

undefined if UDTMΣ does not halt on input 〈i , j〉

• It is trivial to build HUDTMΣ from UDTMΣ.
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The Halting Problem — 2

Notation: Let HUDTMΣ denote the DTM which takes two inputs and
computes

HUDTMΣ〈i , j〉 =

{

1 if UDTMΣ halts on input 〈i , j〉

undefined if UDTMΣ does not halt on input 〈i , j〉

• Now, conjecture that a machine which computes the function obtained by
replacing “undefined” by 0 in the definition of HUDTMΣ could be built:

HaltΣ〈i , j〉 =

{

1 if UDTMΣ halts on input 〈i , j〉

0 if UDTMΣ does not halt on input 〈i , j〉

• Such a machine would solve the halting problem.
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Diagonalization and the Halting Problem

HaltΣ〈i , j〉 =

{

1 if UDTMΣ halts on input 〈i , j〉

0 if UDTMΣ does not halt on input 〈i , j〉

• The values computed by HaltΣ may be viewed as entries in a matrix.

• Row i describes the halting pattern of Mi .

• Of special interest is the diagonal.

• Call the function so defined ∆-HaltΣ: ∆-HaltΣ〈i〉 = HaltΣ〈i , i〉.

α0 α1 α2 . . . αi . . . αj . . .

M0

M1

M2

...

Mi HaltΣ〈i , j〉 · · ·

...
. . .

...
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...
. . .
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. . .

...
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Diagonalization and the Halting Problem — 2

• Now consider the function ∆-HaltΣ: ∆-HaltΣ〈i〉 = 1−∆-HaltΣ〈i〉.

• This function cannot describe the halting pattern of any of the Mi .

• ∆-HaltΣ〈αi 〉 6= HaltΣ〈Mi , αi 〉.

• But it describes the halting pattern of ∆′-HaltΣ:

∆′-HaltΣ〈i〉 =

{

undefined if UDTMΣ halts on input 〈i , i〉

0 if UDTMΣ does not halt on input 〈i , i〉

• Hence ∆′-HaltΣ cannot be computed by any DTM.

α0 α1 α2 . . . αi . . . αj . . .

M0 ∆-HaltΣ〈0〉

M1 ∆-HaltΣ〈1〉

M2 ∆-HaltΣ〈2〉

...
. . .

Mi ∆-HaltΣ〈i〉 HaltΣ〈i , j〉 · · ·

...
. . .

...
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• Hence ∆′-HaltΣ cannot be computed by any DTM.

α0 α1 α2 . . . αi . . . αj . . .

M01−∆-HaltΣ〈0〉

M1 1−∆-HaltΣ〈1〉

M2 1−∆-HaltΣ〈2〉

...
. . .

Mi 1−∆-HaltΣ〈i〉1−∆-HaltΣ〈i〉 HaltΣ〈i , j〉 · · ·

...
. . .

...
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Diagonalization and the Halting Problem — 2

Theorem (The halting problem is unsolvable): The function HaltΣ which
determines whether an arbitrary DTM Mi halts on an arbitrary input αj

is not computable by any DTM.

Proof: • ∆′-HaltΣ is not computable by any DTM.

• But ∆′-HaltΣ is trivially obtainable from ∆-HaltΣ, so the
latter cannot be computable either.

• Since ∆-HaltΣ is just HaltΣ restricted to the diagonal, so
if ∆-HaltΣ is not computable, neither can be HaltΣ. �

Corollary: There exists a language over Σ which is semidecidable (Turing
acceptable) but not decidable.

Proof: Just use the language L = {〈i , j〉 ∈ N×N | HUDTMΣ〈i , j〉 = 1}.
Encode the numbers in binary with 00 separating them. �

Note: The proof given works for any Σ with at least two elements (regarded
as 0 and 1).

• It is possible to establish an undecidability result for Σ containing only
one element (will be done shortly).
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Proving that Other Problems are Undecidable

• Equipped with the knowledge that the halting problem is undecidable, it
is not difficult to establish that many other problems are undecidable as
well.

• The most common technique is reduction, whose idea is as follows:

• Let L be a language which defines the problem to be shown
undecidable.

• Assume, to the contrary, that there is a decider M for L.

• Use M as a component in the construction of a machine which
solves the halting problem, a contradiction.
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An Example of Reduction

Problem: Show that there is no decider which determines whether or not a
given DTM M computes the total successor function n 7→ n + 1.

• Let M be any DTM which computes this function.

• Construct the following machine with single input i ∈ N:

begin

Determine Mi using an enumerator;
Determine αi using an enumerator;
Run Mi on αi ; /* Only halting matters */
Run M on input i ; /* Only reached if Mi halts on αi */

end

• This machine computes the function which is i + 1 if Mi halts on αi and
undefined otherwise.

• Feed a description of this DTM to a decider for the successor function to
compute ∆-HaltΣ.

• So, no such decider can exist.
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Black-Box Properties of Computations

• The main idea of the example on the previous slide is not tied to the
particular function n 7→ n + 1.

• With minor modifications, it applies to a very wide class of problems.

Definition: A black-box property of a DTM M is any statement which
concerns solely:

(a) the language which M accepts; and/or

(b) the functions which M computes (of any number of variables).

• A black-box property may not depend upon how M computes.

Examples: Y = black-box property; N = not black-box property.

• M halts on all inputs. (Y)

• L(M) = L for a given language L. (Y)

• M computes a given partial function f . (Y)

• M returns to its starting state during some computation. (N)

• M uses at most 1000 tape squares during any computation. (N)
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Rice’s Theorem for Recursive Languages

• An black-box property is called nontrivial is some DTMs have that
property while others do not.

Theorem (H. Gordon Rice 1953): Let P be a nontrivial black-box property of
DTMs. Then the question of whether a given DTM M has that property
is undecidable.

• In layman’s words, this theorem says that almost nothing about the
behavior of DTMs is decidable.

Proof sketch: The general idea follows the reduction example for the
successor function n 7→ n + 1.

• Use a decider M for a nontrivial black-box property P do build a
decider for the halting problem.

• The resulting contradiction establishes that the decider for P cannot
exist.

• There are a few more details to consider; they are sketched briefly on
the following slide. �
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Proof Idea for Rice’s Theorem

• Let P a nontrivial black-box property of DTMs.

• This property partitions the DTMs into:

• S1 = all DTMs with property P .

• S2 = all DTMs without property P .

• The DTM which never halts on any input must be in one of these classes.

• Assume, without loss of generality, that it is in S2.

• Let M be any machine in S1.
• Construct the following machine which takes input i ∈ N:

begin

Determine Mi using an enumerator;
Determine αi using an enumerator;
Run Mi on αi ; /* Only halting matters */
Run M on a suitable input obtained from i ; /* Only reached if Mi halts on αi */

end

• This machine is in S1 if Mi halts on input αi and in S2 if not.

• Thus, a decider for P may be used to solve the halting problem.
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A Practical Application of Rice’s Theorem

• Recall the following example situation, posed earlier.

• Suppose that you are an assistant in an introductory programming course.

• You must grade 300 programs which are supposed to sort a list of
numbers.

• You decide instead that you will write a program which will take as input
the program of each student and decide whether or not it is correct.

• An application of Rice’s Theorem establishes that it is not possible to
write such a program.

• It defines a nontrivial black-box property of machines (programs).
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The Application of Rice’s Theorem to Functions

• The following questions about a DTM M are undecidable:

• Is the function fM which M computes total?

• Is fM(i) defined for a given fixed i?

• Is fM(i) defined for some i ∈ N?

• Is fM(i) defined for only finitely many i ∈ N?

• Is fM = g for some given function g?

• Note that the last element in the list above is a special case of the
“grading program” problem identified earlier.

• It is not possible build a decider which takes as input another program
and decides whether or not it computes a specified function.
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Total vs. Partial Correctness of Programs

• In a property of the form
fM = g for some given total function g

g may be thought of as a program specification which M must satisfy.

• In program verification, there are two notions of satisfaction of a
specification.

Total correctness: fM agrees with g everywhere (i.e., fM = g).

Partial correctness: fM agrees with g whenever M halts.

• Think of this in terms of a concrete example of a total function.

Example: The successor function succ : n 7→ n + 1.

• Even the machine which never halts agrees with succ whenever it halts,
so it is a partially correct realization of that function.

• Although partial correctness is “weaker” than total correctness, both are
undecidable in the general case, in view of Rice’s Theorem.
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The Application of Rice’s Theorem to Languages

• The following questions about a DTM M are undecidable:

• Is L(M) = L for a given fixed L?

• Is L(M) = ∅?

• Is L(M) = Σ∗?

• Is L(M) ⊆ L for a given fixed L 6= Σ∗?

• Is L ⊆ L(M) for a given fixed L 6= ∅?

• Is L(M) a regular language?

• Is L(M) a context-free language?

• Is L(M) the intersection of two CFLs?

• Is L(M) the complement of a CFL?

• Is L(M) a deterministic CFL?

• Is L(M) an inherently ambiguous CFL?

• Is L(M) a recursive language?

• Is L(M) = L(M)R?

• and many more...

The Limits of Algorithmic Computation 20101018 Slide 26 of 38



More Complex Applications of Rice’s Theorem

• Consider the question Q:
Given two DTMs M and M ′, is L(M) = L(M ′).

• Such questions can often be answered in the negative by showing that a
subproblem is not decidable.

• For example, from the previous slide it is known that the following
question is undecidable:

For a given DTM M, is L(M) = ∅?

• Thus, fixing M ′ to be any DTM for which L(M ′) = ∅, a special case of
the question Q is obtained which is known to be undecidable.

• If it is not possible to decide L(M) = ∅, then it is certainly not possible
to decide L(M) = L(M ′) for arbitrary M ′.
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Problems for Which Rice’s Theorem is not Applicable

• Rice’s theorem is not directly applicable to questions which ask how
rather than just what.

Example: Does an arbitrary DTM M = (Q,Σ, Γ, δ, q0 ,k,F) return to its
initial state q0 during the computation for input string α ∈ Σ∗?

• Such problems may often be solved by choosing an appropriate reduction.

• Let M ′ = (Q ′,Σ, Γ, δ′, q′0,k,F ) be the DTM with

• Q ′ = Q ∪ {q′0} (q′0 6∈ Q),

• δ′ = everything in δ plus:

• δ(q′0, a) = (q0, a,S) for each a ∈ Γ.

• δ′(q, a) = (q′0, a,S) whenever δ(q, a) is undefined.

• M ′ returns to its initial state q′0 precisely from the configurations for
which M halts.

• Thus if the question of returning to the initial state were decidable, so
too would be the halting problem.

• Thus, this question is undecidable.
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Showing Semidecidability

• It is often possible to show semidecidability directly by describing how an
accepter would work.

Example: Consider {M ∈ DTMΣ | fM(i) is defined for some i > 10}.

• Build a machine which searches for an i > 10 with fM defined:
Run M on i = 10 for 10 steps.
Run M on i = 10, 11 for 11 steps.
Run M on i = 10, 11, 12 for 12 steps.
...
Run M on i = 10, 11, 12, . . . , i for i steps.
...

• Now consider {M ∈ DTMΣ | fM(i) is defined for all i > 10}.

• This technique does not work!

• This language is not semidecidable.
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Languages Which are Not Semidecidable

• Contrast the following two questions about a arbitrary DTM M, relative
to a fixed total function g :

Q1: Is fM(i) = g(i) for all i ∈ {0, 1, . . . , 9}?

Q2: Is fM(i) = g(i) for all i ∈ N?

• Both problems are undecidable, in view of Rice’s theorem.

• However, Q2 is “more undecidable” than Q1.

• Q1 is semidecidable; if the answer is “yes”, that fact can be uncovered by
a computation.

• Run a machine which simulates M on the inputs in {0, 1, . . . , 9},
time sharing equitably. If fM is defined on all ten inputs, this will
eventually be determined.

• Neither Q2 nor its complement are semidecidable; any attempt to answer
either “yes” or “no” many not halt.

• It is not possible to timeshare equitably amongst an infinite set of
possibilities.

• This is not a formal argument!
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Completely Undecidable Languages

• Call a language L ⊆ Σ∗ completely undecidable if neither L nor its
complement L = Σ∗ \ L is semidecidable (Turing enumerable).

• To extend this idea to properties of functions requires a little care.

• Recall that DTMΣ denotes the encodings of all DTMs over Σ.

• Let P be a property of functions, and let DTMΣ〈P〉 denote
{M ∈ DTMΣ | fM has property P}.

• As a language, the complement of DTMΣ〈P〉 may be divided into two
parts.

• DTMΣ〈P〉 = {M ∈ DTMΣ | fM does not have property P}.

• {α ∈ Σ∗ | α 6∈ DTMΣ} (i.e., α does not encode a DTM.)

• The second set is always decidable, and almost always uninteresting.

• Thus, it is more direct to call a property P completely undecidable if
neither DTMΣ〈P〉 nor DTMΣ〈P〉 is semidecidable.

• This idea extends naturally to multi-argument functions and other
properties of DTMs, but the details are not elaborated here.
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Determining Complete Undecidability

• There are tools for establishing that languages and properties are
completely undecidable.

• A second Rice’s theorem (for recursively enumerable languages).

• This theorem is beyond the scope of this course.

• An informal approach is to consider both the language and its
complement, and argue that neither can be recursively enumerable.

• As noted on the previous slide, a “practical” example of a problem which
fall into this category is the question of whether fM = g for a fixed
function g .

• This is essentially the problem of determining whether a program (M)
meets a total specification g .

• That it is totally undecidable says that not only that:

• it is not possible to determine that a program meets a given
specification g , but also

• it is not possible to determine that a program does not meet a given
specification g .
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Decision Problems Which Require Other Techniques

Example: Given two CFGs G1 and G2, is L(G1) = L(G2)?

• It turns out that it is an undecidable question, but....

• Rice’s Theorem, and the other reduction techniques which have been
presented, cannot address this problem.

• It is a question about a more restricted class of languages.

• Compare it to:

Example: Given two regular grammars G1 and G2, is L(G1) = L(G2)?

• This question is decidable, as was shown earlier in the course.

• The corresponding question for deterministic CFGs was recently shown to
be decidable as well [Géraud Sénizergues 1997].

• Techniques for addressing such problems will not be covered in this
course.
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Decidable Questions about DTMs

• There are some questions about DTMs which are decidable.

Example: For fixed n ∈ N and α ∈ Σ∗, does the DTM M visit more than n
tape squares during the computation with initial configuration I〈M, α〉?

• The number of configurations which the machine can reach is bounded
by these conditions.

• Hence, if it runs long enough, it must return to a previous configuration.

• At that point, it is known that the machine will loop forever and hence
cannot reach any new configurations.

• Thus, it cannot visit any new tape squares either.
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Grammars and Semidecidable Languages

• Recall that a language L ⊆ Σ∗ is:

• L(M) for some NFA M iff it is L(G ) for some regular grammar G ;

• L(M) for some NPDA M iff it is L(G ) for some CFG G .

Question: Is there a corresponding characterization for DTMs?

• Recall that an (unrestricted) phrase-structure grammar (PSG)
G = (V,Σ,S,P) has productions of the form α → β for

α ∈ (V ∪ Σ)∗ \ {λ} and β ∈ (V ∪ Σ)∗.

Theorem: The language L ⊆ Σ∗ is accepted by some DTM M iff it is
generated by some phrase-structure grammar G .

• More formally, L = L(M) for some DTM M iff L = L(G ) for some
phrase-structure grammar G . �
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Decidability for Languages over a Single Letter

• The ideas which have been developed surrounding undecidability are
based upon an alphabet Σ with at least two letters.

• However, the two letters are needed only to encode DTMs.

• The results themselves apply to single-letter alphabets (e.g., Σ = {a}).

• The argument is simple and is illustrated by example.

Example: Let L = {α ∈ {a}∗ | Length(α) ≥ 3}.

• To show that this language is not Turing decidable, let L′ = L, but with
L′ regarded as a subset of {0, 1, a, b}∗.

• If L were decidable, the following scheme would yield a decider for L′.

begin

Run a preprocessor which discards all strings containing b, 0, or 1;
If the input makes it past this preprocessor, run a decider M for L on it;

end
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Enumerators and Semidecidable Languages

• Recall that M is a (recursive) enumerator for the language L ⊆ Σ∗ if M
produces the strings of L, one after the other, in a systematic way.

• In this case, the language L is said to be recursively enumerable.

Theorem: The language L is recursively enumerable iff it is semidecidable
(i.e., Turing enumerable). �

Summary of equivalent properties: Let L ⊆ Σ∗. The following are equivalent:

(a) L = L(M) for some DTM M (Turing acceptable, semidecidable).

(b) L is recursively enumerable (by some DTM M).

(c) L = L(G ) for some phrase-structure grammar G . �
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Rice’s Theorem in Perspective

• Rice’s theorem says that nothing nontrivial about the “black-box”
behavior of DTMs (and hence programs in a general-purpose language) is
decidable.

• This does not mean that nothing is decidable.

• Every algorithm defines a general form of decider.

• Computer scientists develop and implement algorithms for a living.

Principle: Keep in mind, Rice’s theorem says that if the inputs to a process
are to be all programs or all machines, then no black-box property can be
decided.

• By restricting the scope of the objects being evaluated, many properties
are decidable.
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