
The Turing Model of Computation

5DV037 — Fundamentals of Computer Science

Ume̊a University

Department of Computing Science

Stephen J. Hegner

hegner@cs.umu.se

http://www.cs.umu.se/~hegner

The Turing Model of Computation 20101014 Slide 1 of 28



The Idea of a Turing Machine

• The Turing machine is an abstract model of a general computer.

• It is named for the British mathematician Alan Turing (1912-1954).

• In this model, the auxiliary storage is both readable and writable in a
general way.

• The tape is taken to be infinite at both ends

• ... although many authors use only a semi-infinite tape.

• The input is typically encoded as an initial tape configuration, rather
than a separate input stream.

· · · · · ·

w

Finite-state control

tape head
external storage=read/write tape

output
yes (1) or no (0)

input
w ∈ L

input
w ∈ L

The Turing Model of Computation 20101014 Slide 2 of 28



Formal Definition of a Deterministic Turing Machine

• In this context, deterministic machines will be considered first.

• Nondeterministic machines will be considered case later.

• A deterministic Turing machine or DTM is a seven tuple

M = (Q,Σ, Γ, δ, q0 ,k,F)
in which

• Q is finite set of states;
• Σ is an alphabet, called the input alphabet;
• Γ is an alphabet, called the tape alphabet;
• δ : Q × Γ → Q × Γ× {L,R ,S} is a partial function, the

state-transition function;
• q0 ∈ Q is the initial state;
• k ∈ Γ \Σ is the blank symbol;
• F ⊆ Q is the set of final or accepting states.

The Turing Model of Computation 20101014 Slide 3 of 28



The Operation of a DTM

Q × Γ δ
−→ Q × Γ × {L,R ,S}

Current state
Tape symbol

to be processed New state
Replacement
tape symbol

Move direction
of tape head

• The new symbol replaces the current symbol on the tape.

• The directions are encoded as follows:

• L = move one square to the left;

• R = move one square to the right;

• S = remain on the same tape square.

• The textbook does not include S , but it is a very convenient extension.

• The function δ may be partial (not defined for all inputs).

• But it is deterministic (at most one move from each configuration).

The Turing Model of Computation 20101014 Slide 4 of 28



The Contents of the Tape of a DTM

• In a DTM, it is always the case that all but finitely many of the tape
squares contain the blank symbol k.

• Thus, the tape contents may be represented as a string which is either
empty or else of the form a1a2 . . . an, in which:

• every symbol to the left of a1 is k;
• every symbol to the right of an is k;
• a1 6= k and an 6= k, (but may be at the same tape position).

• The intermediate elements a2 . . . an−1 may be k.k k k k k a1 a2 · · · · · · an k k k k k· · · · · ·

State = q

The Turing Model of Computation 20101014 Slide 5 of 28



The Form of an ID for a DTM

• To represent the ID of a DTM, in addition to the state and the tape
contents, it is necessary to represent the position of the tape head.

• The idea is to represent the tape contents as a triple

〈αL, a, αR〉
in which:

• αL ∈ L(λ+ (Γ \ {k}) · Γ∗), αR ∈ L(λ+ Γ∗ · (Γ \ {k})) as illustrated.
• a ∈ Γ = contents of the current tape square.

• An ID for M = (Q,Σ, Γ, δ, q0 ,k,F) is then a quadruple

〈q, αL, a, αR〉

in which q ∈ Q and 〈αL, a, αR〉 is as above.

• ID〈M〉 denotes the set of all IDs of M.k k k k k a k k k k· · · · · ·αL αR

State = q
The Turing Model of Computation 20101014 Slide 6 of 28



The Representation of IDs in the Textbook

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• In the textbook, the ID

〈q, αL, a, αR〉

is written as
αL q aαR

• Formally, the representations are completely equivalent.

• However, the textbook representation requires that the names of states
be disjoint from those of tape symbols, and be clearly identified.

• This can become confusing, and so will not be used in these slides.k k k k k a k k k k· · · · · ·αL αR

State = q

The Turing Model of Computation 20101014 Slide 7 of 28



The Move Relation for at DTM

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• The move relation ⊢M is defined in a natural way.

• Let 〈q, a1 . . . am, a, b1, . . . bn〉 be an ID for M.

• 〈q, a1 . . . am, a, b1 . . . bn〉 ⊢M 〈q′, a1 . . . am−1, am, a
′b1 . . . bn〉 iff
δ(q, a) = (q′, a′, L).

• 〈q, a1 . . . am, a, b1 . . . bn〉 ⊢M 〈q′, a1 . . . ama
′, b1, b2 . . . bn〉 iff

δ(q, a) = (q′, a′,R).

• 〈q, a1 . . . am, a, b1 . . . bn〉 ⊢M 〈q′, a1 . . . am, a
′, b1 . . . bn〉 iff

δ(q, a) = (q′, a′,S).

• If a1 . . . am or b1 . . . bn is empty, fill in with the blank symbol:

• 〈q, λ, a, b1 . . . bn〉 ⊢M 〈q′, λ,k, a′b1 . . . bn〉 iff δ(q, a) = (q′, a′, L).

• 〈q, a1 . . . am, a, λ〉 ⊢M 〈q′, a1 . . . ama
′,k, λ〉 iff δ(q, a) = (q′, a′,R).

• ⊢∗
M
is defined to be the reflexive and transitive closure of ⊢M.

• For a DTM, both ⊢M and ⊢∗
M
are partial functions.

The Turing Model of Computation 20101014 Slide 8 of 28



Computations and Halt States

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• 〈q, αL, a, αR〉 ∈ ID〈M〉 is a halt configuration if δ(q, a) is undefined.

• In other words, a halt configuration is one which does not admit any
further moves.

• 〈q, αL, a, αR〉 ∈ ID〈M〉 is an accepting configuration if q ∈ F .

Computing with a DTM:

• The key idea is to run M until it reaches a halt configuration.

• Once M halts, the result of the computation is encoded on the tape
and/or the final state.

• Define the global transition function of M to be the partial function
δ̂∗
M

: ID〈M〉 → ID〈M〉 with δ̂∗
M
(D) = D ′ iff

• D ⊢∗
M
D ′, and

• D ′ is a halt configuration for M.

• Note that, δ̂∗
M
(D) is undefined iff the computation starting with

configuration D runs forever.The Turing Model of Computation 20101014 Slide 9 of 28



Initial Configurations for and Acceptance by DTMs

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• Recall that in a DTM, the input is encoded on the tape.

• Let α ∈ Σ∗. The input configuration for α = a1a2 . . . an, denoted
I〈M, α〉, is

〈q0, λ,First〈α〉,Rest〈α〉〉 = 〈q0, λ, a1, a2 . . . an〉

• The language accepted by M, denoted L(M), is the set of all α ∈ Σ∗

such that

• δ̂∗
M
(I〈M, α〉) is defined, and

• it is an accepting configuration; i.e.,
δ̂∗
M
(I〈M, α〉) = 〈q, β1, b, β2〉 for some q ∈ F .k k k k k k k k k a1 a2 · · · an k k k· · · · · ·

State = q0

The Turing Model of Computation 20101014 Slide 10 of 28



Languages Accepted by DTMs

• The language L ⊆ Σ∗ is called Turing acceptable or Turing recognizable

or semidecidable if there is a DTM M with L(M) = L.

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• Note that α ∈ L(M) iff

• δ̂∗(I〈M, α〉) is defined, and

• The state of δ̂∗(I〈M, α〉) is accepting.

• Thus, α 6∈ L(M) iff

• δ̂∗(I〈M, α〉) is not defined, or

• δ̂∗(I〈M, α〉) is defined, but its state is not accepting.

• In other words, a DTM can reject a string by failing to halt.

• This notion forms a major part of what will be studied in this part of the
course.

• Specifically, it will be shown that it is not possible, in general, to
determine whether the machine will halt or not.

• This is the so-called halting problem.

The Turing Model of Computation 20101014 Slide 11 of 28



Deciders and Recursive Languages

• A DTM M = (Q,Σ, Γ, δ, q0 ,k,F) is called a decider if δ̂∗(I〈M, α〉) is
defined for every α ∈ Σ∗.

• In other words, M is a decider if its computation on every input string
halts.

• It is guaranteed never to run forever on any input string.

• A language L ⊆ Σ∗ is Turing decidable or decidable or recursive if there is
a decider M with L(M) = L.

Amazing Fact (Turing): There exist languages which are Turing acceptable
but not Turing decidable. �

• Establishing this fact, and understanding its consequences, will form the
focus of study for the next few weeks.

The Turing Model of Computation 20101014 Slide 12 of 28



The Relationship between Deciders and Accepters

Observation: If the language L ⊆ Σ∗ is Turing decidable, then so too is its
complement L = Σ∗ \ L.

Proof: If M = (Q,Σ, Γ, δ, q0 ,k,F) be a decider for L, then
M ′ = (Q,Σ, Γ, δ, q0,k,Q \ F ) is a decider for L.

• It halts when one of these two emulations does.

• Thus, if L is Turing decidable, then both L and L are Turing acceptable.

• The converse is also the case.

Theorem: The language L ⊆ Σ∗ is Turing decidable iff both L and L are
Turing acceptable.

Proof: The idea is to build a DTM M ′′ which emulates the behavior of both
an accepter ML for L and an accepter M

L
for L.

• The machine “timeshares” the two emulations; one must eventually halt..

• To build such a machine is tedious but straightforward.

• It will be shown later in these slides that in lieu of a formal proof, appeal
to a universal principle (the Church-Turing thesis) may be made. �

The Turing Model of Computation 20101014 Slide 13 of 28



Computation of Functions by DTMs

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• Let α ∈ Σ∗. An output configuration for α = a1a2 . . . an is of the form

〈q, α′,First〈α〉,Rest〈α〉〉 = 〈q, α′, a1, a2 . . . an〉 if α 6= λ

〈q, α′,k, λ〉 if α = λ

for some q ∈ F and α′ ∈ ((Γ \ k)∗ · {k}) ∪ {λ}.

• Thus, to the right of the tape head, an output configuration look just like
an input configuration, save that the state must be in F .

• The string to the left of the tape head must be λ or end with a blank,
but otherwise there is no restriction.

• Roughly, the machine computes β = b1b2 . . . bm from input α if
δ̂∗(I〈M, α〉) is an output configuration for β.

• The textbook requires α′ = λ, but this generalization will prove useful.k k k kk k k k k k a1 a2 · · · an k k k· · · · · ·

State = q0
The Turing Model of Computation 20101014 Slide 14 of 28



Computation of Functions by DTMs

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• Let α ∈ Σ∗. An output configuration for α = a1a2 . . . an is of the form

〈q, α′,First〈α〉,Rest〈α〉〉 = 〈q, α′, a1, a2 . . . an〉 if α 6= λ

〈q, α′,k, λ〉 if α = λ

for some q ∈ F and α′ ∈ ((Γ \ k)∗ · {k}) ∪ {λ}.

• Thus, to the right of the tape head, an output configuration look just like
an input configuration, save that the state must be in F .

• The string to the left of the tape head must be λ or end with a blank,
but otherwise there is no restriction.

• Roughly, the machine computes β = b1b2 . . . bm from input α if
δ̂∗(I〈M, α〉) is an output configuration for β.

• The textbook requires α′ = λ, but this generalization will prove useful.k k k k b1 b2 · · · bm? ? · · · ? ? k k k· · · · · ·

State = q ∈ F
The Turing Model of Computation 20101014 Slide 14 of 28



Computations of Functions by DTMs — 2

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• The function fM computed by M is defined iff for every input
configuration I〈M, α〉, either

• δ̂∗(I〈M, α〉) is some output configuration for a string β; or else

• δ̂∗(I〈M, α〉) is undefined.

• In this case, fM : Σ∗ → Σ∗ defined by

α 7→

{

β if δ̂∗(I〈M, α〉) is an output configuration for β

undefined otherwisek k k k k k k k k a1 a2 · · · an k k k· · · · · ·

State = q0

The Turing Model of Computation 20101014 Slide 15 of 28



Computations of Functions by DTMs — 2

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• The function fM computed by M is defined iff for every input
configuration I〈M, α〉, either

• δ̂∗(I〈M, α〉) is some output configuration for a string β; or else

• δ̂∗(I〈M, α〉) is undefined.

• In this case, fM : Σ∗ → Σ∗ defined by

α 7→

{

β if δ̂∗(I〈M, α〉) is an output configuration for β

undefined otherwisek k k k k k k k k b1 b2 · · · bm k k k· · · · · ·

State = q ∈ F

The Turing Model of Computation 20101014 Slide 15 of 28



Computation of Multi-Argument Functions by DTMs

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• Multi-argument input configurations are specified in a natural way.

• Just put the arguments on the input tape, separated by blanks.

• If the input is

(α1, α2, . . . , αk) ∈ Σ∗ ×Σ∗ × . . .× Σ∗

then the input configuration is as illustrated below.

• f
(k)
M

: (Σ∗)k → Σ∗ is defined in the obvious way.

• Multiple outputs are formulated similarly.k k k k k k· · · k k k· · · · · ·α1 α2 αk

State = q0

The Turing Model of Computation 20101014 Slide 16 of 28



The DTM as a Model of Computation

• The concept of a Turing machine was developed during the 1930’s, by a
mathematician, before digital computers were a reality.

• It is conceptually simple, although very tedious, to program a DTM.

• Even simple tasks which are trivial to describe in a modern programming
language become very tedious chores with a DTM.

Question: What is the utility of the DTM, then?

Answer: It is the tool for establishing certain theoretical results.

• Turing machines are very useful in the study of complexity in particular
because:

• They admit a very simple definition of what a single step in a
computation is.

• They admit a natural model of nondeterminism, which is a central
idea in modern complexity theory.

• In any case, in this course, the programming of DTMs will not be a focus.

• This choice of model is not as crucial as it might appear because of the
Church-Turing thesis.

The Turing Model of Computation 20101014 Slide 17 of 28



The Church-Turing Thesis

Question: Is there an upper limit on what a computer can do, without regard
for how efficiently it can do it?

Answer: The Church-Turing Thesis or just Turing Thesis says that there is,
and that this limit is defined by the DTM.

• It is not something which can be proven, because there are infinitely
many different models of computation.

• However, this thesis is supported by reductions of many hundreds (if not
thousands) of distinct models of computation.

• This includes:

• All sorts of programming languages.

• All sorts of nondeterministic models.

• Many specialized models.

• It has been shown that none of these models is more powerful than the
DTM.

The Turing Model of Computation 20101014 Slide 18 of 28



An Application of the Church-Turing Thesis

• Recall the earlier claim:

Theorem: The language L ⊆ Σ∗ is Turing decidable iff both L and L are
Turing acceptable.

Proof: The idea is to build a DTM M ′′which emulates the behavior of both
an accepter ML for L and an accepter M

L
for L.

• The machine “timeshares” the two emulations.

• To build such a machine is tedious but straightforward.

• Rather than spelling out in detail how to build the emulating machine, it
is possible to invoke the Church-Turing thesis.

• It is certainly possible to build such an emulator in a modern
programming language.

• Thus, it must be possible to build a DTM which does the same thing. �

The Turing Model of Computation 20101014 Slide 19 of 28



Universal Models of Computation

• Call a computational model universal if it is equivalent in power to the
DTM.

• Also called Turing equivalent.

• Virtually all modern programming languages are universal models..

• modulo idealization to no bound on values for variables.

• NPDAs and FAs are not universal.

Why? The language {akbkck | k ∈ N} is not a CFL (and hence not
acceptable by any NPDA), but it is clearly possible to write a program in
C to accept it.

• In this course, two other models of universal computation will be
considered:

• Nondeterministic Turing machines

• because of their importance in the study of complexity theory.

• A simple language of while programs

• because it provides an simple alternative notion of universal
computation which is much more familiar to computer
scientists.The Turing Model of Computation 20101014 Slide 20 of 28



Nondeterministic Turing Machines

• A nondeterministic Turing machine (NDTM) is defined exactly as a
DTM, save that the transition function has the structure:

δ : Q × Γ → 2Q×Γ×{L,R,S}

providing a finite set of alternatives at each point.

• This function is usually taken to be total, since the lack of a transition
may be modelled via the empty set.

• The DTM M = (Q,Σ, Γ, δ, q0 ,k,F) may be modelled as an NDTM
M ′ = (Q,Σ, Γ, δ′, q0,k,F ) by defining

δ′(q, a) =

{

{δ(q, a)} if δ(q, a) is defined

∅ if δ(q, a) is not defined

• The move relation ⊢M and its transitive closure ⊢M are defined as in the
deterministic case, but they are no longer functions.

The Turing Model of Computation 20101014 Slide 21 of 28



Global Transition and Acceptance for NDTMs

Context: An NDTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• Define the global transition function of M to be the function
δ̂∗M : ID〈M〉 → 2ID〈M〉 with

δ̂∗
M
(D) = {D ′ ∈ ID〈M〉 | D ⊢∗

M
D ′ and D’ is a halt configuration for M}.

• A string α ∈ Σ∗ is
accepted by M if some
computation from
I〈M, α〉 leads to a halt in
an accepting state.

initial
config reject

accept

accept

reject

· · ·

· · ·

· · ·

• L(M) = {α ∈ Σ∗ | δ̂∗M(I〈M, α〉) contains an accepting configuration }.

• Note the asymmetry between acceptance and rejection, as in the case of
NFAs and NPDAs.

The Turing Model of Computation 20101014 Slide 22 of 28



NDTMs as Deciders

Context: An NDTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• The NDTM M is a decider if no infinite computations from any input
configuration is possible.

• More precisely, M is a
decider if for every
α ∈ Σ∗, there is an
N ∈ N such that every
computation
I〈M, α〉 ⊢M D1 ⊢M D2 . . . ⊢M Dk has k ≤ N.

initial
config reject

accept

accept

reject

reject

reject

reject

Theorem (equivalence of NDTMs and DTMs): Let L ∈ Σ∗.

(a) If L = L(M) for some NDTM M, then L = L(M ′) for some DTM
M ′.

(b) In (a), if M is a decider, then M ′ may be chosen to be a decider as
well. �

The Turing Model of Computation 20101014 Slide 23 of 28



Computation of Functions by NDTMs

• The computation of a function by a DTM was defined in terms of input
and output configurations.

• For a given input configuration I〈M, α〉, if the machine halts in an
output configuration, the string associated with that configuration is the
output value.

• This idea does not extend easily to NDTMs, because there may be many
distinct final configurations.

• Thus, the notion of a NDTM is used primarily with decision problems,
which may be answered with “yes” or “no”.

• The central problem of this form is the acceptance of a language.

The Turing Model of Computation 20101014 Slide 24 of 28



An Abstract Formulation of the Notion of Algorithm

• A DTM M which halts for all inputs “of interest” defines an algorithm.

• If M = (Q,Σ, Γ, δ, q0 ,k,F) is a decider, then the inputs of interest are
initial configurations of strings in Σ∗.

• A decision problem on Σ∗ is defined by a total function f : Σ∗ → {0, 1}.

• If the answer to input α ∈ Σ∗ is true, then f (α) = 1.

• If the answer to input α ∈ Σ∗ is false, then f (α) = 0.

• This is nothing more than the acceptance/decision problem for the
language L(f ) = {α ∈ Σ∗ | f (α) = 1}.

• Formally, a deterministic algorithm for f is a deterministic decider (i.e., a
DTM) for L(f ).

• Similarly, a nondeterministic algorithm for f is a nondeterministic decider
(i.e., an NDTM) for L(f ).

• In terms of existence, these two notions are equivalent.

• However, the time complexity (number of steps required to reach a
decision) may be very different.

• This idea will prove important in the study of complexity theory.

The Turing Model of Computation 20101014 Slide 25 of 28



Abstract Algorithms for General Problems

• For a more general problem which computes a total function

f : Σ∗ → Σ∗

or even a multi-input total function

f : (Σ∗)k → Σ∗

for some k > 1 an abstract algorithm is defined by a DTM which
computes f .

• Since f is total, such a DTM must halt on all input configurations.

• This notion is applicable only to DTMs.

The Turing Model of Computation 20101014 Slide 26 of 28



Variations on the Turing Model

• There are many minor variations on the Turing machine model.

• No stay option “S” of the tape head.

• Semi-infinite tape rather rather than infinite in both directions.

• Off-line machines (separate input file).

• Multitape Turing machines.

• Turing machines with multidimensional tapes.

• Nondeterministic versions of all of these.

Fact: In each case, the computational power is equivalent to that of the
basic DTM.

Proof: In each case, the details have been worked out be earlier researchers.
�

• Another, more interesting equivalent model of computation is based upon
conventional imperative programming languages, rather than low-level
machines.

• This model will be developed briefly later, time permitting.
The Turing Model of Computation 20101014 Slide 27 of 28



DTMs with a Single Accepting State

• There is a minor variation which will be useful in that which follows.

Algorithm: Given a DTM M = (Q,Σ, Γ, δ, q0 ,k,F), construct a DTM
M ′ = (Q ′,Σ, Γ, δ′, q0,k,F ′) which accepts the same language and
computes the same function as M, but which has exactly one final state.

Construction: Put Q ′ = Q ∪ {qf } with qf 6∈ Q, and F ′ = {qf }.

• Define δ′ to have all of the transitions of δ plus those of the form
δ′(q, a) = (qf , a,S) whenever both of following conditions hold:

• q ∈ F , and

• δ(q, a) is undefined. �

The Turing Model of Computation 20101014 Slide 28 of 28


