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The Idea of a Turing Machine

• The Turing machine is an abstract model of a general computer.

• It is named for the British mathematician Alan Turing (1912-1954).

• In this model, the auxiliary storage is both readable and writable in a
general way.

• The tape is taken to be infinite at both ends

• ... although many authors use only a semi-infinite tape.

• The input is typically encoded as an initial tape configuration, rather
than a separate input stream.

· · · · · ·

w

Finite-state control

tape head
external storage=read/write tape

output
yes (1) or no (0)

input
w ∈ L

input
w ∈ L
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Formal Definition of a Deterministic Turing Machine

• In this context, deterministic machines will be considered first.

• Nondeterministic machines will be considered case later.

• A deterministic Turing machine or DTM is a seven tuple

M = (Q,Σ, Γ, δ, q0 ,k,F)
in which

• Q is finite set of states;
• Σ is an alphabet, called the input alphabet;
• Γ is an alphabet, called the tape alphabet;
• δ : Q × Γ → Q × Γ× {L,R ,S} is a partial function, the

state-transition function;
• q0 ∈ Q is the initial state;
• k ∈ Γ \Σ is the blank symbol;
• F ⊆ Q is the set of final or accepting states.
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The Operation of a DTM

Q × Γ δ
−→ Q × Γ × {L,R ,S}

Current state
Tape symbol

to be processed New state
Replacement
tape symbol

Move direction
of tape head

• The new symbol replaces the current symbol on the tape.

• The directions are encoded as follows:

• L = move one square to the left;

• R = move one square to the right;

• S = remain on the same tape square.

• The textbook does not include S , but it is a very convenient extension.

• The function δ may be partial (not defined for all inputs).

• But it is deterministic (at most one move from each configuration).
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The Contents of the Tape of a DTM

• In a DTM, it is always the case that all but finitely many of the tape
squares contain the blank symbol k.

• Thus, the tape contents may be represented as a string which is either
empty or else of the form a1a2 . . . an, in which:

• every symbol to the left of a1 is k;
• every symbol to the right of an is k;
• a1 6= k and an 6= k, (but may be at the same tape position).

• The intermediate elements a2 . . . an−1 may be k.k k k k k a1 a2 · · · · · · an k k k k k· · · · · ·

State = q
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The Form of an ID for a DTM

• To represent the ID of a DTM, in addition to the state and the tape
contents, it is necessary to represent the position of the tape head.

• The idea is to represent the tape contents as a triple

〈αL, a, αR〉
in which:

• αL ∈ L(λ+ (Γ \ {k}) · Γ∗), αR ∈ L(λ+ Γ∗ · (Γ \ {k})) as illustrated.
• a ∈ Γ = contents of the current tape square.

• An ID for M = (Q,Σ, Γ, δ, q0 ,k,F) is then a quadruple

〈q, αL, a, αR〉

in which q ∈ Q and 〈αL, a, αR〉 is as above.

• ID〈M〉 denotes the set of all IDs of M.k k k k k a k k k k· · · · · ·αL αR

State = q
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The Representation of IDs in the Textbook

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• In the textbook, the ID

〈q, αL, a, αR〉

is written as
αL q aαR

• Formally, the representations are completely equivalent.

• However, the textbook representation requires that the names of states
be disjoint from those of tape symbols, and be clearly identified.

• This can become confusing, and so will not be used in these slides.k k k k k a k k k k· · · · · ·αL αR

State = q

The Turing Model of Computation 20101014 Slide 7 of 28



The Move Relation for at DTM

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• The move relation ⊢M is defined in a natural way.

• Let 〈q, a1 . . . am, a, b1, . . . bn〉 be an ID for M.

• 〈q, a1 . . . am, a, b1 . . . bn〉 ⊢M 〈q′, a1 . . . am−1, am, a
′b1 . . . bn〉 iff
δ(q, a) = (q′, a′, L).

• 〈q, a1 . . . am, a, b1 . . . bn〉 ⊢M 〈q′, a1 . . . ama
′, b1, b2 . . . bn〉 iff

δ(q, a) = (q′, a′,R).

• 〈q, a1 . . . am, a, b1 . . . bn〉 ⊢M 〈q′, a1 . . . am, a
′, b1 . . . bn〉 iff

δ(q, a) = (q′, a′,S).

• If a1 . . . am or b1 . . . bn is empty, fill in with the blank symbol:

• 〈q, λ, a, b1 . . . bn〉 ⊢M 〈q′, λ,k, a′b1 . . . bn〉 iff δ(q, a) = (q′, a′, L).

• 〈q, a1 . . . am, a, λ〉 ⊢M 〈q′, a1 . . . ama
′,k, λ〉 iff δ(q, a) = (q′, a′,R).

• ⊢∗
M
is defined to be the reflexive and transitive closure of ⊢M.

• For a DTM, both ⊢M and ⊢∗
M
are partial functions.
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Computations and Halt States

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• 〈q, αL, a, αR〉 ∈ ID〈M〉 is a halt configuration if δ(q, a) is undefined.

• In other words, a halt configuration is one which does not admit any
further moves.

• 〈q, αL, a, αR〉 ∈ ID〈M〉 is an accepting configuration if q ∈ F .

Computing with a DTM:

• The key idea is to run M until it reaches a halt configuration.

• Once M halts, the result of the computation is encoded on the tape
and/or the final state.

• Define the global transition function of M to be the partial function
δ̂∗
M

: ID〈M〉 → ID〈M〉 with δ̂∗
M
(D) = D ′ iff

• D ⊢∗
M
D ′, and

• D ′ is a halt configuration for M.

• Note that, δ̂∗
M
(D) is undefined iff the computation starting with

configuration D runs forever.The Turing Model of Computation 20101014 Slide 9 of 28



Initial Configurations for and Acceptance by DTMs

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• Recall that in a DTM, the input is encoded on the tape.

• Let α ∈ Σ∗. The input configuration for α = a1a2 . . . an, denoted
I〈M, α〉, is

〈q0, λ,First〈α〉,Rest〈α〉〉 = 〈q0, λ, a1, a2 . . . an〉

• The language accepted by M, denoted L(M), is the set of all α ∈ Σ∗

such that

• δ̂∗
M
(I〈M, α〉) is defined, and

• it is an accepting configuration; i.e.,
δ̂∗
M
(I〈M, α〉) = 〈q, β1, b, β2〉 for some q ∈ F .k k k k k k k k k a1 a2 · · · an k k k· · · · · ·

State = q0
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Languages Accepted by DTMs

• The language L ⊆ Σ∗ is called Turing acceptable or Turing recognizable

or semidecidable if there is a DTM M with L(M) = L.

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• Note that α ∈ L(M) iff

• δ̂∗(I〈M, α〉) is defined, and

• The state of δ̂∗(I〈M, α〉) is accepting.

• Thus, α 6∈ L(M) iff

• δ̂∗(I〈M, α〉) is not defined, or

• δ̂∗(I〈M, α〉) is defined, but its state is not accepting.

• In other words, a DTM can reject a string by failing to halt.

• This notion forms a major part of what will be studied in this part of the
course.

• Specifically, it will be shown that it is not possible, in general, to
determine whether the machine will halt or not.

• This is the so-called halting problem.
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Deciders and Recursive Languages

• A DTM M = (Q,Σ, Γ, δ, q0 ,k,F) is called a decider if δ̂∗(I〈M, α〉) is
defined for every α ∈ Σ∗.

• In other words, M is a decider if its computation on every input string
halts.

• It is guaranteed never to run forever on any input string.

• A language L ⊆ Σ∗ is Turing decidable or decidable or recursive if there is
a decider M with L(M) = L.

Amazing Fact (Turing): There exist languages which are Turing acceptable
but not Turing decidable. �

• Establishing this fact, and understanding its consequences, will form the
focus of study for the next few weeks.
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The Relationship between Deciders and Accepters

Observation: If the language L ⊆ Σ∗ is Turing decidable, then so too is its
complement L = Σ∗ \ L.

Proof: If M = (Q,Σ, Γ, δ, q0 ,k,F) be a decider for L, then
M ′ = (Q,Σ, Γ, δ, q0,k,Q \ F ) is a decider for L.

• It halts when one of these two emulations does.

• Thus, if L is Turing decidable, then both L and L are Turing acceptable.

• The converse is also the case.

Theorem: The language L ⊆ Σ∗ is Turing decidable iff both L and L are
Turing acceptable.

Proof: The idea is to build a DTM M ′′ which emulates the behavior of both
an accepter ML for L and an accepter M

L
for L.

• The machine “timeshares” the two emulations; one must eventually halt..

• To build such a machine is tedious but straightforward.

• It will be shown later in these slides that in lieu of a formal proof, appeal
to a universal principle (the Church-Turing thesis) may be made. �
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Computation of Functions by DTMs

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• Let α ∈ Σ∗. An output configuration for α = a1a2 . . . an is of the form

〈q, α′,First〈α〉,Rest〈α〉〉 = 〈q, α′, a1, a2 . . . an〉 if α 6= λ

〈q, α′,k, λ〉 if α = λ

for some q ∈ F and α′ ∈ ((Γ \ k)∗ · {k}) ∪ {λ}.

• Thus, to the right of the tape head, an output configuration look just like
an input configuration, save that the state must be in F .

• The string to the left of the tape head must be λ or end with a blank,
but otherwise there is no restriction.

• Roughly, the machine computes β = b1b2 . . . bm from input α if
δ̂∗(I〈M, α〉) is an output configuration for β.

• The textbook requires α′ = λ, but this generalization will prove useful.k k k kk k k k k k a1 a2 · · · an k k k· · · · · ·

State = q0
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Computations of Functions by DTMs — 2

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• The function fM computed by M is defined iff for every input
configuration I〈M, α〉, either

• δ̂∗(I〈M, α〉) is some output configuration for a string β; or else

• δ̂∗(I〈M, α〉) is undefined.

• In this case, fM : Σ∗ → Σ∗ defined by

α 7→

{

β if δ̂∗(I〈M, α〉) is an output configuration for β

undefined otherwisek k k k k k k k k a1 a2 · · · an k k k· · · · · ·

State = q0
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Computation of Multi-Argument Functions by DTMs

Context: A DTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• Multi-argument input configurations are specified in a natural way.

• Just put the arguments on the input tape, separated by blanks.

• If the input is

(α1, α2, . . . , αk) ∈ Σ∗ ×Σ∗ × . . .× Σ∗

then the input configuration is as illustrated below.

• f
(k)
M

: (Σ∗)k → Σ∗ is defined in the obvious way.

• Multiple outputs are formulated similarly.k k k k k k· · · k k k· · · · · ·α1 α2 αk

State = q0
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The DTM as a Model of Computation

• The concept of a Turing machine was developed during the 1930’s, by a
mathematician, before digital computers were a reality.

• It is conceptually simple, although very tedious, to program a DTM.

• Even simple tasks which are trivial to describe in a modern programming
language become very tedious chores with a DTM.

Question: What is the utility of the DTM, then?

Answer: It is the tool for establishing certain theoretical results.

• Turing machines are very useful in the study of complexity in particular
because:

• They admit a very simple definition of what a single step in a
computation is.

• They admit a natural model of nondeterminism, which is a central
idea in modern complexity theory.

• In any case, in this course, the programming of DTMs will not be a focus.

• This choice of model is not as crucial as it might appear because of the
Church-Turing thesis.
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The Church-Turing Thesis

Question: Is there an upper limit on what a computer can do, without regard
for how efficiently it can do it?

Answer: The Church-Turing Thesis or just Turing Thesis says that there is,
and that this limit is defined by the DTM.

• It is not something which can be proven, because there are infinitely
many different models of computation.

• However, this thesis is supported by reductions of many hundreds (if not
thousands) of distinct models of computation.

• This includes:

• All sorts of programming languages.

• All sorts of nondeterministic models.

• Many specialized models.

• It has been shown that none of these models is more powerful than the
DTM.
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An Application of the Church-Turing Thesis

• Recall the earlier claim:

Theorem: The language L ⊆ Σ∗ is Turing decidable iff both L and L are
Turing acceptable.

Proof: The idea is to build a DTM M ′′which emulates the behavior of both
an accepter ML for L and an accepter M

L
for L.

• The machine “timeshares” the two emulations.

• To build such a machine is tedious but straightforward.

• Rather than spelling out in detail how to build the emulating machine, it
is possible to invoke the Church-Turing thesis.

• It is certainly possible to build such an emulator in a modern
programming language.

• Thus, it must be possible to build a DTM which does the same thing. �
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Universal Models of Computation

• Call a computational model universal if it is equivalent in power to the
DTM.

• Also called Turing equivalent.

• Virtually all modern programming languages are universal models..

• modulo idealization to no bound on values for variables.

• NPDAs and FAs are not universal.

Why? The language {akbkck | k ∈ N} is not a CFL (and hence not
acceptable by any NPDA), but it is clearly possible to write a program in
C to accept it.

• In this course, two other models of universal computation will be
considered:

• Nondeterministic Turing machines

• because of their importance in the study of complexity theory.

• A simple language of while programs

• because it provides an simple alternative notion of universal
computation which is much more familiar to computer
scientists.The Turing Model of Computation 20101014 Slide 20 of 28



Nondeterministic Turing Machines

• A nondeterministic Turing machine (NDTM) is defined exactly as a
DTM, save that the transition function has the structure:

δ : Q × Γ → 2Q×Γ×{L,R,S}

providing a finite set of alternatives at each point.

• This function is usually taken to be total, since the lack of a transition
may be modelled via the empty set.

• The DTM M = (Q,Σ, Γ, δ, q0 ,k,F) may be modelled as an NDTM
M ′ = (Q,Σ, Γ, δ′, q0,k,F ) by defining

δ′(q, a) =

{

{δ(q, a)} if δ(q, a) is defined

∅ if δ(q, a) is not defined

• The move relation ⊢M and its transitive closure ⊢M are defined as in the
deterministic case, but they are no longer functions.
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Global Transition and Acceptance for NDTMs

Context: An NDTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• Define the global transition function of M to be the function
δ̂∗M : ID〈M〉 → 2ID〈M〉 with

δ̂∗
M
(D) = {D ′ ∈ ID〈M〉 | D ⊢∗

M
D ′ and D’ is a halt configuration for M}.

• A string α ∈ Σ∗ is
accepted by M if some
computation from
I〈M, α〉 leads to a halt in
an accepting state.

initial
config reject

accept

accept

reject

· · ·

· · ·

· · ·

• L(M) = {α ∈ Σ∗ | δ̂∗M(I〈M, α〉) contains an accepting configuration }.

• Note the asymmetry between acceptance and rejection, as in the case of
NFAs and NPDAs.
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NDTMs as Deciders

Context: An NDTM M = (Q,Σ, Γ, δ, q0 ,k,F).
• The NDTM M is a decider if no infinite computations from any input
configuration is possible.

• More precisely, M is a
decider if for every
α ∈ Σ∗, there is an
N ∈ N such that every
computation
I〈M, α〉 ⊢M D1 ⊢M D2 . . . ⊢M Dk has k ≤ N.

initial
config reject

accept

accept

reject

reject

reject

reject

Theorem (equivalence of NDTMs and DTMs): Let L ∈ Σ∗.

(a) If L = L(M) for some NDTM M, then L = L(M ′) for some DTM
M ′.

(b) In (a), if M is a decider, then M ′ may be chosen to be a decider as
well. �
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Computation of Functions by NDTMs

• The computation of a function by a DTM was defined in terms of input
and output configurations.

• For a given input configuration I〈M, α〉, if the machine halts in an
output configuration, the string associated with that configuration is the
output value.

• This idea does not extend easily to NDTMs, because there may be many
distinct final configurations.

• Thus, the notion of a NDTM is used primarily with decision problems,
which may be answered with “yes” or “no”.

• The central problem of this form is the acceptance of a language.
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An Abstract Formulation of the Notion of Algorithm

• A DTM M which halts for all inputs “of interest” defines an algorithm.

• If M = (Q,Σ, Γ, δ, q0 ,k,F) is a decider, then the inputs of interest are
initial configurations of strings in Σ∗.

• A decision problem on Σ∗ is defined by a total function f : Σ∗ → {0, 1}.

• If the answer to input α ∈ Σ∗ is true, then f (α) = 1.

• If the answer to input α ∈ Σ∗ is false, then f (α) = 0.

• This is nothing more than the acceptance/decision problem for the
language L(f ) = {α ∈ Σ∗ | f (α) = 1}.

• Formally, a deterministic algorithm for f is a deterministic decider (i.e., a
DTM) for L(f ).

• Similarly, a nondeterministic algorithm for f is a nondeterministic decider
(i.e., an NDTM) for L(f ).

• In terms of existence, these two notions are equivalent.

• However, the time complexity (number of steps required to reach a
decision) may be very different.

• This idea will prove important in the study of complexity theory.
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Abstract Algorithms for General Problems

• For a more general problem which computes a total function

f : Σ∗ → Σ∗

or even a multi-input total function

f : (Σ∗)k → Σ∗

for some k > 1 an abstract algorithm is defined by a DTM which
computes f .

• Since f is total, such a DTM must halt on all input configurations.

• This notion is applicable only to DTMs.
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Variations on the Turing Model

• There are many minor variations on the Turing machine model.

• No stay option “S” of the tape head.

• Semi-infinite tape rather rather than infinite in both directions.

• Off-line machines (separate input file).

• Multitape Turing machines.

• Turing machines with multidimensional tapes.

• Nondeterministic versions of all of these.

Fact: In each case, the computational power is equivalent to that of the
basic DTM.

Proof: In each case, the details have been worked out be earlier researchers.
�

• Another, more interesting equivalent model of computation is based upon
conventional imperative programming languages, rather than low-level
machines.

• This model will be developed briefly later, time permitting.
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DTMs with a Single Accepting State

• There is a minor variation which will be useful in that which follows.

Algorithm: Given a DTM M = (Q,Σ, Γ, δ, q0 ,k,F), construct a DTM
M ′ = (Q ′,Σ, Γ, δ′, q0,k,F ′) which accepts the same language and
computes the same function as M, but which has exactly one final state.

Construction: Put Q ′ = Q ∪ {qf } with qf 6∈ Q, and F ′ = {qf }.

• Define δ′ to have all of the transitions of δ plus those of the form
δ′(q, a) = (qf , a,S) whenever both of following conditions hold:

• q ∈ F , and

• δ(q, a) is undefined. �
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