The Turing Model of Computation 5DV037 — Fundamentals of Computer Science Umeå University Department of Computing Science Stephen J. Hegner hegner@cs.umu.se http://www.cs.umu.se/~hegner

The Idea of a Turing Machine

- The Turing machine is an abstract model of a general computer.
- It is named for the British mathematician Alan Turing (1912-1954).
- In this model, the auxiliary storage is both readable and writable in a general way.
- The tape is taken to be infinite at both ends
 - ... although many authors use only a semi-infinite tape.
- The input is typically encoded as an initial tape configuration, rather than a separate input stream.

Formal Definition of a Deterministic Turing Machine

- In this context, deterministic machines will be considered first.
- Nondeterministic machines will be considered case later.
- A *deterministic Turing machine* or *DTM* is a seven tuple

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$$

in which

- *Q* is finite set of *states*;
- Σ is an alphabet, called the *input alphabet*;
- Γ is an alphabet, called the *tape alphabet*;
- δ: Q × Γ → Q × Γ × {L, R, S} is a partial function, the state-transition function;
- $q_0 \in Q$ is the *initial state*;
- $\Box \in \Gamma \setminus \Sigma$ is the *blank symbol*;
- $F \subseteq Q$ is the set of *final* or *accepting states*.

The Operation of a DTM

- The new symbol replaces the current symbol on the tape.
- The directions are encoded as follows:
 - *L* = move one square to the left;
 - R = move one square to the right;
 - S = remain on the same tape square.
- The textbook does not include S, but it is a very convenient extension.
- The function δ may be partial (not defined for all inputs).
- But it is deterministic (at most one move from each configuration).

The Turing Model of Computation

20101014 Slide 4 of 28

The Contents of the Tape of a DTM

- In a DTM, it is always the case that all but finitely many of the tape squares contain the blank symbol **D**.
- Thus, the tape contents may be represented as a string which is either empty or else of the form $a_1a_2...a_n$, in which:
 - every symbol to the left of a_1 is \Box ;
 - every symbol to the right of a_n is \Box ;
 - $a_1 \neq \Box$ and $a_n \neq \Box$, (but may be at the same tape position).
- The intermediate elements $a_2 \dots a_{n-1}$ may be \Box .

The Form of an ID for a DTM

- To represent the ID of a DTM, in addition to the state and the tape contents, it is necessary to represent the position of the tape head.
- The idea is to represent the tape contents as a triple

$$\langle lpha_{ extsf{L}}, extsf{a}, lpha_{ extsf{F}}
angle$$

in which:

- $\alpha_L \in \mathcal{L}(\lambda + (\Gamma \setminus \{\Box\}) \cdot \Gamma^*)$, $\alpha_R \in \mathcal{L}(\lambda + \Gamma^* \cdot (\Gamma \setminus \{\Box\}))$ as illustrated.
- $a \in \Gamma$ = contents of the current tape square.
- An *ID* for $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ is then a quadruple

$$\langle \boldsymbol{q}, \alpha_{\scriptscriptstyle L}, \boldsymbol{a}, \alpha_{\scriptscriptstyle R} \rangle$$

in which $q \in Q$ and $\langle \alpha_L, a, \alpha_R \rangle$ is as above.

• $ID\langle M \rangle$ denotes the set of all IDs of M.

The Representation of IDs in the Textbook

Context: A DTM $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$.

• In the textbook, the ID

$$\langle \boldsymbol{q}, \alpha_{\scriptscriptstyle L}, \boldsymbol{a}, \alpha_{\scriptscriptstyle R} \rangle$$

is written as

$$\alpha_L \ q \ a \alpha_R$$

- Formally, the representations are completely equivalent.
- However, the textbook representation requires that the names of states be disjoint from those of tape symbols, and be clearly identified.
- This can become confusing, and so will not be used in these slides.

The Move Relation for at DTM

Context: A DTM $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$.

• The move relation $\vdash_{\!\!M}$ is defined in a natural way.

- \vdash_{M}^{*} is defined to be the reflexive and transitive closure of \vdash_{M} .
- For a DTM, both $\vdash_{\overline{M}}$ and $\vdash_{\overline{M}}^*$ are partial functions.

The Turing Model of Computation

20101014 Slide 8 of 28

Computations and Halt States

Context: A DTM $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$.

- $\langle q, \alpha_L, a, \alpha_R \rangle \in ID\langle M \rangle$ is a *halt configuration* if $\delta(q, a)$ is undefined.
- In other words, a halt configuration is one which does not admit any further moves.
- $\langle q, \alpha_L, a, \alpha_R \rangle \in ID\langle M \rangle$ is an *accepting configuration* if $q \in F$.

Computing with a DTM:

- The key idea is to run M until it reaches a halt configuration.
- Once *M* halts, the result of the computation is encoded on the tape and/or the final state.
- Define the *global transition function* of M to be the partial function $\hat{\delta}^*_M : \mathrm{ID}\langle M \rangle \to \mathrm{ID}\langle M \rangle$ with $\hat{\delta}^*_M(D) = D'$ iff
 - $D \vdash_{M}^{*} D'$, and
 - D' is a halt configuration for M.
- Note that, $\hat{\delta}^*_M(D)$ is undefined iff the computation starting with The Turing Onfiguration D runs forever. 20101014 Slide 9 of 28

Initial Configurations for and Acceptance by DTMs

Context: A DTM $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$.

- Recall that in a DTM, the input is encoded on the tape.
- Let α ∈ Σ*. The input configuration for α = a₁a₂...a_n, denoted *I*⟨*M*, α⟩, is

$$\langle q_0, \lambda, \mathsf{First} \langle \alpha \rangle, \mathsf{Rest} \langle \alpha \rangle \rangle = \langle q_0, \lambda, a_1, a_2 \dots a_n \rangle$$

- The language accepted by M, denoted L(M), is the set of all α ∈ Σ* such that
 - $\hat{\delta}^*_{\mathcal{M}}(\mathcal{I}\langle \mathcal{M}, \alpha \rangle)$ is defined, and
 - it is an accepting configuration; *i.e.*,

 $\hat{\delta}^*_{\mathcal{M}}(\mathcal{I}\langle \mathcal{M}, \alpha \rangle) = \langle q, \beta_1, b, \beta_2 \rangle$ for some $q \in \mathcal{F}$.

Languages Accepted by DTMs

The language L ⊆ Σ* is called *Turing acceptable* or *Turing recognizable* or *semidecidable* if there is a DTM M with L(M) = L.

Context: A DTM $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$.

- Note that $\alpha \in \mathcal{L}(M)$ iff
 - $\hat{\delta}^*(\mathcal{I}\langle M, \alpha \rangle)$ is defined, and
 - The state of $\hat{\delta}^*(\mathcal{I}\langle M, \alpha \rangle)$ is accepting.
- Thus, $\alpha \not\in \mathcal{L}(M)$ iff
 - $\hat{\delta}^*(\mathcal{I}\langle M, \alpha \rangle)$ is not defined, or
 - $\hat{\delta}^*(\mathcal{I}\langle M, \alpha \rangle)$ is defined, but its state is not accepting.
- In other words, a DTM can reject a string by failing to halt.
- This notion forms a major part of what will be studied in this part of the course.
- Specifically, it will be shown that it is not possible, in general, to determine whether the machine will halt or not.
- This is the so-called *halting problem*.

The Turing Model of Computation

Deciders and Recursive Languages

- A DTM M = (Q, Σ, Γ, δ, q₀, □, F) is called a *decider* if δ^{*}(I⟨M, α⟩) is defined for every α ∈ Σ^{*}.
- In other words, *M* is a decider if its computation on every input string halts.
- It is guaranteed never to run forever on any input string.
- A language L ⊆ Σ* is *Turing decidable* or *decidable* or *recursive* if there is a decider M with L(M) = L.
- Amazing Fact (Turing): There exist languages which are Turing acceptable but not Turing decidable. □
 - Establishing this fact, and understanding its consequences, will form the focus of study for the next few weeks.

The Relationship between Deciders and Accepters

- Observation: If the language $L \subseteq \Sigma^*$ is Turing decidable, then so too is its complement $\overline{L} = \Sigma^* \setminus L$.
- Proof: If $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ be a decider for L, then $M' = (Q, \Sigma, \Gamma, \delta, q_0, \Box, Q \setminus F)$ is a decider for \overline{L} .
 - It halts when one of these two emulations does.
 - Thus, if L is Turing decidable, then both L and \overline{L} are Turing acceptable.
 - The converse is also the case.
- Theorem: The language $L \subseteq \Sigma^*$ is Turing decidable iff both L and \overline{L} are Turing acceptable.
- Proof: The idea is to build a DTM M'' which emulates the behavior of both an accepter M_L for L and an accepter $M_{\overline{L}}$ for \overline{L} .
 - The machine "timeshares" the two emulations; one must eventually halt..
 - To build such a machine is tedious but straightforward.
 - It will be shown later in these slides that in lieu of a formal proof, appeal to a universal principle (the Church-Turing thesis) may be made. \Box

The Turing Model of Computation

20101014 Slide 13 of 28

Computation of Functions by DTMs

Context: A DTM $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$.

• Let $\alpha \in \Sigma^*$. An output configuration for $\alpha = a_1 a_2 \dots a_n$ is of the form

$$\langle q, \alpha', \mathsf{First}\langle \alpha \rangle, \mathsf{Rest}\langle \alpha \rangle \rangle = \langle q, \alpha', a_1, a_2 \dots a_n \rangle \text{ if } \alpha \neq \lambda$$

 $\langle q, \alpha', \Box, \lambda \rangle \text{ if } \alpha = \lambda$

for some $q \in F$ and $\alpha' \in ((\Gamma \setminus \Box)^* \cdot \{\Box\}) \cup \{\lambda\}.$

- Thus, to the right of the tape head, an output configuration look just like an input configuration, save that the state must be in *F*.
- The string to the left of the tape head must be λ or end with a blank, but otherwise there is no restriction.
- Roughly, the machine computes $\beta = b_1 b_2 \dots b_m$ from input α if $\hat{\delta}^*(\mathcal{I}\langle M, \alpha \rangle)$ is an output configuration for β .
- The textbook requires $\alpha'=\lambda,$ but this generalization will prove useful.

Computation of Functions by DTMs

Context: A DTM $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$.

• Let $\alpha \in \Sigma^*$. An output configuration for $\alpha = a_1 a_2 \dots a_n$ is of the form

$$\langle q, \alpha', \mathsf{First}\langle \alpha \rangle, \mathsf{Rest}\langle \alpha \rangle \rangle = \langle q, \alpha', a_1, a_2 \dots a_n \rangle \text{ if } \alpha \neq \lambda$$

 $\langle q, \alpha', \Box, \lambda \rangle \text{ if } \alpha = \lambda$

for some $q \in F$ and $\alpha' \in ((\Gamma \setminus \Box)^* \cdot \{\Box\}) \cup \{\lambda\}.$

- Thus, to the right of the tape head, an output configuration look just like an input configuration, save that the state must be in *F*.
- The string to the left of the tape head must be λ or end with a blank, but otherwise there is no restriction.
- Roughly, the machine computes $\beta = b_1 b_2 \dots b_m$ from input α if $\hat{\delta}^*(\mathcal{I}\langle M, \alpha \rangle)$ is an output configuration for β .
- The textbook requires $\alpha'=\lambda,$ but this generalization will prove useful.

Computations of Functions by DTMs - 2

Context: A DTM $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$.

- The function f_M computed by M is defined iff for every input configuration $\mathcal{I}\langle M, \alpha \rangle$, either
 - $\hat{\delta}^*(\mathcal{I}\langle M, \alpha \rangle)$ is some output configuration for a string β ; or else
 - $\hat{\delta}^*(\mathcal{I}\langle M, \alpha \rangle)$ is undefined.
- In this case, $f_M: \Sigma^* \to \Sigma^*$ defined by

$$\alpha \mapsto \begin{cases} \beta & \text{if } \hat{\delta}^*(\mathcal{I}\langle M, \alpha \rangle) \text{ is an output configuration for } \beta \\ \text{undefined} & \text{otherwise} \end{cases}$$

Computations of Functions by DTMs - 2

Context: A DTM $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$.

- The function f_M computed by M is defined iff for every input configuration $\mathcal{I}\langle M, \alpha \rangle$, either
 - $\hat{\delta}^*(\mathcal{I}\langle M, \alpha \rangle)$ is some output configuration for a string β ; or else
 - $\hat{\delta}^*(\mathcal{I}\langle M, \alpha \rangle)$ is undefined.
- In this case, $f_M: \Sigma^* \to \Sigma^*$ defined by

$$\alpha \mapsto \begin{cases} \beta & \text{if } \hat{\delta}^*(\mathcal{I}\langle M, \alpha \rangle) \text{ is an output configuration for } \beta \\ \text{undefined} & \text{otherwise} \end{cases}$$

Computation of Multi-Argument Functions by DTMs

Context: A DTM $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$.

- Multi-argument input configurations are specified in a natural way.
- Just put the arguments on the input tape, separated by blanks.
- If the input is

$$(\alpha_1, \alpha_2, \ldots, \alpha_k) \in \Sigma^* \times \Sigma^* \times \ldots \times \Sigma^*$$

then the input configuration is as illustrated below.

- $f_M^{(k)}: (\Sigma^*)^k \to \Sigma^*$ is defined in the obvious way.
- Multiple outputs are formulated similarly.

The Turing Model of Computation

20101014 Slide 16 of 28

The DTM as a Model of Computation

- The concept of a Turing machine was developed during the 1930's, by a mathematician, before digital computers were a reality.
- It is conceptually simple, although very tedious, to program a DTM.
- Even simple tasks which are trivial to describe in a modern programming language become very tedious chores with a DTM.

Question: What is the utility of the DTM, then?

Answer: It is the tool for establishing certain theoretical results.

- Turing machines are very useful in the study of complexity in particular because:
 - They admit a very simple definition of what a single step in a computation is.
 - They admit a natural model of nondeterminism, which is a central idea in modern complexity theory.
- In any case, in this course, the programming of DTMs will not be a focus.
- This choice of model is not as crucial as it might appear because of the *Church-Turing thesis.*

The Turing Model of Computation

The Church-Turing Thesis

Question: Is there an upper limit on <u>what</u> a computer can do, without regard for how efficiently it can do it?

- Answer: The *Church-Turing Thesis* or just *Turing Thesis* says that there is, and that this limit is defined by the DTM.
 - It is not something which can be proven, because there are infinitely many different models of computation.
 - However, this thesis is supported by reductions of many hundreds (if not thousands) of distinct models of computation.
 - This includes:
 - All sorts of programming languages.
 - All sorts of nondeterministic models.
 - Many specialized models.
 - It has been shown that none of these models is more powerful than the DTM.

An Application of the Church-Turing Thesis

- Recall the earlier claim:
- Theorem: The language $L \subseteq \Sigma^*$ is Turing decidable iff both L and \overline{L} are Turing acceptable.
- Proof: The idea is to build a DTM M'' which emulates the behavior of both an accepter M_L for L and an accepter $M_{\overline{L}}$ for \overline{L} .
 - The machine "timeshares" the two emulations.
 - To build such a machine is tedious but straightforward.
 - Rather than spelling out in detail how to build the emulating machine, it is possible to invoke the Church-Turing thesis.
 - It is certainly possible to build such an emulator in a modern programming language.
 - ullet Thus, it must be possible to build a DTM which does the same thing. \Box

Universal Models of Computation

- Call a computational model *universal* if it is equivalent in power to the DTM.
 - Also called *Turing equivalent*.
- Virtually all modern programming languages are universal models..
 - modulo idealization to no bound on values for variables.
- NPDAs and FAs are not universal.
- Why? The language $\{a^k b^k c^k \mid k \in \mathbb{N}\}$ is not a CFL (and hence not acceptable by any NPDA), but it is clearly possible to write a program in C to accept it.
 - In this course, two other models of universal computation will be considered:
 - Nondeterministic Turing machines
 - because of their importance in the study of complexity theory.
 - A simple language of while programs
 - because it provides an simple alternative notion of universal computation which is much more familiar to computer

The Turing Model of Conscientists.

20101014 Slide 20 of 28

Nondeterministic Turing Machines

• A *nondeterministic Turing machine* (*NDTM*) is defined exactly as a DTM, save that the transition function has the structure:

$$\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{L, R, S\}}$$

providing a finite set of alternatives at each point.

- This function is usually taken to be total, since the lack of a transition may be modelled via the empty set.
- The DTM M = (Q, Σ, Γ, δ, q₀, □, F) may be modelled as an NDTM M' = (Q, Σ, Γ, δ', q₀, □, F) by defining

$$\delta'(q, a) = egin{cases} \{\delta(q, a)\} & ext{if } \delta(q, a) ext{ is defined} \\ \emptyset & ext{if } \delta(q, a) ext{ is not defined} \end{cases}$$

The move relation ⊢_M and its transitive closure ⊢_M are defined as in the deterministic case, but they are no longer functions.

The Turing Model of Computation

20101014 Slide 21 of 28

Global Transition and Acceptance for NDTMs

Context: An NDTM $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$.

- Define the global transition function of M to be the function $\hat{\delta}_{M}^{*} : \mathrm{ID}\langle M \rangle \to 2^{\mathrm{ID}\langle M \rangle}$ with $\hat{\delta}_{M}^{*}(D) = \{D' \in \mathrm{ID}\langle M \rangle \mid D \mid_{M}^{*} D' \text{ and } D' \text{ is a halt configuration for } M\}.$
- A string α ∈ Σ* is accepted by M if some computation from *I*⟨M, α⟩ leads to a halt in an accepting state.

• $\mathcal{L}(M) = \{ \alpha \in \Sigma^* \mid \hat{\delta}^*_M(\mathcal{I}\langle M, \alpha \rangle) \text{ contains an accepting configuration } \}.$

• Note the asymmetry between acceptance and rejection, as in the case of NFAs and NPDAs.

NDTMs as Deciders

Context: An NDTM $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$.

• The NDTM *M* is a *decider* if no infinite computations from any input configuration is possible.

• More precisely, M is a decider if for every $\alpha \in \Sigma^*$, there is an $N \in \mathbb{N}$ such that every computation $\mathcal{I}\langle M, \alpha \rangle \vdash_M D_1 \vdash_M D_2 \dots \vdash_M D_k$ has k < N.

Theorem (equivalence of NDTMs and DTMs): Let $L \in \Sigma^*$.

(a) If L = L(M) for some NDTM M, then L = L(M') for some DTM M'.
(b) In (a), if M is a decider, then M' may be chosen to be a decider as

well. 🗆

The Turing Model of Computation

Computation of Functions by NDTMs

- The computation of a function by a DTM was defined in terms of input and output configurations.
- For a given input configuration $\mathcal{I}\langle M, \alpha \rangle$, if the machine halts in an output configuration, the string associated with that configuration is the output value.
- This idea does not extend easily to NDTMs, because there may be many distinct final configurations.
- Thus, the notion of a NDTM is used primarily with decision problems, which may be answered with "yes" or "no".
- The central problem of this form is the acceptance of a language.

An Abstract Formulation of the Notion of Algorithm

- A DTM M which halts for all inputs "of interest" defines an algorithm.
- If M = (Q,Σ,Γ,δ,q₀,□,F) is a decider, then the inputs of interest are initial configurations of strings in Σ*.
- A decision problem on Σ^* is defined by a total function $f: \Sigma^* \to \{0, 1\}$.
 - If the answer to input $\alpha \in \Sigma^*$ is true, then $f(\alpha) = 1$.
 - If the answer to input $\alpha \in \Sigma^*$ is false, then $f(\alpha) = 0$.
- This is nothing more than the acceptance/decision problem for the language $\mathcal{L}(f) = \{ \alpha \in \Sigma^* \mid f(\alpha) = 1 \}.$
- Formally, a *deterministic algorithm* for f is a deterministic decider (*i.e.*, a DTM) for L(f).
- Similarly, a *nondeterministic algorithm* for *f* is a nondeterministic decider (*i.e.*, an NDTM) for $\mathcal{L}(f)$.
- In terms of existence, these two notions are equivalent.
- However, the time complexity (number of steps required to reach a decision) may be very different.
- This idea will prove important in the study of complexity theory.

Abstract Algorithms for General Problems

• For a more general problem which computes a total function

 $f: \Sigma^* \to \Sigma^*$

or even a multi-input total function

$$f:(\Sigma^*)^k o \Sigma^*$$

for some k > 1 an abstract algorithm is defined by a DTM which computes f.

- Since f is total, such a DTM must halt on all input configurations.
- This notion is applicable only to DTMs.

Variations on the Turing Model

- There are many minor variations on the Turing machine model.
 - No *stay option* "S" of the tape head.
 - Semi-infinite tape rather rather than infinite in both directions.
 - Off-line machines (separate input file).
 - *Multitape* Turing machines.
 - Turing machines with *multidimensional tapes*.
 - Nondeterministic versions of all of these.
- Fact: In each case, the computational power is equivalent to that of the basic DTM.
- Proof: In each case, the details have been worked out be earlier researchers. $\hfill\square$
 - Another, more interesting equivalent model of computation is based upon conventional imperative programming languages, rather than low-level machines.
- This model will be developed briefly later, time permitting.

 20101014 Slide 27 of 28

DTMs with a Single Accepting State

• There is a minor variation which will be useful in that which follows.

Algorithm: Given a DTM $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$, construct a DTM $M' = (Q', \Sigma, \Gamma, \delta', q_0, \Box, F')$ which accepts the same language and computes the same function as M, but which has exactly one final state.

Construction: Put $Q' = Q \cup \{q_f\}$ with $q_f \notin Q$, and $F' = \{q_f\}$.

- Define δ' to have all of the transitions of δ plus those of the form $\delta'(q, a) = (q_f, a, S)$ whenever both of following conditions hold:
 - $q \in F$, and
 - $\delta(q, a)$ is undefined. \Box