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The Pumping Lemma for CFLs

Context: A CFG G = (V,Σ, S,P).

• Let α be a “sufficiently long” string in L(G ).

• Then there is a path in a derivation tree for α in which some variable A
occurs at least twice.

• By replacing the little subtree rooted at A with the big subtree rooted at
A, the string may be “pumped” up to get a longer string in the language.

• Conversely for pumping down.

S

α

A

A

a

A

Properties of Context-Free Languages 20101007 Slide 2 of 16



Details of the Pumping Lemma

Context: A CFG G = (V,Σ, S,P).

• Choose A to be the variable whose second-lowest occurrence is lowest
amongst all variables which occurs at at least twice on the path.

• Then the length of α2 · α3 · α4 will be bounded with a value dependent
only upon G , independent of α. (Takes a little work to prove.)

• Also, either α2 or α4 will be nonempty. (Use the fact that chain and null
rules are disallowed.)
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Formal Statement of the Pumping Lemma

Theorem (The Pumping Lemma for Context-Free Languages): Let L be a
CFL. Then there is a constant N ∈ N, depending only upon L, such that
for any α ∈ L with Length(α) ≥ N, there is a decomposition

α = α1 · α2 · α3 · α4 · α5
with

• Length(α2 · α4) ≥ 1;

• Length(α2 · α3 · α4) ≤ N;

• α1 · (α2)mα3 · (α4)m · α5 ∈ L for all m ∈ N. �
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How to Use the Pumping Lemma

• In the pumping lemma for regular languages, the substring α2 to be
pumped always lies near the beginning of the string α to be tested.

• In the pumping lemma for context-free languages, the substrings α2 and
α4 to be pumped may lie anywhere in α, although they must be “close”
to each other.

• Otherwise, the strategy for use is the same.

• Suppose that L ⊆ Σ∗ is a language which is to be proven not context free.

• Assume that N is fixed, but you may not set it to any particular value.

• You choose the string α ∈ L to “pump”.

• It must be the case that Length(α) ≥ N.

• Use N as a parameter of the string α.

• You must take into account all decompositions of α into
α1 · α2 · α3 · α4 · α5 which satisfy the conditions of the pumping lemma.

• In general, the pumping lemma can only be used to show that a language
is not context free; it cannot be used to show that a language is context
free.
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An Example of the Use of the Pumping Lemma

Example: L = {akbkck | k ∈ N} (with the alphabet Σ = {a, b, c}).

• Show that L is not context free.

• Let N be the constant guaranteed for L by the pumping lemma.

• Choose α = aNbNcN .

• There are five possible forms for a PL decomposition:
α1 α2 · α3 · α4 α5

(a) ai aj akbNcN j > 0, i + j + k = N

(b) ai ajbk b`cN i + j = k + ` = N; j + k > 0

(c) aNbi bj bkcN i + j + k = N; j > 0

(d) aNbi bjck c` i + j = k + ` = N; j + k > 0

(e) aNbNc i c j ck i + j + k = N; j > 0

• α2 · α3 · α4 contains at most two of {a, b, c}.
• Thus, when pumping up or down, the number of occurrences of some

letter will not change, while that of at least one other must change.

• Hence, the result cannot have an equal number of each letter.

• Thus, the language is not context free.

Properties of Context-Free Languages 20101007 Slide 6 of 16



Further Examples of the Pumping Lemma for CFLs

• The same or very similar strings may be used to prove that related
languages are not context free.

Example: L = {ak1bk1ck2 | k1 > k2}.
• Let N be the constant guaranteed for L by the Pumping Lemma for this

language.

• The string aN+1bN+1cN ∈ L may be used to show that this language is
not context free, in exactly the same way, except that in certain cases it
may be necessary to pump in a single direction (up or down) in order to
obtain a string not in L.

Example: L = {akbkak | k ∈ N}.
• This is essentially the same example as on the previous slide. Choose
α = aNbNaN .

Example: L = {w ∈ {a, b, c}∗ | Count〈a,w〉 = Count〈b,w〉 = Count〈c,w〉}.
• Choose α = aNbNcN , and proceed as on the previous slide.
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Further Examples of the Pumping Lemma for CFLs — 2

Example: L = {w · w | w ∈ {a, b}∗}.
• Let N be the constant guaranteed for L by the Pumping Lemma for this

language.

• Choose α = aNbNaNbN and pump up or down.

Example: L = {w · β · w | w , β ∈ {a, b}∗ and Length(w) > 0}.
• Recall that L′ = {w · β · wR | w , β ∈ {a, b}∗ and Length(w) > 0} is a

regular language.

• Is L context free for similar reasons?

• No, it is not.

• Think about pumping the string α = aNbNaNbN .

• In all cases, it can be pumped out of the language.
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Further Examples of the Pumping Lemma for CFLs — 3

Example: L = {an2 | n ∈ N}.
• Let N be the constant guaranteed for L by the Pumping Lemma for this

language.

• Choose α = a(N+1)2
.

• Any decomposition α = α1 · α2 · α3 · α4 · α5 satisfying the conditions of
the pumping lemma must look like

α1 = an1 , α2 = an2 , α3 = an3 , α4 = an4 , α5 = an5 ,
with n1 + n2 + n3 + n4 + n5 = (N + 1)2

and n2 + n3 + n4 ≤ N and n2 + n4 > 0.

• Pump down to α1 · α0
2 · α3 · α0

4 · α5 = α1 · α3 · α5 = an1+n3+n5 .

• N2 < n2 + N + 1 = (N + 1)2 − N ≤ n1 + n3 + n5 < (N + 1)2.

• Thus n1 + n3 + n5 is not the square of any integer.

• Hence L is not a CFL.

Properties of Context-Free Languages 20101007 Slide 9 of 16



A Simplifying Result

Theorem: Let Σ be an alphabet consisting of a single letter (e.g., Σ = {a}).
Then if L ⊆ Σ∗ is a CFL, it is also a regular language.

• In other words, for a single-letter alphabet, the context-free and regular
languages are the same.

Proof: Consult a more advanced textbook. �

Application: To show that
L = {an2 | n ∈ N}

is not context free, it suffices to show that it is not regular.

• Thus, the (simpler) pumping lemma for regular languages may be applied.
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Are Programming Languages Context Free?

• Consider the following infinite sequence of perfectly legal C programs:

main(){int ab;ab=0;}
main(){int aabb;aabb=0;}
...

main(){int anbn;anbn=0}
...

• Suppose that C is context free.

• Let N be the constant guaranteed by the pumping lemma for CFLs.

• It is easy to pump main(){int aNbN;aNbN=0} out of C.

• This argument requires that arbitrarily long identifiers be allowed.

• Otherwise, a really ugly (and impractical) grammar could be used to
generate all of the finite number of possibilities.

• So, it is a reasonable model of reality.
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Are Programming Languages Context Free? — 2

Question: Does this mean that CFLs are not useful for the specification of
programming languages?

Answer: On the contrary, they are the standard means of such specification.

• The solution to the above issue is to:

• overgenerate the language (by allowing more than just the legal
programs) with the CFL, and then

• to use other means to filter out the illegal programs.

• In the specific case illustrated above, this means that the CFL will not
rule out programs with undeclared variables.

• This form of checking must be done in other ways.

• This issue will be discussed in more detail on a following set of slides.
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Basic Closure Properties of Context-Free Languages

Algorithm: Let G1 = (V1,Σ, S1,P1) and G2 = (V2,Σ,S2,P2) be CFGs.
Construct a CFG G1+2 = (V1+2,Σ, S1+2,P1+2) with

L(G1+2) = L(G1) ∪ L(G2).

Construction: Without loss of generality, assume that V1 ∩ V2 = ∅. Rename
variables if necessary. Define P1+2 = P1 ∪ P2 ∪ {S1+2 → S1 | S2}. �

Algorithm: Let G1 = (V1,Σ, S1,P1) and G2 = (V2,Σ,S2,P2) be CFGs.
Construct a CFG G1·2 = (V1·2,Σ,S1·2,P1·2) with

L(G1·2) = L(G1) · L(G2).

Construction: Without loss of generality, assume that V1 ∩ V2 = ∅. Rename
variables if necessary. Define P1·2 = P1 ∪ P2 ∪ {S1·2 → S1S2}. �

Algorithm: Let G = (V,Σ,S,P) be a CFG. Construct a CFG
G∗ = (V∗,Σ, S∗,P∗) with L(G∗) = (L(G ))∗.

Construction: Just let V∗ = V ∪ {S∗} with S∗ 6∈ V , and Define
P∗ = P ∪ {S∗ → SS∗ | λ}. �
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Basic Closure Properties of Context-Free Languages — 2

Theorem: The class of CFLs over a given finite alphabet Σ is closed under
union, intersection, and Kleene star. �

• However. ...

Theorem: The class of DCFLs (deterministic CFLs) is NOT closed under any
of these operations.

Proof: Consult a more advanced textbook. �

Example: Let Σ = {a, b, c}.
L1 = {aibjck | i = j} and L2 = {aibjck | j = k}.
It is easy to show that both L1 and L2 are DCFLs.

• However, L1 ∪ L2 = {aibjck | i = j or j = k}
is a standard example of an inherently ambiguous

(and hence nondeterministic) CFL.
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Basic Non-Closure Properties of Context-Free Languages

Theorem: Let Σ be a finite alphabet consisting of at least two distinct
elements. Then the class of context-free languages over Σ is not closed
under intersection or complement.

Proof: Define L1 = {aibjak | i = j} and L2 = {aibjak | j = k}. It is easy to
show that L1 and L2 are CFLs. Yet
L1 ∩ L2 = {aibjak | i = j = k} = {akbkak | k ∈ N} is not a CFL, as is
easily established using the pumping lemma.

Since L1 ∩ L2 = L1 ∪ L2, and since the class of CFLs is closed under
union, it follows that it cannot be closed under complement, since
L1 ∩ L2 is not a CFL. �

Fact: For Card(Σ) ≥ 2, the class of deterministic CFLs is closed under
complement, but not intersection �
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The Intersection of a CFL and a Regular Language

Algorithm: Let Σ be a finite alphabet, and let
M1 = (Q1,Σ, Γ1, δ1, q01, z1,F1) be an NPDA.

and M2 = (Q2,Σ, δ2, q02,F2) be an NFA
Construct an NPDA M = (Q,Σ, Γ, δ, q0 , z,F) with

LA(M) = LA(M1) ∩ L(M2).

Construction: The idea is to build a “product” machine in which the NPDA
and NFA run in parallel, on the same input elements.

• Define

• Q = Q1 × Q2

• F = F1 × F2

• q0 = (q01, q02)

• δ : Q × Σ∗ ∪ {λ} × Γ→ 2
Q×Γ∗

finite by
((q1, q2), x , y) 7→ {((q′1, q

′
2), β) | (q′1, β) ∈ δ1(q1, x , y) and q′2 ∈ δ∗2(q2, x)}

for all (q1, q2) ∈ Q1 × Q2, x ∈ Σ∗ ∪ {λ}, y ∈ Γ. �

Theorem: Let L1 be a CFL and let L2 be a regular language, over the same
alphabet. Then L1 ∩ L2 is also a CFL. �
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