Properties of Context-Free Languages

5DV037 - Fundamentals of Computer Science Umeå University Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se http://www.cs.umu.se/~hegner

The Pumping Lemma for CFLs

Context: A CFG $G=(V, \Sigma, S, P)$.

- Let α be a "sufficiently long" string in $\mathcal{L}(G)$.
- Then there is a path in a derivation tree for α in which some variable A occurs at least twice.
- By replacing the little subtree rooted at A with the big subtree rooted at A, the string may be "pumped" up to get a longer string in the language.
- Conversely for pumping down.

Details of the Pumping Lemma

Context: A CFG $G=(V, \Sigma, S, P)$.

- Choose A to be the variable whose second-lowest occurrence is lowest amongst all variables which occurs at at least twice on the path.
- Then the length of $\alpha_{2} \cdot \alpha_{3} \cdot \alpha_{4}$ will be bounded with a value dependent only upon G, independent of α. (Takes a little work to prove.)
- Also, either α_{2} or α_{4} will be nonempty. (Use the fact that chain and null rules are disallowed.)

Formal Statement of the Pumping Lemma

Theorem (The Pumping Lemma for Context-Free Languages): Let L be a CFL. Then there is a constant $N \in \mathbb{N}$, depending only upon L, such that for any $\alpha \in L$ with Length $(\alpha) \geq N$, there is a decomposition with

$$
\alpha=\alpha_{1} \cdot \alpha_{2} \cdot \alpha_{3} \cdot \alpha_{4} \cdot \alpha_{5}
$$

- Length $\left(\alpha_{2} \cdot \alpha_{4}\right) \geq 1$;
- Length $\left(\alpha_{2} \cdot \alpha_{3} \cdot \alpha_{4}\right) \leq N$;
- $\alpha_{1} \cdot\left(\alpha_{2}\right)^{m} \alpha_{3} \cdot\left(\alpha_{4}\right)^{m} \cdot \alpha_{5} \in L$ for all $m \in \mathbb{N}$. \square

How to Use the Pumping Lemma

- In the pumping lemma for regular languages, the substring α_{2} to be pumped always lies near the beginning of the string α to be tested.
- In the pumping lemma for context-free languages, the substrings α_{2} and α_{4} to be pumped may lie anywhere in α, although they must be "close" to each other.
- Otherwise, the strategy for use is the same.
- Suppose that $L \subseteq \Sigma^{*}$ is a language which is to be proven not context free.
- Assume that N is fixed, but you may not set it to any particular value.
- You choose the string $\alpha \in L$ to "pump".
- It must be the case that Length $(\alpha) \geq N$.
- Use N as a parameter of the string α.
- You must take into account all decompositions of α into $\alpha_{1} \cdot \alpha_{2} \cdot \alpha_{3} \cdot \alpha_{4} \cdot \alpha_{5}$ which satisfy the conditions of the pumping lemma.
- In general, the pumping lemma can only be used to show that a language is not context free; it cannot be used to show that a language is context free.

An Example of the Use of the Pumping Lemma

Example: $L=\left\{a^{k} b^{k} c^{k} \mid k \in \mathbb{N}\right\}$ (with the alphabet $\Sigma=\{a, b, c\}$).

- Show that L is not context free.
- Let N be the constant guaranteed for L by the pumping lemma.
- Choose $\alpha=a^{N} b^{N} c^{N}$.
- There are five possible forms for a PL decomposition:

	α_{1}	$\alpha_{2} \cdot \alpha_{3} \cdot \alpha_{4}$	α_{5}	
(a)	a^{i}	a^{j}	$a^{k} b^{N} c^{N}$	$j>0, i+j+k=N$
(b)	a^{i}	$a^{j} b^{k}$	$b^{\ell} c^{N}$	$i+j=k+\ell=N ; j+k>0$
(c)	$a^{N} b^{i}$	b^{j}	$b^{k} c^{N}$	$i+j+k=N ; j>0$
(d)	$a^{N} b^{i}$	$b^{j} c^{k}$	c^{ℓ}	$i+j=k+\ell=N ; j+k>0$
(e)	$a^{N} b^{N} c^{i}$	c^{j}	c^{k}	$i+j+k=N ; j>0$

- $\alpha_{2} \cdot \alpha_{3} \cdot \alpha_{4}$ contains at most two of $\{a, b, c\}$.
- Thus, when pumping up or down, the number of occurrences of some letter will not change, while that of at least one other must change.
- Hence, the result cannot have an equal number of each letter.
- Thus, the language is not context free.

Further Examples of the Pumping Lemma for CFLs

- The same or very similar strings may be used to prove that related languages are not context free.
Example: $L=\left\{a^{k_{1}} b^{k_{1}} c^{k_{2}} \mid k_{1}>k_{2}\right\}$.
- Let N be the constant guaranteed for L by the Pumping Lemma for this language.
- The string $a^{N+1} b^{N+1} c^{N} \in L$ may be used to show that this language is not context free, in exactly the same way, except that in certain cases it may be necessary to pump in a single direction (up or down) in order to obtain a string not in L.
Example: $L=\left\{a^{k} b^{k} a^{k} \mid k \in \mathbb{N}\right\}$.
- This is essentially the same example as on the previous slide. Choose $\alpha=a^{N} b^{N} a^{N}$.

Example: $L=\left\{w \in\{a, b, c\}^{*} \mid \operatorname{Count}\langle a, w\rangle=\operatorname{Count}\langle b, w\rangle=\operatorname{Count}\langle c, w\rangle\right\}$.

- Choose $\alpha=a^{N} b^{N} c^{N}$, and proceed as on the previous slide.

Further Examples of the Pumping Lemma for CFLs - 2

Example: $L=\left\{w \cdot w \mid w \in\{a, b\}^{*}\right\}$.

- Let N be the constant guaranteed for L by the Pumping Lemma for this language.
- Choose $\alpha=a^{N} b^{N} a^{N} b^{N}$ and pump up or down.

Example: $L=\left\{w \cdot \beta \cdot w \mid w, \beta \in\{a, b\}^{*}\right.$ and Length $\left.(w)>0\right\}$.

- Recall that $L^{\prime}=\left\{w \cdot \beta \cdot w^{R} \mid w, \beta \in\{a, b\}^{*}\right.$ and Length(w) $\left.>0\right\}$ is a regular language.
- Is L context free for similar reasons?
- No, it is not.
- Think about pumping the string $\alpha=a^{N} b^{N} a^{N} b^{N}$.
- In all cases, it can be pumped out of the language.

Further Examples of the Pumping Lemma for CFLs - 3

Example: $L=\left\{a^{n^{2}} \mid n \in \mathbb{N}\right\}$.

- Let N be the constant guaranteed for L by the Pumping Lemma for this language.
- Choose $\alpha=a^{(N+1)^{2}}$.
- Any decomposition $\alpha=\alpha_{1} \cdot \alpha_{2} \cdot \alpha_{3} \cdot \alpha_{4} \cdot \alpha_{5}$ satisfying the conditions of the pumping lemma must look like

$$
\begin{aligned}
\alpha_{1}=a^{n_{1}}, \alpha_{2}=a^{n_{2}}, \alpha_{3}= & a^{n_{3}}, \alpha_{4}=a^{n_{4}}, \alpha_{5}=a^{n_{5}} \\
& \text { with } n_{1}+n_{2}+n_{3}+n_{4}+n_{5}=(N+1)^{2} \\
& \text { and } n_{2}+n_{3}+n_{4} \leq N \text { and } n_{2}+n_{4}>0 .
\end{aligned}
$$

- Pump down to $\alpha_{1} \cdot \alpha_{2}^{0} \cdot \alpha_{3} \cdot \alpha_{4}^{0} \cdot \alpha_{5}=\alpha_{1} \cdot \alpha_{3} \cdot \alpha_{5}=a^{n_{1}+n_{3}+n_{5}}$.
- $N^{2}<n^{2}+N+1=(N+1)^{2}-N \leq n_{1}+n_{3}+n_{5}<(N+1)^{2}$.
- Thus $n_{1}+n_{3}+n_{5}$ is not the square of any integer.
- Hence L is not a CFL.

A Simplifying Result

Theorem: Let Σ be an alphabet consisting of a single letter (e.g., $\Sigma=\{a\}$). Then if $L \subseteq \Sigma^{*}$ is a CFL, it is also a regular language.

- In other words, for a single-letter alphabet, the context-free and regular languages are the same.

Proof: Consult a more advanced textbook. \square
Application: To show that

$$
L=\left\{a^{n^{2}} \mid n \in \mathbb{N}\right\}
$$

is not context free, it suffices to show that it is not regular.

- Thus, the (simpler) pumping lemma for regular languages may be applied.

Are Programming Languages Context Free?

- Consider the following infinite sequence of perfectly legal C programs:

```
main(){int ab;ab=0;}
main(){int aabb;aabb=0;}
main(){int a anb }\mp@subsup{\mp@code{B}}{}{n};\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}=0
```

- Suppose that C is context free.
- Let N be the constant guaranteed by the pumping lemma for CFLs.

- This argument requires that arbitrarily long identifiers be allowed.
- Otherwise, a really ugly (and impractical) grammar could be used to generate all of the finite number of possibilities.
- So, it is a reasonable model of reality.

Are Programming Languages Context Free? - 2

Question: Does this mean that CFLs are not useful for the specification of programming languages?

Answer: On the contrary, they are the standard means of such specification.

- The solution to the above issue is to:
- overgenerate the language (by allowing more than just the legal programs) with the CFL, and then
- to use other means to filter out the illegal programs.
- In the specific case illustrated above, this means that the CFL will not rule out programs with undeclared variables.
- This form of checking must be done in other ways.
- This issue will be discussed in more detail on a following set of slides.

Basic Closure Properties of Context-Free Languages

Algorithm: Let $G_{1}=\left(V_{1}, \Sigma, S_{1}, P_{1}\right)$ and $G_{2}=\left(V_{2}, \Sigma, S_{2}, P_{2}\right)$ be CFGs.
Construct a CFG $G_{1+2}=\left(V_{1+2}, \Sigma, S_{1+2}, P_{1+2}\right)$ with

$$
\mathcal{L}\left(G_{1+2}\right)=\mathcal{L}\left(G_{1}\right) \cup \mathcal{L}\left(G_{2}\right)
$$

Construction: Without loss of generality, assume that $V_{1} \cap V_{2}=\emptyset$. Rename variables if necessary. Define $P_{1+2}=P_{1} \cup P_{2} \cup\left\{S_{1+2} \rightarrow S_{1} \mid S_{2}\right\}$. \square

Algorithm: Let $G_{1}=\left(V_{1}, \Sigma, S_{1}, P_{1}\right)$ and $G_{2}=\left(V_{2}, \Sigma, S_{2}, P_{2}\right)$ be CFGs.
Construct a CFG $G_{1 \cdot 2}=\left(V_{1.2}, \Sigma, S_{1 \cdot 2}, P_{1.2}\right)$ with

$$
\mathcal{L}\left(G_{1 \cdot 2}\right)=\mathcal{L}\left(G_{1}\right) \cdot \mathcal{L}\left(G_{2}\right) .
$$

Construction: Without loss of generality, assume that $V_{1} \cap V_{2}=\emptyset$. Rename variables if necessary. Define $P_{1.2}=P_{1} \cup P_{2} \cup\left\{S_{1.2} \rightarrow S_{1} S_{2}\right\}$. \square

Algorithm: Let $G=(V, \Sigma, S, P)$ be a CFG. Construct a CFG

$$
G_{*}=\left(V_{*}, \Sigma, S_{*}, P_{*}\right) \text { with } \mathcal{L}\left(G_{*}\right)=(\mathcal{L}(G))^{*} .
$$

Construction: Just let $V_{*}=V \cup\left\{S_{*}\right\}$ with $S_{*} \notin V$, and Define

$$
P_{*}=P \cup\left\{S_{*} \rightarrow S S_{*} \mid \lambda\right\}
$$

Basic Closure Properties of Context-Free Languages - 2

Theorem: The class of CFLs over a given finite alphabet Σ is closed under union, intersection, and Kleene star. \square

- However. ...

Theorem: The class of DCFLs (deterministic CFLs) is NOT closed under any of these operations.

Proof: Consult a more advanced textbook. \square
Example: Let $\Sigma=\{a, b, c\}$.

$$
L_{1}=\left\{a^{i} b^{j} c^{k} \mid i=j\right\} \text { and } L_{2}=\left\{a^{i} b^{j} c^{k} \mid j=k\right\} .
$$

It is easy to show that both L_{1} and L_{2} are DCFLs.

- However, $L_{1} \cup L_{2}=\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $\left.j=k\right\}$
is a standard example of an inherently ambiguous (and hence nondeterministic) CFL.

Basic Non-Closure Properties of Context-Free Languages

Theorem: Let Σ be a finite alphabet consisting of at least two distinct elements. Then the class of context-free languages over Σ is not closed under intersection or complement.

Proof: Define $L_{1}=\left\{a^{i} b^{j} a^{k} \mid i=j\right\}$ and $L_{2}=\left\{a^{i} b^{j} a^{k} \mid j=k\right\}$. It is easy to show that L_{1} and L_{2} are CFLs. Yet $L_{1} \cap L_{2}=\left\{a^{i} b^{j} a^{k} \mid i=j=k\right\}=\left\{a^{k} b^{k} a^{k} \mid k \in \mathbb{N}\right\}$ is not a CFL, as is easily established using the pumping lemma.
Since $L_{1} \cap L_{2}=\overline{\overline{L_{1}} \cup \overline{L_{2}}}$, and since the class of CFLs is closed under union, it follows that it cannot be closed under complement, since $L_{1} \cap L_{2}$ is not a CFL. \square

Fact: For $\operatorname{Card}(\Sigma) \geq 2$, the class of deterministic CFLs is closed under complement, but not intersection \square

The Intersection of a CFL and a Regular Language

Algorithm: Let Σ be a finite alphabet, and let

$$
\begin{aligned}
& M_{1}=\left(Q_{1}, \Sigma, \Gamma_{1}, \delta_{1}, q_{01}, z_{1}, F_{1}\right) \text { be an NPDA. } \\
& \text { and } M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{02}, F_{2}\right) \text { be an NFA }
\end{aligned}
$$

Construct an NPDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$ with

$$
\mathcal{L}_{A}(M)=\mathcal{L}_{A}\left(M_{1}\right) \cap \mathcal{L}\left(M_{2}\right) .
$$

Construction: The idea is to build a "product" machine in which the NPDA and NFA run in parallel, on the same input elements.

- Define
- $Q=Q_{1} \times Q_{2}$
- $F=F_{1} \times F_{2}$
- $q_{0}=\left(q_{01}, q_{02}\right)$
- $\delta: Q \times \Sigma^{*} \cup\{\lambda\} \times \Gamma \rightarrow 2_{\text {finite }}^{Q \times \Gamma^{*}}$ by
$\left(\left(q_{1}, q_{2}\right), x, y\right) \mapsto\left\{\left(\left(q_{1}^{\prime}, q_{2}^{\prime}\right), \beta\right) \mid\left(q_{1}^{\prime}, \beta\right) \in \delta_{1}\left(q_{1}, x, y\right)\right.$ and $\left.q_{2}^{\prime} \in \delta_{2}^{*}\left(q_{2}, x\right)\right\}$ for all $\left(q_{1}, q_{2}\right) \in Q_{1} \times Q_{2}, x \in \Sigma^{*} \cup\{\lambda\}, y \in \Gamma . \square$
Theorem: Let L_{1} be a CFL and let L_{2} be a regular language, over the same alphabet. Then $L_{1} \cap L_{2}$ is also a CFL. \square

