Pushdown Automata

5DV037 — Fundamentals of Computer Science Umeå University Department of Computing Science Stephen J. Hegner hegner@cs.umu.se http://www.cs.umu.se/~hegner

The Idea of a Pushdown Automaton

- The model of accepter for CFLs is called a *pushdown automaton* or *PDA*.
- It is basically an NFA with an auxiliary stack.
- The stack is a true stack; only push and pop operations are allowed.
- Only one stack is allowed.

Formal Definition of a Pushdown Automaton

- In this context, nondeterministic machines will be considered first.
- Deterministic machines will be considered as a special case later.
- A nondeterministic pushdown automaton or NPDA is a seven tuple

$$M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$$

in which

- Q is finite set of *states*;
- Σ is an alphabet, called the *input alphabet*;
- Γ is an alphabet, called the *stack alphabet*;
 δ : Q × (Σ ∪ {λ}) × Γ → 2^{Q×Γ*}_{finite} is a total function, the state-transition function:
- $q_0 \in Q$ is the *initial state*;
- $z_0 \in \Gamma$ is the *initial stack symbol*;
- $F \subseteq Q$ is the set of *final* or *accepting states*.
- Here 2_{finite}^X denotes the set of *finite* subsets of X.

$\begin{array}{cccc} & \mathsf{The \ Operation \ of \ an \ NPDA} \\ Q & \times & \Sigma \cup \{\lambda\} & \times & \Gamma & \rightarrow & 2_{\mathrm{finite}} & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\$

- The number of possibilities at each step must be finite.
- Γ* is an infinite set.
- Hence the restriction to finite subsets.

Formal Representation:

- Instead of an extended transition function, it is convenient to represent the operation of an NPDA with the move relation.
- First, a review of this notion for finite automata is given.

Review: IDs and the Move Relation for NFAs

- An *instantaneous description* (or *machine configuration* or *ID*) for the NFA M = (Q, Σ, δ, q₀, F) is a pair (q, α) ∈ Q × Σ* in which:
 - q represents the current state;
 - α represents the part of the input string which has not yet been read.
- $\mathsf{ID}\langle M \rangle = Q \times \Sigma^*$; the set of all possible IDs of M.
- The move relation ⊢_M ⊆ ID⟨M⟩ × ID⟨M⟩ represents one step of M and is defined by (q₁, α₁) ⊢_M (q₂, α₂) iff
 - $\alpha_2 = \mathsf{Rest}\langle \alpha_1 \rangle$ and $q_2 \in \delta(q_1, \mathsf{First}\langle \alpha_1 \rangle)$; or
 - $\alpha_2 = \alpha_1$ and $q_2 \in \delta(q_1, \lambda)$.
- \vdash_{M}^{*} is the reflexive and transitive closure of \vdash_{M} :
 - $(q, \alpha) \vdash^*_{M} (q, \alpha);$
 - $(q_1, \alpha_1) \vdash_{M}^{*} (q_2, \alpha_2), (q_2, \alpha_2) \vdash_{M}^{*} (q_3, \alpha_3) \Rightarrow (q_1, \alpha_1) \vdash_{M}^{*} (q_3, \alpha_3).$
- Thus $(q, \alpha_1 \alpha_2) \vdash^*_{M} (\delta^*(q, \alpha_1), \alpha_2).$

IDs and the Move Relation of an NPDA

- An instantaneous description (or machine configuration or ID) for the NPDA M = (Q, Σ, Γ, δ, q₀, z, F) is a triple (q, α, γ) ∈ Q × Σ* × Γ* in which:
 - *q* represents the current state;
 - α represents the part of the input string which has not yet been read.
 - γ represents the contents of the stack, top to bottom.
- $\mathsf{ID}\langle M \rangle = Q \times \Sigma^* \times \Gamma^*$; the set of all possible IDs of M.
- The move relation $\vdash_{M} \subseteq \mathrm{ID}\langle M \rangle \times \mathrm{ID}\langle M \rangle$ represents one step of M and is defined by $(q_1, \alpha_1, \gamma_1) \vdash_{M} (q_2, \alpha_2, \gamma_2)$ iff $\gamma_1 \neq \lambda$ and
 - $\alpha_2 = \text{Rest}\langle \alpha_1 \rangle$ and $(q_2, \gamma'_2) \in \delta(q_1, \text{First}\langle \alpha_1 \rangle, \text{First}\langle \gamma_1 \rangle)$ for some $\gamma'_2 \in \Gamma^*$ with $\gamma_2 = \gamma'_2 \cdot \text{Rest}\langle \gamma_1 \rangle$; or
 - $\alpha_2 = \alpha_1$ and $(q_2, \gamma'_2) \in \delta(q_1, \lambda, \mathsf{First}\langle \gamma_1 \rangle)$

for some $\gamma_2' \in \Gamma^*$ with $\gamma_2 = \gamma_2' \cdot \operatorname{Rest}\langle \gamma_1 \rangle$;

20101004 Slide 6 of 35

• $|_{\overline{M}}^*$ is the reflexive and transitive closure of $|_{\overline{M}}$:

•
$$(q, \alpha, \gamma) \vdash^*_{M} (q, \alpha, \gamma);$$

• $(q_1, \alpha_1, \gamma_1) \vdash^*_{\mathcal{M}} (q_2, \alpha_2, \gamma_2), (q_2, \alpha_2, \gamma_2) \vdash^*_{\mathcal{M}} (q_3, \alpha_3, \gamma_3)$ $\Rightarrow (q_1, \alpha_1, \gamma_1) \vdash^*_{\mathcal{M}} (q_3, \alpha_3, \gamma_3).$

Acceptance by an NPDA

Context: $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ an NPDA.

- There are three common notions of acceptance by M of a string $\alpha \in \Sigma^*$.
 - Acceptance by *final state*:

 $\mathcal{L}_{\mathcal{A}}(\mathcal{M}) = \{ \alpha \in \Sigma^* \mid (q_0, \alpha, z) \models_{\mathcal{M}}^* (q, \lambda, \gamma) \text{ for some } q \in \mathcal{F} \text{ and } \gamma \in \Gamma^* \}$

- Acceptance by *empty stack*: $\mathcal{L}_{E}(M) = \{ \alpha \in \Sigma^{*} \mid (q_{0}, \alpha, z) \vdash_{M}^{*} (q, \lambda, \lambda) \text{ for some } q \in Q \}$
- Acceptance by *final state and empty stack*.

 *L*_{AE}(M) = {α ∈ Σ* | (q₀, α, z) |^{*}_M (q, λ, λ) for some q ∈ F}
- All three are equivalent in expressive power; this will be established later.
- The textbook uses only acceptance by final state, so this will be taken to be the default: $\mathcal{L}(M) = \mathcal{L}_A(M)$.

Example of an NPDA

- Let $\Sigma = \{a, b, c\}$ and let $L = \{\alpha \cdot c \cdot \alpha^R \mid \alpha \in \{a, b\}^*\}.$
- Design a NPDA $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ which accepts L.

•
$$\Gamma = \{a, b, z\}; Q = \{q_0, q_1, q_2\}; F = \{q_2\}.$$

• The transition function δ may be described either by table or by diagram.

	Current		Next		
State	Input	Stack	State	Stack	$\rightarrow q_0$ $(a, (x, ax))$
q_0	а	x	q_0	ax	(b,(x,bx))
q_0	Ь	x	q_0	bx	(c, (x, x))
q_0	С	x	q_1	x	
q_1	а	а	q_1	λ	$(a, (a, \lambda)) \rightarrow a_1 (\lambda, (z, \lambda)), a_2$
q_1	Ь	Ь	q_1	λ	$(b,(b,\lambda))$
q_1	λ	Ζ	q_2	λ	

• The symbol x is used as a wildcard to reduce the number of entries.

•
$$\mathcal{L}_A(M) = \mathcal{L}_E(M) = \mathcal{L}_{AE}(M) = L$$

Pushdown Automata

20101004 Slide 8 of 35

A Second Example of an Accepter

- Let $\Sigma = \{a, b, c\}$ and let $L = \{\alpha \cdot \alpha^R \mid \alpha \in \{a, b\}^*\}.$
- Design a NPDA $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ which accepts L.

•
$$\Gamma = \{a, b, z\}; Q = \{q_0, q_1\}; F = \{q_2\}.$$

- The solution is almost the same as for the previous example.
- Guess that the middle of string has been reached.

	Current	:	Ne	ext					
State	Input	Stack	State	Stack	$\rightarrow q_0$ $(a, (x, ax))$				
q_0	а	x	q_0	ax	(b, (x, bx))				
q_0	Ь	x	q_0	bx	$(\lambda, (x, x))$				
q_0	λ	x	q_1	x					
q_1	а	а	q_1	λ	$(a, (a, \lambda)) \rightarrow (a_1) (\lambda, (z, \lambda)) (a_2)$				
q_1	Ь	Ь	q_1	λ	$(b,(b,\lambda))$				
q_1	λ	Ζ	q_2	λ					
• L,	• $\mathcal{L}_A(M) = \mathcal{L}_F(M) = \mathcal{L}_{AF}(M) = L.$								

Basic Nondeterministic Top-Down Parsing

Algorithm (Basic top-down parsing): Given a CFG $G = (V, \Sigma, S, P)$, build an NPDA $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ with $\mathcal{L}(M) = \mathcal{L}(G)$.

- Define: $Q = \{q_0, q_w, q_f\}$; $F = \{q_f\}$; $\Gamma = \Sigma \cup V$.
- The transition function δ is defined by two main operations and two auxiliary operations:

Initialize: $(q_w, Sz) \in \delta(q_0, \lambda, z)$. Conjecture: For each $A \to \alpha \in V$, $(q_w, \alpha) \in \delta(q_w, \lambda, A)$. Match: For each $a \in \Sigma$, $(q_w, \lambda) \in \delta(q_w, a, a)$. Accept: $(q_f, \lambda) \in \delta(q_w, \lambda, z)$.

Theorem: Given any CFL L, there is an NPDA M with $\mathcal{L}_A(M) = L$. \Box

• This form of parsing is best illustrated by example.

An Illustration of Basic Top-Down Parsing

- Let $\Sigma = \{a, b\}$ and $G = \{\{S\}, \Sigma, S, \{S \rightarrow aSa, | bSb | \lambda\}\}$.
- $\mathcal{L}(G) = \{ \alpha \cdot \alpha^R \mid \alpha \in \Sigma^* \}.$
- The algorithm on the previous slide yields the following machine:
- with the acceptance of *baaaab* shown to the right.

$$\begin{array}{c} (q_{0}, baaaab, z) \\ (\alpha_{w}, baaaab, Sz) & \text{Initialize} \\ (q_{w}, baaaab, Sbz) & \text{Conjecture } S \rightarrow bSb \\ (\lambda, (S, aSa)) \\ (\lambda, (S, bSb)) \\ (\lambda, (S, \lambda)) \\ (a, (a, \lambda)) \\ (b, (b, \lambda)) & (\lambda, (z, \lambda)) \\ q_{w} \end{array} \begin{array}{c} (\lambda, (z, \lambda)) \\ (a, (a, \lambda)) \\ (b, (b, \lambda)) & (\lambda, (z, \lambda)) \end{array} \begin{array}{c} (\alpha_{w}, aaaab, Sbz) & \text{Match } b \\ (\alpha_{w}, aaab, Sabz) & \text{Match } a \\ (\alpha_{w}, aaab, Saabz) & \text{Match } a \\ (\alpha_{w}, aab, Saabz) & \text{Match } a \\ (\alpha_{w}, aab, aabz) & \text{Conjecture } S \rightarrow aSa \\ (\alpha_{w}, aab, aabz) & \text{Conjecture } S \rightarrow aSa \\ (\alpha_{w}, aab, aabz) & \text{Match } a \\ (\alpha_{w}, ab, aabz) & \text{Match } a \\ (\alpha_{w}, ab, abz) & \text{Match } a \\ (\alpha_{w}, \alpha_{w}, \alpha$$

Basic Top-Down Parsing is not a Practical Solution

• From a practical point of view, there are two major problems with basic top-down parsing:

Nondeterminism: The process is inherently nondeterministic

- The correct production must be chosen for each shift step.
- Unbounded descent: If the grammar is left recursive, the algorithm may never terminate.
 - This problem may be resolved by using grammars in Greibach normal form.
 - Still, this form of parsing is useful because it proves that every CFG is accepted by some NPDA.
 - More practical parsing will be examined briefly later.

Constructing a CFG from an NPDA — Conditions

- The construction of a CFG from an NPDA is substantially more complex than the construction of a parser for a CFG.
- There is no easy proof.
- However, it is easier if acceptance by empty store is allowed.
- In the textbook, acceptance by empty store is covered only in an exercise (17 of Sec. 17.1).
- The proof of equivalence is very easy and will be covered here.
- Notions of acceptance by the NPDA $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$;
 - Acceptance by *final state*:

 $\mathcal{L}_{\mathcal{A}}(\mathcal{M}) = \{ \alpha \in \Sigma^* \mid (q_0, \alpha, z) \models_{\mathcal{M}}^* (q, \lambda, \gamma) \text{ for some } q \in \mathcal{F} \text{ and } \gamma \in \Gamma^* \}$

- Acceptance by *empty stack*: $\mathcal{L}_{E}(\mathcal{M}) = \{ \alpha \in \Sigma^{*} \mid (q_{0}, \alpha, z) \models_{\mathcal{M}}^{*} (q, \lambda, \lambda) \text{ for some } q \in Q \}$
- Acceptance by *final state and empty stack*.

 L_{AE}(M) = {α ∈ Σ^{} | (q₀, α, z) ⊨^{*}_M (q, λ, λ)* for some q ∈ F}

Recall this Example of an NPDA

- Let $\Sigma = \{a, b, c\}$ and let $L = \{\alpha \cdot c \cdot \alpha^R \mid \alpha \in \{a, b\}^*\}.$
- Design a NPDA $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ which accepts L.
- $\Gamma = \{a, b, z\}; Q = \{q_0, q_1, q_2\}; F = \{q_2\}.$

	Current		Ne	ext	
State	Input	Stack	State	Stack	$\rightarrow q_0$ $(a, (x, ax))$
q_0	а	x	q_0	ax	(b, (x, bx))
q_0	Ь	x	q_0	bx	(c, (x, x))
q_0	С	x	q_1	x	
q_1	а	а	q_1	λ	$(a, (a, \lambda)) \rightarrow a_1 (\lambda, (z, \lambda)) (a_2)$
q_1	Ь	Ь	q_1	λ	$(b,(b,\lambda))$
q_1	λ	Z	q_2	λ	–

• The symbol x is used as a wildcard to reduce the number of entries.

•
$$\mathcal{L}_A(M) = \mathcal{L}_E(M) = \mathcal{L}_{AE}(M) = L$$
.

Example of Acceptance by Empty Stack

- With acceptance by empty stack, q₂ is not necessary.
- Let $\Sigma = \{a, b, c\}$ and let $L = \{\alpha \cdot c \cdot \alpha^R \mid \alpha \in \{a, b\}^*\}.$
- Design a NPDA $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ with $\mathcal{L}_E(M) = L$.
- $\Gamma = \{a, b, z\}; \ Q = \{q_0, q_1\}; \ F = \emptyset. \ F = \oint \{q_1\}$

	Current		Ne	ext	
State	Input	Stack	State	Stack	$\rightarrow q_0$
q_0	а	x	q_0	ax	(b, (x, bx))
q_0	Ь	x	q_0	bx	(c,(x,x))
q_0	С	x	q_1	x	$(a,(a,\lambda))$
q_1	а	а	q_1	λ	$(b, (b, \lambda)) \longrightarrow q_1$
q_1	Ь	Ь	q_1	λ	$(\lambda, (z, \lambda))$
q_1	λ	Ζ	q_1	λ	

• To get $\mathcal{L}_E(M) = \mathcal{L}_{AE}(M) = L$, make q_1 an accepting state.

A Single-State Acceptor by Empty Stack

- In fact, q_1 is not necessary either.
- Let $\Sigma = \{a, b, c\}$ and let $L = \{\alpha \cdot c \cdot \alpha^R \mid \alpha \in \{a, b\}^*\}.$
- Design a one-state NPDA $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ with $\mathcal{L}_E(M) = L$.
- $\Gamma = \{a, b, z, A\}; Q = \{q_0\}; F = \emptyset. F = \oint \{q_0\}$

	Current	Ne	ext	
State	Input	Stack	State	Stack
q_0	а	Ζ	q_0	Aaz
q_0	Ь	Ζ	q_0	Abz
q_0	а	Α	q_0	Aa
q_0	Ь	Α	q_0	Ab
q_0	С	Ζ	q_0	λ
q_0	С	Α	q_0	λ
q_0	а	а	q_0	λ
q_0	Ь	Ь	q_0	λ
q_0	λ	Ζ	q_0	λ

Pushdown-Automata

. . .

.

(a, (z, Aaz)) (b, (z, Abz)) (a, (A, Aa)) $(b, (A, Ab)) (c, (z, \lambda)) (c, (A, \lambda))$ $(a, (a, \lambda)) (b, (b, \lambda)) (\lambda, (z, \lambda))$

 To get \$\mathcal{L}_E(M) = \mathcal{L}_{AE}(M) = L\$, make \$q_0\$ an accepting state.

20101004 Slide 16 of 35

Recall a Second Example of an Accepter

- Let $\Sigma = \{a, b, c\}$ and let $L = \{\alpha \cdot \alpha^R \mid \alpha \in \{a, b\}^*\}$.
- Design a NPDA $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ which accepts L.

•
$$\Gamma = \{a, b, z\}; Q = \{q_0, q_1\}; F = \{q_1\}.$$

- The solution is almost the same as for the $\alpha \cdot c \cdot \alpha^R$ example.
- Guess that the middle of string has been reached.

-	ext	Ne	:	Current				
$\rightarrow q_0$ $(a, (x, ax))$	Stack	State	Stack	Input	State			
(b, (x, bx))	ax	q_0	x	а	q_0			
$(\lambda, (x, x))$	bx	q_0	x	Ь	q_0			
	x	q_1	x	λ	q_0			
$(a, \lambda)) \rightarrow (a_1) (\lambda, (z, \lambda)) (a_2)$	λ	q_1	а	а	q_1			
$(b,\lambda))$	λ	q_1	Ь	Ь	q_1			
	λ	q_2	Ζ	λ	q_1			
• $\mathcal{L}_{A}(M) = \mathcal{L}_{E}(M) = \mathcal{L}_{AE}(M) = I$								

•
$$\mathcal{L}_A(M) = \mathcal{L}_E(M) = \mathcal{L}_{AE}(M) =$$

Pushdown Automata

20101004 Slide 17 of 35

A Second Example of Acceptance by Empty Stack

- With acceptance by empty stack, q_2 is not necessary.
- Let $\Sigma = \{a, b, c\}$ and let $L = \{\alpha \cdot c \cdot \alpha^R \mid \alpha \in \{a, b\}^*\}.$
- Design a NPDA $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ with $\mathcal{L}_E(M) = L$.
- $\Gamma = \{a, b, z\}; \ Q = \{q_0, q_1\}; \ F = \emptyset. \ F = \oint \{q_1\}$

	Current		Next		
State	Input	Stack	State	Stack	$\rightarrow q_0 \qquad (a, (x, ax)) \qquad (b, (x, ax)) \qquad (b, (x, ax)) \qquad (c, (x, ax)$
q_0	а	x	q_0	ax	(b, (x, bx))
q_0	Ь	x	q_0	bx	$(\lambda, (x, x))$
q_0	λ	x	q_1	x	$(a,(a,\lambda))$
q_1	а	а	q_1	λ	$(b, (b, \lambda)) \longrightarrow q_1$
q_1	Ь	Ь	q_1	λ	$(\lambda, (z, \lambda))$
q_1	λ	Ζ	q_1	λ	

• To get $\mathcal{L}_E(M) = \mathcal{L}_{AE}(M) = L$, make q_1 an accepting state.

A Second Example of a Single-State Acceptor

- In fact, q_1 is not necessary either.
- Let $\Sigma = \{a, b, c\}$ and let $L = \{\alpha \cdot \alpha^R \mid \alpha \in \{a, b\}^*\}.$
- Design a one-state NPDA $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ with $\mathcal{L}_E(M) = L$.
- $\Gamma = \{a, b, z, A\}; Q = \{q_0\}; F = \emptyset. F = \oint \{q_0\}$

	Current	Ne	ext	
State	Input	Stack	State	Stack
q_0	а	Ζ	q_0	Aaz
q_0	Ь	Ζ	q_0	Abz
q_0	а	Α	q_0	Aa
q_0	Ь	Α	q_0	Ab
q_0	λ	A	q_0	λ
q_0	а	а	q_0	λ
q_0	Ь	Ь	q_0	λ
q_0	λ	Ζ	q_0	λ

(a, (z, Aaz)) (b, (z, Abz)) $(a, (A, Aa)) (b, (A, Ab)) (\lambda, (A, \lambda))$ $(a, (a, \lambda)) (b, (b, \lambda)) (\lambda, (z, \lambda))$

• To get $\mathcal{L}_E(M) = \mathcal{L}_{AE}(M) = L$, make q_0 an accepting state.

Single-State Basic Top-Down Parsing

- Algorithm (Basic top-down parsing): Given a CFG $G = (V, \Sigma, S, P)$, build a one-state NPDA $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ with $\mathcal{L}_E(M) = \mathcal{L}(G)$.
 - Define: $Q = \{q_0\}; \Gamma = \Sigma \cup V \cup \{z_f\}$ with $z_f \notin \Gamma \cup \Sigma; F = \emptyset$. $F = \emptyset \{q_0\}$
 - The transition function δ is similar to that for the multi-state version. Initialize: (q₀, Sz_f) ∈ δ(q₀, λ, z). Conjecture: For each A → α ∈ V, (q₀, α) ∈ δ(q₀, λ, A). Match: For each a ∈ Σ, (q₀, λ) ∈ δ(q₀, a, a). Accept: (q₀, λ) ∈ δ(q₀, λ, z_f).
 - Two "bottom-of-stack" symbols are used, z and z_f , to ensure that the machine does not accept λ without using the grammar.

Theorem: For any CFL L, there is a one-state NPDA M with $\mathcal{L}_E(M) = L$. \Box

• To get $\mathcal{L}_E(M) = \mathcal{L}_{AE}(M) = L$, make q_0 an accepting state.

Pushdown Automata

20101004 Slide 20 of 35

An Illustration of Basic One-State Top-Down Parsing

- Let $\Sigma = \{a, b\}$ and $G = \{\{S\}, \Sigma, S, \{S \rightarrow aSa, \mid bSb \mid \lambda\}\}.$
- $\mathcal{L}(G) = \{ \alpha \cdot \alpha^R \mid \alpha \in \Sigma^* \}.$
- The operation is almost identical to that of the multi-state version.
- The acceptance of *baaaab* is shown to the right.

$$(\lambda, (z, Sz_f)) \\ (\lambda, (S, aSa)) (\lambda, (S, bSb)) \\ (\lambda, (S, \lambda)) \\ (a, (a, \lambda)) (b, (b, \lambda)) \\ (\lambda, (z_f, \lambda)) \\ (\eta_0)$$

• To get $\mathcal{L}_{E}(M) = \mathcal{L}_{AE}(M) = L$, make q_0 an accepting state.

$$\begin{array}{ll} (q_0, baaaab, z) \\ - & (q_0, baaaab, Sz_f) & \text{Initialize} \\ - & (q_0, baaaab, Sbz_f) & \text{Conjecture } S \rightarrow bSb \\ - & (q_0, aaaab, Sbz_f) & \text{Match } b \\ - & (q_0, aaaab, aSabz_f) & \text{Conjecture } S \rightarrow aSa \\ - & (q_0, aaab, Sabz_f) & \text{Match } a \\ - & (q_0, aaab, aSaabz_f) & \text{Conjecture } S \rightarrow aSa \\ - & (q_0, aaab, aSaabz_f) & \text{Conjecture } S \rightarrow aSa \\ - & (q_0, aab, aSaabz_f) & \text{Match } a \\ - & (q_0, aab, aabz_f) & \text{Conjecture } S \rightarrow \lambda \\ - & (q_0, ab, abz_f) & \text{Match } a \\ - & (q_0, b, bz_f) & \text{Match } a \\ - & (q_0, \lambda, z_f) & \text{Match } b \\ - & (q_0, \lambda, \lambda) & \text{Accept} \end{array}$$

20101004 Slide 21 of 35

Recall Acceptance by an NPDA

Context: $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ an NPDA.

- There are three common notions of acceptance by M of a string $\alpha \in \Sigma^*$.
 - Acceptance by *final state*:

 $\mathcal{L}_{\mathcal{A}}(\mathcal{M}) = \{ \alpha \in \Sigma^* \mid (q_0, \alpha, z) \models_{\mathcal{M}}^* (q, \lambda, \gamma) \text{ for some } q \in \mathcal{F} \text{ and } \gamma \in \Gamma^* \}$

- Acceptance by *empty stack*: $\mathcal{L}_{E}(M) = \{ \alpha \in \Sigma^{*} \mid (q_{0}, \alpha, z) \vdash_{M}^{*} (q, \lambda, \lambda) \text{ for some } q \in Q \}$
- Acceptance by *final state and empty stack*.

 $\mathcal{L}_{AE}(M) = \{ \alpha \in \Sigma^* \mid (q_0, \alpha, z) \vdash^*_{M} (q, \lambda, \lambda) \text{ for some } q \in F \}$

Theorem: For any $L \subseteq \Sigma^*$, the following are equivalent:

- (i) $L = \mathcal{L}_A(M')$ for some NDPA M'.
- (ii) $L = \mathcal{L}_E(M')$ for some NDPA M'.
- (iii) $L = \mathcal{L}_{AE}(M')$ for some NDPA M'.

Furthermore, there are algorithms to convert between the forms.

Proof: Algorithms follow on the next slides.

Conversion from Acceptance by Final State

Context: $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ an NPDA.

Algorithm: Construct an NPDA $M' = (Q', \Sigma, \Gamma', \delta', q'_0, z', F')$ with $\mathcal{L}_A(M') = \mathcal{L}_E(M') = \mathcal{L}_{AE}(M') = \mathcal{L}_A(M).$

- $Q' = Q \cup \{q'_0, q'_f\}$, with $q_0, q'_f \not\in Q$.
- $\Gamma' = \Gamma \cup \{z'\}$, with $z' \notin \Gamma$.
- $F' = \{q'_f\}$
- The transition function $\delta' : Q' \times \Sigma \cup \{\lambda\} \times \Gamma' \to Q' \times {\Gamma'}^*$ is defined by:
 - Prepare to simulate: $\delta'(q'_0, \lambda, z') = \{(q_0, zz')\}.$
 - Simulate *M*:

 $\delta(q, x, y) \subseteq \delta'(q, x, y)$ for all $(q, x, y) \in Q \times \Sigma^* \cup \{\lambda\} \times \Gamma$.

• Guess that input has ended:

 $(q'_f,\lambda)\in \delta'(q,\lambda,y)$ for all $q\in F$ and $y\in \Gamma$.

- Empty the stack: $\delta'(q'_f, \lambda, y) = \{(q'_f, \lambda)\}$ for all $y \in \Gamma'$. \Box
- z' prevents the simulation from emptying the stack.

Conversion from Acceptance by Final State + Empty Stack

Context: $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ an NPDA.

Algorithm: Construct an NPDA $M' = (Q', \Sigma, \Gamma', \delta', q'_0, z', F')$ with $\mathcal{L}_A(M') = \mathcal{L}_E(M') = \mathcal{L}_{AE}(M') = \mathcal{L}_{AE}(M).$

- $Q' = Q \cup \{q'_0, q'_f\}$, with $q_0, q'_f \not\in Q$.
- $\Gamma' = \Gamma \cup \{z'\}$, with $z' \notin \Gamma$.
- $F' = \{q'_f\}$
- The transition function $\delta' : Q' \times \Sigma \cup \{\lambda\} \times \Gamma' \to Q' \times {\Gamma'}^*$ is defined by:
 - Prepare to simulate: $\delta'(q'_0, \lambda, z') = \{(q_0, zz')\}.$
 - Simulate *M*:

 $\delta'(q, x, y) = \delta(q, x, y)$ for all $(q, x, y) \in Q \times \Sigma \cup \{\lambda\} \times \Gamma$.

- When the simulated stack is empty and the simulated state of M is accepting, delete z' and move to the accepting state of M': $\delta'(q, \lambda, z') = \{(q'_f, \lambda)\}$ for all $q \in F$. \Box
- z' prevents the simulation from emptying the stack.

Conversion from Acceptance by Empty Stack

Context: $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ an NPDA.

Algorithm: Construct an NPDA $M' = (Q', \Sigma, \Gamma', \delta', q'_0, z', F')$ with $\mathcal{L}_A(M') = \mathcal{L}_E(M') = \mathcal{L}_{AE}(M') = \mathcal{L}_E(M).$

• Just apply the previous algorithm with Q = F.

• In that case,
$$\mathcal{L}_{AE}(M) = \mathcal{L}_{E}(M)$$
.

Theorem: For any $L \subseteq \Sigma^*$, the following are equivalent:

- (i) $L = \mathcal{L}_A(M')$ for some NDPA M'.
- (ii) $L = \mathcal{L}_E(M')$ for some NDPA M'.
- (iii) $L = \mathcal{L}_{AE}(M')$ for some NDPA M'.

Furthermore, there are algorithms to convert between the forms. \Box

Obtaining a CFG from a One-State NPDA

Context: A one-state NPDA $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$.

Algorithm: Construct a CFG $G = (V, \Sigma, S, P)$ with $\mathcal{L}_E(M) = \mathcal{L}(L)$.

- Without loss of generality, assume that $\Sigma\cap \Gamma=\emptyset.$
- Define: $V = \Gamma$; S = z;
- Define

 $P = \{ y \to x\beta \mid y \in \Gamma \text{ and } x \in \Sigma^* \cup \{\lambda\} \text{ and } (q_0, \beta) \in \delta(q_0, x, y) \}. \ \Box$

• This algorithm is best illustrated by example.

Application to the Previous Top-Down Example

• The stack symbols *a* and *b* are renamed to *a*' and *b*'.

$$(\lambda, (z, Sz_f))$$
$$(\lambda, (S, a'Sa')) (\lambda, (S, b'Sb'))$$
$$(\lambda, (S, \lambda))$$
$$(a, (a', \lambda)) (b, (b', \lambda))$$
$$(\lambda, (z_f, \lambda))$$

$Transition(\delta)$	Production
$(q_0,\lambda,z)\mapsto (q_0,Sz_f)$	$z \rightarrow Sz_f$
$(q_0,\lambda,S)\mapsto (q_0,a'Sa')$	S ightarrow a'Sa'
$(q_0,\lambda,S)\mapsto (q_0,b'Sb')$	$S \rightarrow b'Sb'$
$(q_0,\lambda,\mathcal{S})\mapsto (q_0,\lambda)$	$S o \lambda$
$(q_0,a,a')\mapsto (q_0,\lambda)$	a' ightarrow a
$(q_0,b,b')\mapsto (q_0,\lambda)$	b' ightarrow b
$(q_0,\lambda,z_f)\mapsto (q_0,\lambda)$	$z_f o \lambda$

- The start symbol of the grammar is z, not S.
- The task is to extend this construction to general NPDAs.
- The approach is to show that for every NPDA *M*, there is an one-state NPDA *M'* with L_E(*M*) = L_E(*M'*).

Pushdown Automata

20101004 Slide 27 of 35

Simulation of an NPDA with a One-State Unit

Context: $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ an NPDA.

- The idea is to simulate the states of M with stack symbols of a one-state NPDA M'.
- A *transition triple* for *M* is a triple $\langle q, y, q' \rangle$ in which:
 - $q,q'\in Q$;
 - $y \in \Gamma$;
 - $(q, \alpha, y \cdot \gamma) \models_{M}^{*} (q', \alpha', \gamma)$ for some $\alpha, \alpha' \in \Sigma^{*}$ and $\gamma \in \Gamma^{*}$.
- The stack alphabet of the simulating one-state NPDA consists of transition triples (plus a start symbol).
- If γ = y₁y₂...y_k is the stack contents of *M*, and the state is *q*, then the stack contents of *M*' in the simulation is of the form
 ⟨*q*, y₁, *q*₁⟩⟨*q*₁, y₂, *q*₂⟩...⟨*q*_{k-1}, y_k, *q*_k⟩ for some *q*₁, *q*₂,...,*q*_k ∈ *Q*.
- In effect, the state of M is simulated in M' as an entry in the stack symbol.

Formal Construction:NPDA \rightarrow One-State NPDA

Context: An NPDA $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$.

Algorithm: Construct a one-state NPDA with $\mathcal{L}_{AE}(M') = \mathcal{L}_{E}(M') = \mathcal{L}_{E}(M).$

- $Q' = q_0 = F'$.
- $\Gamma' = (Q \times \Gamma \times Q) \cup \{z'\}$
- The transition function $\delta' : Q' \times \Sigma \cup \{\lambda\} \times \Gamma' \to Q' \times {\Gamma'}^*$ is defined by:
 - Initialize: $\delta'(q_0', \lambda, z') = \{(q_0', \langle q_0, z, q \rangle) \mid q \in Q\}$
 - Simulate:

$$\delta'(q'_0, x, \langle p, y, q \rangle) = \\ \{(q'_0, \beta) \mid \beta = \langle q_1, b_1, q_2 \rangle \langle q_2, b_2, q_3 \rangle, \dots, \langle q_k, b_k, q_{k+1} \rangle \\ \text{and } p = q_1 \text{ and } q = q_{k+1} \text{ and } (q, b_1 b_2 \dots b_k) \in \delta(p, x, y) \} \\ \cup \{(q'_0, \lambda) \mid (q, \lambda) \in \delta(q, x, y)\}$$

 $\text{for } x \in \Sigma \cup \{\lambda\} \text{ and } \langle p, y, q \rangle \in Q \times \Gamma \times Q.$

Pushdown Automata

20101004 Slide 29 of 35

Discussion of the Formal Construction

• Each stack symbol of the simulator (except the initial stack symbol) encodes three pieces of information

• In the first step of the simulation, a triple of the following form is placed on the stack of M'.

Discussion of the Formal Construction -2

- To pop this triple off of the stack of the simulator directly, M must have the transition (q, z) ∈ δ(q₀, x, z) with x either the current input symbol or else λ.
- To pop this triple off of the stack of the simulator indirectly, conjecture that *M* goes through intermediate transitions.
- The first step must be to replace the initial stack symbol z with some string β ∈ Γ* and go to some state q ∈ Q: (q, β) ∈ δ(q₀, x, z) for input x ∈ Σ ∪ {λ}.
- $\langle q_0, z, q \rangle \rightsquigarrow \langle q_0, b_1, p_1 \rangle \langle p_1, b_2, p_2 \rangle \dots \langle p_k, b_k, p \rangle$ with $\beta = b_1 b_2 \dots b_k$.
- The process continues, possibly replacing $\langle q_0, b_1, p_1 \rangle$ with another string of transition triples.
- In an acceptance, the stack of the simulator M' will eventually be emptied.

Deterministic PDAs and CFLs

- An NPDA is *deterministic* if there is at most one possible move from any ID.
- Specifically, this means the following:
 - $Card(\delta(q, a, y)) \leq 1$ for all $(q, a, y) \in Q \times \Sigma^* \cup \{\lambda\} \times \Gamma$.
 - For any $q \in Q$ and $y \in \Gamma$, if $\delta(q, \lambda, y) \neq \emptyset$, then $\delta(q, a, y) = \emptyset$ for all $a \in \Sigma$.
- The abbreviation *DPDA* is used for deterministic NPDA.
- A CFL L is *deterministic* if there is a DPDA M with $\mathcal{L}(M) = L$.

Example of a DPDA

- Let $\Sigma = \{a, b, c\}$ and let $L = \{\alpha \cdot c \cdot \alpha^R \mid \alpha \in \{a, b\}^*\}.$
- The accepter given earlier is also a DPDA.

•
$$\Gamma = \{a, b, z\}; Q = \{q_0, q_1, q_2\}; F = \{q_2\}.$$

	Current		Ne	ext	_
State	Input	Stack	State	Stack	$\rightarrow q_0$ $(a, (x, ax))$
q_0	а	x	q_0	ax	(b, (x, bx))
q_0	Ь	x	q_0	bx	$(\boldsymbol{c},(\boldsymbol{x},\boldsymbol{x}))$
q_0	С	x	q_1	x	
q_1	а	а	q_1	λ	$(a, (a, \lambda)) \rightarrow a_1 (\lambda, (z, \lambda)) (a_2)$
q_1	Ь	Ь	q_1	λ	$(b,(b,\lambda))$
q_1	λ	Ζ	q_2	λ	

• The symbol x is used as a wildcard to reduce the number of entries.

•
$$\mathcal{L}_A(M) = \mathcal{L}_E(M) = \mathcal{L}_{AE}(M) = L.$$

An Example Which Does Not Admit a DPDA Accepter

- Let $\Sigma = \{a, b, c\}$ and let $L = \{\alpha \cdot \alpha^R \mid \alpha \in \{a, b\}^*\}.$
- For this language, it is not possible to design a DPDA which accepts it..

•
$$\Gamma = \{a, b, z\}; Q = \{q_0, q_1\}; F = \{q_2\}.$$

• Guessing is essential.

	Current		Next		
State	Input	Stack	State	Stack	$\rightarrow q_0$ $(a, (x, ax))$
q_0	а	x	q_0	ax	(b, (x, bx))
q_0	Ь	x	q_0	bx	$(\lambda, (x, x))$
q_0	λ	x	q_1	x	
q_1	а	а	q_1	λ	$(a, (a, \lambda)) \rightarrow (a_1) (\lambda, (z, \lambda)) (a_2)$
q_1	Ь	Ь	q_1	λ	$(b,(b,\lambda))$
q_1	λ	Ζ	q_2	λ	_

• $\mathcal{L}_A(M) = \mathcal{L}_E(M) = \mathcal{L}_{AE}(M) = L.$

Characterization of Deterministic CFLs

- Determinism for a CFL is important in practice, because it means that it may be parsed with a deterministic PDA.
- Theorem: Every deterministic CFL is unambiguous, but the converse fails to hold. \Box
 - For a proof, consult an advanced textbook.
 - In general, the languages accepted by NPDAs are represented by CFLs.
- Question: Is there a similar characterization of the languages accepted by DPDAs?
- Answer: Yes, the class of LR(k) grammars.
 - These grammars are extremely important in practice, and are used in the construction of practical parsers.
 - They will be discussed briefly later in a following set of slides.