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The Idea of a Pushdown Automaton

The model of accepter for CFLs is called a pushdown automaton or PDA.

It is basically an NFA with an auxiliary stack.

The stack is a true stack; only push and pop operations are allowed.

Only one stack is allowed.

external storage=stack

tape head
. =31 Finite-state control [—————Jp
Input output
welL yes (1) or no (0)

Piichdown Aiitomata 20101004 Slide 2 of 35



Formal Definition of a Pushdown Automaton

e |n this context, nondeterministic machines will be considered first.
e Deterministic machines will be considered as a special case later.

e A nondeterministic pushdown automaton or NPDA is a seven tuple

= (Qazar)d)q07zv F)
in which
Q is finite set of states;
> is an alphabet, called the input alphabet;
I" is an alphabet, called the stack alphabet;
0:Qx(ZU{A) xT — 2ﬁn1te* is a total function, the
state-transition function;
go € Q is the initial state,
zg € I is the initial stack symbol,
e F C Q is the set of final or accepting states.

e Here 2% .. = denotes the set of finite subsets of X.
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The Operation of an NPDA

Q X Y U{A} X r — Q X r
l\ /\ X 2ﬁnite / /\
Input to be Current New

Current state top of stack New state top of stack

consumed

e The number of possibilities at each step must be finite.

e [ is an infinite set.

e Hence the restriction to finite subsets.

Formal Representation:

e Instead of an extended transition function, it is convenient to represent
the operation of an NPDA with the move relation.

e First, a review of this notion for finite automata is given.
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Review: IDs and the Move Relation for NFAs

e An instantaneous description (or machine configuration or ID) for the
NFA M =(Q,X,d,qo, F) is a pair (g,a) € Q x £* in which:
e g represents the current state;
e « represents the part of the input string which has not yet been read.

ID(M) = Q x X*; the set of all possible IDs of M.

e The move relation ty; C ID(M) x ID{M) represents one step of M and is
defined by (q1, 1) tu (g2, a2) iff
e ap = Rest(ai) and g2 € (g1, First(az)); or
e ap =aj and g2 € §(q1, N).

e I, is the reflexive and transitive closure of Hy:

* (g,0) 1 (g, 0);

o (q1,01) by (92, @2), (g2,02) 5, (g3, 03) = (q1, 1) Iy, (g3, 03).
e Thus (q,OflOQ) '%A (5*(q,051),042)-
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IDs and the Move Relation of an NPDA

e An instantaneous description (or machine configuration or ID) for the
NPDA M = (Q,%,T,0,qo, z F) is a triple (g, ,y) € @ x ¥* x [ in
which:

e g represents the current state;
e « represents the part of the input string which has not yet been read.
e -y represents the contents of the stack, top to bottom.

o ID(M) = Q x X* x I'*; the set of all possible IDs of M.

e The move relation ty; C ID(M) x ID(M) represents one step of M and is
defined by (g1, @1, 71) tir (g2, @2,72) iff 41 # A and

e ap = Rest(a1) and (g2,75) € 6(q1, First{a1), First(y1))
for some 4 € ™ with 72 = 7% - Rest(y1); or
e ap =g and (g2,7%) € 0(q1, A, First(v1))
for some 4 € ™ with 72 = 7% - Rest(v1);
e I, is the reflexive and transitive closure of Iy:
* (q,0,7) by (g, ,7);
e (g1,a1,m) by (92, 22,72), (G2, a2,72) b, (g3, 3,73)
= (q1,01,7) fy (g3, 03,73).
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Acceptance by an NPDA
Context: M= (Q,%,l,4,qo,z, F) an NPDA.

e There are three common notions of acceptance by M of a string o € L*.

e Acceptance by final state:
La(M) ={a €X*]|(q0,,2)k, (g,\,7) for some g € F and v € ['*}
e Acceptance by empty stack:
Le(M)={aeX*|(q0, 2)h, (g,\,\) for some g € Q}
e Acceptance by final state and empty stack.
Lae(M) = {a € | (o, @, 2) ¥, (4. A, \) for some q € F}
o All three are equivalent in expressive power; this will be established later.

e The textbook uses only acceptance by final state, so this will be taken to
be the default: L(M) = La(M).
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Example of an NPDA

Let ¥ = {a,b,c} and let L= {a-c-aff|ac {a,b}*}.
Design a NPDA M = (Q, X, T,0, qo, z, F) which accepts L.

r={ab,z}; Q ={q,q1,q2}; F ={q}.
e The transition function § may be described either by table or by diagram.

Current Next
State ‘ Input ‘ Stack | State ‘ Stack
qo0 a z qo0 azr
do b T do bz
qo0 9 z q1 z
a1 a a a1 A
a1 b b a1 A
a1 A z a2 A

e The symbol z is used as a wildcard to reduce the number of entries.
o EA(M) = EE(M) = EAE(M) = L.
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A Second Example of an Accepter

Let ¥ = {a,b,c} and let L = {a-af | a € {a,b}*}.
Design a NPDA M = (Q, X, T,0, qo, z, F) which accepts L.

The solution is almost the same as for the previous example.

[ ]
[ ]
L r:{av b,Z}; Q:{q07ql}; F:{q2}
[ ]
e Guess that the middle of string has been reached.
Current Next
State ‘ Input ‘ Stack | State ‘ Stack
qo0 a z qo0 azr
qo b T qo bx
90 A T q1 T
q1 a a g1 A
q1 b b q1 A
q1 A z qo A
L] ,CA(M) = [,E(M) = 'CAE(M) =L
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Basic Nondeterministic Top-Down Parsing

Algorithm (Basic top-down parsing): Given a CFG G = (V, %, S, P), build an
NPDA M = (Q,%,T,4, o, z, F) with L(M) = £(G).

e Define: @ ={qo,qw,qr}; F={ar}; T =X U V.

e The transition function ¢ is defined by two main operations and two
auxiliary operations:
Initialize: (qw, Sz) € 0(qo, A, 2).
Conjecture: For each A — a €V, (qu,a) € 6(qu, A, A).
Match: For each a € ¥, (qw, A) € d(qw, a, a).
Accept: (gf, A) € d(qw, A, 2).

Theorem: Given any CFL L, there is an NPDA M with LA(M) = L. O

e This form of parsing is best illustrated by example.
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An lllustration of Basic Top-Down Parsing

(A, (5, a5a)) (A (z,
(A, (S, bSh))

(A, (5:0)

(a,(a;A)) @

(b, (b, A)) (A (z,4))
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qo, baaaab, z)
qw, baaaab, Sz)
Qw, baaaab, bSbz)
qw, aaaab, Sbz)
Qw, aaaab, aSabz)
qw, aaab, Sabz)
Qw, aaab, aSaabz)
qw, aab, Saabz)
Qw, aab, aabz)
Qw, ab, abz)
Gw, b, bz)

qr, A Z)

Let ¥ = {a,b} and G = {{S},%,5,{S — aSa, | bSb | A\}}.
L(G)={a -af |aec T}

The algorithm on the previous slide yields the following machine:
with the acceptance of baaaab shown to the right.

Initialize

Conjecture S — bSb
Match b

Conjecture S — aSa
Match a

Conjecture S — aSa
Match a

Conjecture S — A
Match a

Match a

Match b

Accept
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Basic Top-Down Parsing is not a Practical Solution

e From a practical point of view, there are two major problems with basic
top-down parsing:

Nondeterminism: The process is inherently nondeterministic
e The correct production must be chosen for each shift step.

Unbounded descent: If the grammar is left recursive, the algorithm may
never terminate.
e This problem may be resolved by using grammars in Greibach
normal form.

e Still, this form of parsing is useful because it proves that every CFG is
accepted by some NPDA.

e More practical parsing will be examined briefly later.
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Constructing a CFG from an NPDA — Conditions

The construction of a CFG from an NPDA is substantially more complex
than the construction of a parser for a CFG.

There is no easy proof.

e However, it is easier if acceptance by empty store is allowed.

In the textbook, acceptance by empty store is covered only in an exercise
(17 of Sec. 17.1).

e The proof of equivalence is very easy and will be covered here.
e Notions of acceptance by the NPDA M = (Q,X,T,0, qo, z, F);

e Acceptance by final state:
La(M) ={a€X*]|(q0,,2) K, (g,\,7) for some g € F and v € ['*}

e Acceptance by empty stack:

Le(M)={aeX*|(q, 2)H, (g,\ ) for some g € Q}
e Acceptance by final state and empty stack.

Lae(M) ={a € X*|(qo,, 2) K, (g, \) for some g € F}
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Recall this Example of an NPDA

e Let Y ={a,b,c}andlet L={a c-af |ac{a b}'}.
e Design a NPDA M = (Q,%,T, 4, qo, z, F) which accepts L.
o [ = {av b,Z}; Q = {q07 qi, CI2}§ F= {qZ}

Current Next
State ‘ Input ‘ Stack | State ‘ Stack
qo0 a z qo0 azr
el b T o bz
qo0 c z q1 T
q1 a a g1 A (a,(a,A)
a1 b b 0 A (bv (b7 )‘)
q A z 92 A

e The symbol z is used as a wildcard to reduce the number of entries.
L] ,CA(M) = [,E(M) = 'CAE(M) =L
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With acceptance by empty stack, g, is not necessary.

Let ¥ = {a,b,c}and let L={a-c-aff|ac {a,b}}.
Design a NPDA M = (Q,X,T,0, qo, z, F) with Lg(M) = L.
F={a,b,z}; Q={qo, 1} F=0. F=9%{aq1}

Example of Acceptance by Empty Stack

[ ]
[ ]
[ ]
[ ]
Current
State ‘ Input ‘ Stack
qo0 a
qo b
qo0 c
q1 a
a1 b
q1 A

X

N T oL & 8

Next
State ‘ Stack
qo0 ar
qo bz
a1 T
a1 A
a1 A
q1 A

e To get Le(M) = Lae(M) = L, make g1 an accepting state.
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A Single-State Acceptor by Empty Stack

In fact, g; is not necessary either.
Let ¥ = {a,b,c}and let L={a-c-aff|ac {a,b}}.

Design a one-state NPDA M =
= {av bvsz}; Q = {qO}; F= @ F :@ {qo}

(Q,%,T.,5,q0, 2 F) with Le(M) = L.

Current

State ‘ Input ‘ Stack

(a,(z,Aaz)) (b, (z, Abz)) (a, (A, Aa))

do
do
qdo
do
qdo
do
qdo
do
qdo

a

SSL O 0 o w o

A

V4

N v DN ™MD N

Next
State ‘ Stack
qo Aaz
do Abz
qo Aa
qo Ab
qo A
qo A
qo A
qo A
q0 A

bz A
(b, (A, Ab)) (c,(z,))) (c, (A N)
(a,(a,N) (b, (b, ) (N, (2, 1))

e To get EE(M) = ﬁAE(M) =L,
make gg an accepting state.
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Recall a Second Example of an Accepter

Let ¥ = {a,b,c} and let L = {a-af | a € {a,b}*}.
Design a NPDA M = (Q, X, T,0, qo, z, F) which accepts L.

R

example.

[ ]
[ ]
1 r:{av b,Z}; Q:{q07ql}; F:{ql}
e The solution is almost the same as for the a- ¢ - «
e Guess that the middle of string has been reached.
Current Next
State ‘ Input ‘ Stack | State ‘ Stack
qo0 a T q0 ar
90 b T o bz
do A x q1 T
a1 a a q A
a1 b b a1 A
q1 A z qo A
L] ,CA(M) = [,E(M) = 'CAE(M) =L
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A Second Example of Acceptance by Empty Stack

With acceptance by empty stack, g, is not necessary.
Let ¥ = {a,b,c}and let L={a-c-aff|ac {a,b}}.
Design a NPDA M = (Q,X,T,0, qo, z, F) with Lg(M) = L.

@ (a,(z,az))
(b, (=, br))
(A (z,2))
oo
(A (2, 1))

[ ]

[ ]

[ ]

e ={ab,z}; Q={qo,q1}; F=0. F=8{q:}

Current Next
State ‘ Input ‘ Stack | State ‘ Stack

qo0 a T q0 ar
qo b x q0 bx
do A x q1 T
q1 a a g1 A
q1 b b g1 A
q1 A z q1 A

e To get Le(M) = Lae(M) = L, make g1 an accepting state.
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A Second Example of a Single-State Acceptor

In fact, g; is not necessary either.

Let ¥ = {a,b,c} and let L = {a-af | a € {a, b}*}.

Design a one-state NPDA M =
r={a b,z,A}; Q={qo}; F=0. F=%{q}

(Q,X,I,9,q0,z, F) with Le(M) = L.

Current

State ‘ Input ‘ Stack

do
do
do
do
do
do
do
qo

a

> T L > T L T

z

N oo D> DN

Next
State ‘ Stack
qo Aaz
do Abz
qo Aa
do Ab
qo A
qo A
qo A
q0 A

(a,(z,Aaz)) (b,(z,Abz))
(a, (A, Aa)) (b, (A, Ab)) (X, (A, A))
(a,(a,4)) (b, (b, A)) (A (2, A))

e To get ,CE(M) = »CAE(M) =1,
make gp an accepting state.
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Single-State Basic Top-Down Parsing

Algorithm (Basic top-down parsing): Given a CFG G = (V, %, S, P), build a
one-state NPDA M = (Q,X,T,9, qo, z, F) with Lg(M) = L(G).
e Define: Q={qo}; T =XUVU{z} withzs ¢TUYL; F=0. F=%{qo}

e The transition function ¢ is similar to that for the multi-state version.
Initialize: (qo, Szfr) € 0(qo, A, 2).
Conjecture: For each A — o € V, (qo, @) € 0(qo, A, A).
Match: For each a € ¥, (qo, ) € (qo, a, a).
Accept: (qo, A) € 6(qo, A\, zf).

e Two “bottom-of-stack” symbols are used, z and z¢, to ensure that the
machine does not accept A without using the grammar.

Theorem: For any CFL L, there is a one-state NPDA M with Lg(M) = L. O
e To get Le(M) = Lae(M) = L, make go an accepting state.
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An lllustration of Basic One-State Top-Down Parsing

e L(G)={a -af |aec ).
(A, (z,5zf))
(A, (5,aSa)) (N, (S, bSb))
(A (5, 4)
(a;(a,A)) (b, (b, X))
()" (Zf’ )‘))
e To get
Le(M)=Lae(M) =L,
make qo an accepting
state.
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(qo, baaaab, z)
(qo, baaaab, Szf)
(qo, baaaab, bSbz¢)
(qo, aaaab, Sbzs)
(qo, aaaab, aSabzy)
(qo, aaab, Sabzys)
(qo, aaab, aSaabzys)
(qo, aab, Saabzy)
(qo, aab, aabzy)
(qo, ab, abzr)
(qo, b, bzf)
(qu\ zf)

(05 A, A)

Let ¥ = {a,b} and G = {{S},%,5,{S — aSa, | bSb | A\}}.

The operation is almost identical to that of the multi-state version.
The acceptance of baaaab is shown to the right.

Initialize

Conjecture S — bSb
Match b

Conjecture S — aSa
Match a

Conjecture S — aSa
Match a

Conjecture S — A
Match a

Match a

Match b

Accept
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Recall Acceptance by an NPDA
Context: M= (Q,X%,I,4,qo,z, F) an NPDA.

e There are three common notions of acceptance by M of a string o € L*.
e Acceptance by final state:
La(M) ={a €XT*]|(q0,,2)k, (g,\,7) for some g € F and v € ['*}
e Acceptance by empty stack:
Le(M)={aeX*|(q, 2)h, (g,\,A) for some g € Q}
e Acceptance by final state and empty stack.
Lae(M) = {a € T* | (q0,@,2) ¥, (4, A\, \) for some q € F}

Theorem: For any L C ¥*, the following are equivalent:
(i) L= La(M") for some NDPA M'.
(i) L = Lg(M") for some NDPA M'.
(ii) L= Lag(M') for some NDPA M'.
Furthermore, there are algorithms to convert between the forms.

Proof: Algorithms follow on the next slides.
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Conversion from Acceptance by Final State

Context: M =(Q,X%,l,d,qo,z, F) an NPDA.
Algorithm: Construct an NPDA M’ = (Q', X, 1,0, q, 2', F') with
LAM') = Le(M) = Lae(M') = La(M).
o Q"= QU {aqp g}, with qo, gf ¢ Q-
o '=TU{Z}, with 2/ &T.
. F={a}
e The transition function & : @ x TU{\} x " — Q" x " is defined by:
e Prepare to simulate: 0'(qg, A, 2') = {(qo, 22')}.
e Simulate M:
d(q,x,y) Cd(q,x,y) forall (g,x,y) € @ x T*U{A} xT.
e Guess that input has ended:
(gr,A) € 8(q,\,y) forallge Fand y e T.
e Empty the stack: §'(q}, A, y) = {(qf, A)} forally e I'. O

e 7' prevents the simulation from emptying the stack.
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Conversion from Acceptance by Final State + Empty Stack

Context: M =(Q,X%,l,d,qo,z, F) an NPDA.
Algorithm: Construct an NPDA M’ = (Q', X, T",¥, qp, 2', F') with
LAM') = Le(M) = Lae(M') = Lae(M).
o Q' = QU{qp gr} with qo, g ¢ Q.
o '=TU{Z'}, with 2/ &T.

o F'={a)
e The transition function & : Q' x TU{\} x " — Q" x " is defined by:
e Prepare to simulate: ¢'(gg, A, 2’') = {(qo, z2')}.
e Simulate M:
8(q,x,y) =d(q,x,y) forall (g,x,y) € @ x LU {A} xT.

e When the simulated stack is empty and the simulated state of M is
accepting, delete z/ and move to the accepting state of M':
8(q,\,2") ={(qF,\)} forallge F. O

e 7' prevents the simulation from emptying the stack.
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Conversion from Acceptance by Empty Stack

Context: M= (Q,X%,I,d,qo,z, F) an NPDA.
Algorithm: Construct an NPDA M’ = (Q", X, I, ¥, qp, 2', F') with
LAM)=Le(M) = Lae(M') = Le(M).
e Just apply the previous algorithm with @ = F.
e In that case, Lag(M) = LE(M).
Theorem: For any L C ¥*, the following are equivalent:
(i) L= La(M") for some NDPA M'.
(i) L= Lg(M") for some NDPA M'.
(ii) L= Lag(M') for some NDPA M'.
Furthermore, there are algorithms to convert between the forms. [J
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Obtaining a CFG from a One-State NPDA

Context: A one-state NPDA M = (Q,%,T,6, qo, z, F).
Algorithm: Construct a CFG G = (V, X, S, P) with Lg(M) = L(L).
e Without loss of generality, assume that ¥ N T = (.
e Define:V =T,; S =z
e Define
P={y —xB|yerland x € £*U{\} and (qo, 5) € d(q0,x,y)}. O

e This algorithm is best illustrated by example.
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Application to the Previous Top-Down Example

e The stack symbols a and b are renamed
toa and b'.

(A, (2, 52f)) ‘ Transition(d) | Production |

(A, (S, 3'53'))5(/\7 (5, b'SD")) (90, X, z) — (qo, Sz) | z — Sz
(0 ) (5030 (90,2, 5) = o, 253) | 5 = 752
(A (26, M) (g0, A\, S) — (qo, b'SH') | S — b'SH

(90,2, S) — (qo, ) S—A

@ (90,3, a") = (qo, A) ad—a

(0, b, b") = (qo, A) b'— b

(qo; A, z¢) — (qo, A) Zr — A

e The start symbol of the grammar is z, not S.
e The task is to extend this construction to general NPDAs.

e The approach is to show that for every NPDA M, there is an one-state
NPDA M’ with Lg(M) = Lg(M").
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Simulation of an NPDA with a One-State Unit
Context: M= (Q,X%,I,4,qo,z, F) an NPDA.

e The idea is to simulate the states of M with stack symbols of a one-state
NPDA M'.

e A transition triple for M is a triple (g, y, q’) in which:
°*q,qcQ;
o yer;
e (q,a,y YK, (q,,7) for some a,a’ € ¥* and v € T'*.
e The stack alphabet of the simulating one-state NPDA consists of
transition triples (plus a start symbol).

o If v =y1y>...yk is the stack contents of M, and the state is g, then the
stack contents of M’ in the simulation is of the form
<q>)/1> q1><q1>y2> q2> s <qk—17yk> qk> for some g1,q2,...,qk € Q

e In effect, the state of M is simulated in M’ as an entry in the stack
symbol.
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Formal Construction:NPDA — One-State NPDA
Context: An NPDA M = (Q,X%,T,4, qo, z, F).
Algorithm: Construct a one-state NPDA with
Lae(M') = Le(M') = LE(M).
e Q=q=F.
o '=(QxTxQ)uU{Z}
e The transition function & : Q@ x TU{\} x " — Q" x " is defined by:
e Initialize: ¢'(g4, A, 2') = {(40, (g0, 2,9)) | g € Q}
e Simulate:
d'(q0, % (P ¥, 9)) =
{(q0,8) | B = (a1, b1, 42)(q2, b2, 93), - - - , (k> bk Gr1)
and p=q1 and g = qk+1 and (q, biba ... b) € 6(p, x,y)}
U{(q0,N) | (g.A) € 3(q,x,)}

for x e LU{A} and (p,y,q) € Q@ x T x Q.
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Discussion of the Formal Construction

e Each stack symbol of the simulator (except the initial stack symbol)
encodes three pieces of information

(P > b » q_) € QxIxQ

TN

State of M Stack symbol The state that M must
in simulation in M go to when b is replaced by A

e In the first step
of the simulation, a triple of the following form is placed on the stack of M’.

( 9 » z » q € QxI'xQ
pd \\

Start simulation Start simulation End simulation
in Q@ of M with initial stack symbol of M in some state of M
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Discussion of the Formal Construction — 2

e To pop this triple off of the stack of the simulator directly, M must have
the transition (g, z) € d(qo, X, z) with x either the current input symbol
or else \.

e To pop this triple off of the stack of the simulator indirectly, conjecture
that M goes through intermediate transitions.

e The first step must be to replace the initial stack symbol z with some
string 8 € I'* and go to some state g € Q: (q,3) € d(qo, x, z) for input
x € ZU{A}L

L4 <q07z7 q> ~ <q07 b17 P1><P17 b27 P2> cee (pk7 bk7 p> with /B — b1b2 .. bk-

e The process continues, possibly replacing (qo, b1, p1) with another string
of transition triples.

e In an acceptance, the stack of the simulator M’ will eventually be
emptied.
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Deterministic PDAs and CFLs

An NPDA is deterministic if there is at most one possible move from any
ID.

Specifically, this means the following:
e Card(d(q,a,y)) <1forall (g,a,y) € Q x T*U{A} xT.
e Foranyge Qandy e,
if 6(q,\,y) # 0, then §(q,a,y) =0 forall a € X.

The abbreviation DPDA is used for deterministic NPDA.

A CFL L is deterministic if there is a DPDA M with L(M) = L.
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Example of a DPDA

e Let Y ={a,b,c}andlet L={a c-af |ac{a b}'}.
e The accepter given earlier is also a DPDA.

o [ = {a, b,Z}; Q= {q07 ai, q2}; F= {q2}

Current Next
State ‘ Input ‘ Stack | State ‘ Stack
qo0 a z qo0 azr
el b T o bz
qo0 c z q1 T
a1 a a a1 A
a1 b b a1 A
q A z 92 A

e The symbol z is used as a wildcard to reduce the number of entries.
L] ,CA(M) = [,E(M) = 'CAE(M) =L
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An Example Which Does Not Admit a DPDA Accepter

Let ¥ = {a,b,c} and let L = {a-af | a € {a, b}*}.
For this language, it is not possible to design a DPDA which accepts it..
r={ab,z}; Q=

{q0,q1}; F = {q2}.

e Guessing is essential.
Current Next
State ‘ Input ‘ Stack | State ‘ Stack

qo0 a z qo0 azr

el b T o bz

qo A x a1 T

q a a q A

a1 b b a1 A

q A z 92 A

L] ,CA(M) = ['E M) = »CAE(M) =L
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Characterization of Deterministic CFLs

e Determinism for a CFL is important in practice, because it means that it
may be parsed with a deterministic PDA.

Theorem: Every deterministic CFL is unambiguous, but the converse fails to
hold. OJ

e For a proof, consult an advanced textbook.
e In general, the languages accepted by NPDAs are represented by CFLs.

Question: Is there a similar characterization of the languages accepted by
DPDAs?

Answer: Yes, the class of LR(k) grammars.

e These grammars are extremely important in practice, and are used in the
construction of practical parsers.

e They will be discussed briefly later in a following set of slides.
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