
Pushdown Automata

5DV037 — Fundamentals of Computer Science

Ume̊a University

Department of Computing Science

Stephen J. Hegner

hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Pushdown Automata 20101004 Slide 1 of 35

The Idea of a Pushdown Automaton

• The model of accepter for CFLs is called a pushdown automaton or PDA.

• It is basically an NFA with an auxiliary stack.

• The stack is a true stack; only push and pop operations are allowed.

• Only one stack is allowed.

· · ·

Finite-state control

tape head
external storage=stack

input
w ∈ L

output
yes (1) or no (0)

Pushdown Automata 20101004 Slide 2 of 35

Formal Definition of a Pushdown Automaton

• In this context, nondeterministic machines will be considered first.

• Deterministic machines will be considered as a special case later.

• A nondeterministic pushdown automaton or NPDA is a seven tuple

M = (Q,Σ, Γ, δ, q0 , z,F)

in which
• Q is finite set of states;
• Σ is an alphabet, called the input alphabet;
• Γ is an alphabet, called the stack alphabet;
• δ : Q × (Σ ∪ {λ})× Γ → 2

Q×Γ∗

finite
is a total function, the

state-transition function;
• q0 ∈ Q is the initial state;
• z0 ∈ Γ is the initial stack symbol;
• F ⊆ Q is the set of final or accepting states.

• Here 2X
finite

denotes the set of finite subsets of X .

Pushdown Automata 20101004 Slide 3 of 35

The Operation of an NPDA

Q × Σ ∪ {λ} × Γ → Q × Γ∗
2
finite

Current state
Input to be
consumed

Current
top of stack New state

New
top of stack

• The number of possibilities at each step must be finite.

• Γ∗ is an infinite set.

• Hence the restriction to finite subsets.

Formal Representation:

• Instead of an extended transition function, it is convenient to represent
the operation of an NPDA with the move relation.

• First, a review of this notion for finite automata is given.

Pushdown Automata 20101004 Slide 4 of 35

Review: IDs and the Move Relation for NFAs

• An instantaneous description (or machine configuration or ID) for the
NFA M = (Q,Σ, δ, q0 ,F) is a pair (q, α) ∈ Q × Σ∗ in which:

• q represents the current state;

• α represents the part of the input string which has not yet been read.

• ID〈M〉 = Q × Σ∗; the set of all possible IDs of M.

• The move relation ⊢M ⊆ ID〈M〉 × ID〈M〉 represents one step of M and is
defined by (q1, α1) ⊢M (q2, α2) iff

• α2 = Rest〈α1〉 and q2 ∈ δ(q1,First〈α1〉); or

• α2 = α1 and q2 ∈ δ(q1, λ).

• ⊢∗
M
is the reflexive and transitive closure of ⊢M :

• (q, α) ⊢∗
M
(q, α);

• (q1, α1) ⊢
∗

M
(q2, α2), (q2, α2) ⊢

∗

M
(q3, α3) ⇒ (q1, α1) ⊢

∗

M
(q3, α3).

• Thus (q, α1α2) ⊢
∗

M
(δ∗(q, α1), α2).

Pushdown Automata 20101004 Slide 5 of 35

IDs and the Move Relation of an NPDA

• An instantaneous description (or machine configuration or ID) for the
NPDA M = (Q,Σ, Γ, δ, q0 , z,F) is a triple (q, α, γ) ∈ Q × Σ∗ × Γ∗ in
which:

• q represents the current state;

• α represents the part of the input string which has not yet been read.

• γ represents the contents of the stack, top to bottom.

• ID〈M〉 = Q × Σ∗ × Γ∗; the set of all possible IDs of M.

• The move relation ⊢M ⊆ ID〈M〉 × ID〈M〉 represents one step of M and is
defined by (q1, α1, γ1) ⊢M (q2, α2, γ2) iff γ1 6= λ and

• α2 = Rest〈α1〉 and (q2, γ
′

2) ∈ δ(q1,First〈α1〉,First〈γ1〉)
for some γ′2 ∈ Γ∗ with γ2 = γ′2 · Rest〈γ1〉; or

• α2 = α1 and (q2, γ
′

2) ∈ δ(q1, λ,First〈γ1〉)
for some γ′2 ∈ Γ∗ with γ2 = γ′2 · Rest〈γ1〉;

• ⊢∗
M
is the reflexive and transitive closure of ⊢M :

• (q, α, γ) ⊢∗
M
(q, α, γ);

• (q1, α1, γ1) ⊢
∗

M
(q2, α2, γ2), (q2, α2, γ2) ⊢

∗

M
(q3, α3, γ3)

⇒ (q1, α1, γ1) ⊢
∗

M
(q3, α3, γ3).

Pushdown Automata 20101004 Slide 6 of 35

Acceptance by an NPDA

Context: M = (Q,Σ, Γ, δ, q0 , z,F) an NPDA.

• There are three common notions of acceptance by M of a string α ∈ Σ∗.

• Acceptance by final state:
LA(M) = {α ∈ Σ∗ | (q0, α, z) ⊢

∗

M
(q, λ, γ) for some q ∈ F and γ ∈ Γ∗}

• Acceptance by empty stack:
LE (M) = {α ∈ Σ∗ | (q0, α, z) ⊢

∗

M
(q, λ, λ) for some q ∈ Q}

• Acceptance by final state and empty stack.
LAE (M) = {α ∈ Σ∗ | (q0, α, z) ⊢

∗

M
(q, λ, λ) for some q ∈ F}

• All three are equivalent in expressive power; this will be established later.

• The textbook uses only acceptance by final state, so this will be taken to
be the default: L(M) = LA(M).

Pushdown Automata 20101004 Slide 7 of 35

Example of an NPDA

• Let Σ = {a, b, c} and let L = {α · c · αR | α ∈ {a, b}∗}.

• Design a NPDA M = (Q,Σ, Γ, δ, q0 , z,F) which accepts L.

• Γ = {a, b, z}; Q = {q0, q1, q2}; F = {q2}.

• The transition function δ may be described either by table or by diagram.

Current Next

State Input Stack State Stack

q0 a x q0 ax
q0 b x q0 bx
q0 c x q1 x

q1 a a q1 λ

q1 b b q1 λ

q1 λ z q2 λ

q0

q1 q2

(a, (x , ax))

(b, (x , bx))

(c , (x , x))

(λ, (z , λ))(a, (a, λ))

(b, (b, λ))

• The symbol x is used as a wildcard to reduce the number of entries.

• LA(M) = LE (M) = LAE (M) = L.

Pushdown Automata 20101004 Slide 8 of 35

A Second Example of an Accepter

• Let Σ = {a, b, c} and let L = {α · αR | α ∈ {a, b}∗}.

• Design a NPDA M = (Q,Σ, Γ, δ, q0 , z,F) which accepts L.

• Γ = {a, b, z}; Q = {q0, q1}; F = {q2}.

• The solution is almost the same as for the previous example.

• Guess that the middle of string has been reached.

Current Next

State Input Stack State Stack

q0 a x q0 ax
q0 b x q0 bx
q0 λ x q1 x

q1 a a q1 λ

q1 b b q1 λ

q1 λ z q2 λ

q0

q1 q2

(a, (x , ax))

(b, (x , bx))

(λ, (x , x))

(λ, (z , λ))(a, (a, λ))

(b, (b, λ))

• LA(M) = LE (M) = LAE (M) = L.

Pushdown Automata 20101004 Slide 9 of 35

Basic Nondeterministic Top-Down Parsing

Algorithm (Basic top-down parsing): Given a CFG G = (V,Σ,S,P), build an
NPDA M = (Q,Σ, Γ, δ, q0 , z,F) with L(M) = L(G).

• Define: Q = {q0, qw , qf }; F = {qf }; Γ = Σ ∪ V .

• The transition function δ is defined by two main operations and two
auxiliary operations:

Initialize: (qw ,Sz) ∈ δ(q0, λ, z).

Conjecture: For each A → α ∈ V , (qw , α) ∈ δ(qw , λ,A).

Match: For each a ∈ Σ, (qw , λ) ∈ δ(qw , a, a).

Accept: (qf , λ) ∈ δ(qw , λ, z).

Theorem: Given any CFL L, there is an NPDA M with LA(M) = L. �

• This form of parsing is best illustrated by example.

Pushdown Automata 20101004 Slide 10 of 35

An Illustration of Basic Top-Down Parsing

• Let Σ = {a, b} and G = {{S},Σ,S , {S → aSa, | bSb | λ}}.

• L(G) = {α · αR | α ∈ Σ∗}.

• The algorithm on the previous slide yields the following machine:

• with the acceptance of baaaab shown to the right.

q0

qw

qf

(λ, (z ,Sz))(λ, (S , aSa))

(λ, (S , bSb))

(λ, (S , λ))

(a, (a, λ))

(b, (b, λ)) (λ, (z , λ))

(q0, baaaab, z)
⊢ (qw , baaaab,Sz) Initialize
⊢ (qw , baaaab, bSbz) Conjecture S → bSb
⊢ (qw , aaaab,Sbz) Match b
⊢ (qw , aaaab, aSabz) Conjecture S → aSa
⊢ (qw , aaab,Sabz) Match a
⊢ (qw , aaab, aSaabz) Conjecture S → aSa
⊢ (qw , aab,Saabz) Match a
⊢ (qw , aab, aabz) Conjecture S → λ

⊢ (qw , ab, abz) Match a
⊢ (qw , b, bz) Match a
⊢ (qw , λ, z) Match b
⊢ (qf , λ, z) Accept

Pushdown Automata 20101004 Slide 11 of 35

Basic Top-Down Parsing is not a Practical Solution

• From a practical point of view, there are two major problems with basic
top-down parsing:

Nondeterminism: The process is inherently nondeterministic

• The correct production must be chosen for each shift step.

Unbounded descent: If the grammar is left recursive, the algorithm may
never terminate.

• This problem may be resolved by using grammars in Greibach
normal form.

• Still, this form of parsing is useful because it proves that every CFG is
accepted by some NPDA.

• More practical parsing will be examined briefly later.

Pushdown Automata 20101004 Slide 12 of 35

Constructing a CFG from an NPDA — Conditions

• The construction of a CFG from an NPDA is substantially more complex
than the construction of a parser for a CFG.

• There is no easy proof.

• However, it is easier if acceptance by empty store is allowed.

• In the textbook, acceptance by empty store is covered only in an exercise
(17 of Sec. 17.1).

• The proof of equivalence is very easy and will be covered here.

• Notions of acceptance by the NPDA M = (Q,Σ, Γ, δ, q0 , z,F);

• Acceptance by final state:
LA(M) = {α ∈ Σ∗ | (q0, α, z) ⊢

∗

M
(q, λ, γ) for some q ∈ F and γ ∈ Γ∗}

• Acceptance by empty stack:
LE (M) = {α ∈ Σ∗ | (q0, α, z) ⊢

∗

M
(q, λ, λ) for some q ∈ Q}

• Acceptance by final state and empty stack.
LAE (M) = {α ∈ Σ∗ | (q0, α, z) ⊢

∗

M
(q, λ, λ) for some q ∈ F}

Pushdown Automata 20101004 Slide 13 of 35

Recall this Example of an NPDA

• Let Σ = {a, b, c} and let L = {α · c · αR | α ∈ {a, b}∗}.

• Design a NPDA M = (Q,Σ, Γ, δ, q0 , z,F) which accepts L.

• Γ = {a, b, z}; Q = {q0, q1, q2}; F = {q2}.

Current Next

State Input Stack State Stack

q0 a x q0 ax
q0 b x q0 bx
q0 c x q1 x

q1 a a q1 λ

q1 b b q1 λ

q1 λ z q2 λ

q0

q1 q2

(a, (x , ax))

(b, (x , bx))

(c , (x , x))

(λ, (z , λ))(a, (a, λ))

(b, (b, λ))

• The symbol x is used as a wildcard to reduce the number of entries.

• LA(M) = LE (M) = LAE (M) = L.

Pushdown Automata 20101004 Slide 14 of 35

Example of Acceptance by Empty Stack

• With acceptance by empty stack, q2 is not necessary.

• Let Σ = {a, b, c} and let L = {α · c · αR | α ∈ {a, b}∗}.

• Design a NPDA M = (Q,Σ, Γ, δ, q0 , z,F) with LE (M) = L.

• Γ = {a, b, z}; Q = {q0, q1}; F = ∅. F = ∅ {q1}

Current Next

State Input Stack State Stack

q0 a x q0 ax
q0 b x q0 bx
q0 c x q1 x

q1 a a q1 λ

q1 b b q1 λ

q1 λ z q1 λ

q0

q1q1

(a, (x , ax))

(b, (x , bx))

(c , (x , x))

(a, (a, λ))

(b, (b, λ))

(λ, (z , λ))

• To get LE (M) = LAE (M) = L, make q1 an accepting state.

Pushdown Automata 20101004 Slide 15 of 35

A Single-State Acceptor by Empty Stack

• In fact, q1 is not necessary either.

• Let Σ = {a, b, c} and let L = {α · c · αR | α ∈ {a, b}∗}.

• Design a one-state NPDA M = (Q,Σ, Γ, δ, q0 , z,F) with LE (M) = L.

• Γ = {a, b, z ,A}; Q = {q0}; F = ∅. F = ∅ {q0}

Current Next

State Input Stack State Stack

q0 a z q0 Aaz
q0 b z q0 Abz
q0 a A q0 Aa
q0 b A q0 Ab
q0 c z q0 λ

q0 c A q0 λ

q0 a a q0 λ

q0 b b q0 λ

q0 λ z q0 λ

q0q0

(a, (z ,Aaz)) (b, (z ,Abz)) (a, (A,Aa))

(b, (A,Ab)) (c , (z , λ)) (c , (A, λ))

(a, (a, λ)) (b, (b, λ)) (λ, (z , λ))

• To get LE (M) = LAE (M) = L,
make q0 an accepting state.

• To get L (M) = L (M) = L, make q an accepting state.
Pushdown Automata 20101004 Slide 16 of 35

Recall a Second Example of an Accepter

• Let Σ = {a, b, c} and let L = {α · αR | α ∈ {a, b}∗}.

• Design a NPDA M = (Q,Σ, Γ, δ, q0 , z,F) which accepts L.

• Γ = {a, b, z}; Q = {q0, q1}; F = {q1}.

• The solution is almost the same as for the α · c · αR example.

• Guess that the middle of string has been reached.

Current Next

State Input Stack State Stack

q0 a x q0 ax
q0 b x q0 bx
q0 λ x q1 x

q1 a a q1 λ

q1 b b q1 λ

q1 λ z q2 λ

q0

q1 q2

(a, (x , ax))

(b, (x , bx))

(λ, (x , x))

(λ, (z , λ))(a, (a, λ))

(b, (b, λ))

• LA(M) = LE (M) = LAE (M) = L.

Pushdown Automata 20101004 Slide 17 of 35

A Second Example of Acceptance by Empty Stack

• With acceptance by empty stack, q2 is not necessary.

• Let Σ = {a, b, c} and let L = {α · c · αR | α ∈ {a, b}∗}.

• Design a NPDA M = (Q,Σ, Γ, δ, q0 , z,F) with LE (M) = L.

• Γ = {a, b, z}; Q = {q0, q1}; F = ∅. F = ∅ {q1}

Current Next

State Input Stack State Stack

q0 a x q0 ax
q0 b x q0 bx
q0 λ x q1 x

q1 a a q1 λ

q1 b b q1 λ

q1 λ z q1 λ

q0

q1q1

(a, (x , ax))

(b, (x , bx))

(λ, (x , x))

(a, (a, λ))

(b, (b, λ))

(λ, (z , λ))

• To get LE (M) = LAE (M) = L, make q1 an accepting state.

Pushdown Automata 20101004 Slide 18 of 35

A Second Example of a Single-State Acceptor

• In fact, q1 is not necessary either.

• Let Σ = {a, b, c} and let L = {α · αR | α ∈ {a, b}∗}.

• Design a one-state NPDA M = (Q,Σ, Γ, δ, q0 , z,F) with LE (M) = L.

• Γ = {a, b, z ,A}; Q = {q0}; F = ∅. F = ∅ {q0}

Current Next

State Input Stack State Stack

q0 a z q0 Aaz
q0 b z q0 Abz
q0 a A q0 Aa
q0 b A q0 Ab
q0 λ A q0 λ

q0 a a q0 λ

q0 b b q0 λ

q0 λ z q0 λ

q0q0

(a, (z ,Aaz)) (b, (z ,Abz))

(a, (A,Aa)) (b, (A,Ab)) (λ, (A, λ))

(a, (a, λ)) (b, (b, λ)) (λ, (z , λ))

• To get LE (M) = LAE (M) = L,
make q0 an accepting state.

Pushdown Automata 20101004 Slide 19 of 35

Single-State Basic Top-Down Parsing

Algorithm (Basic top-down parsing): Given a CFG G = (V,Σ,S,P), build a
one-state NPDA M = (Q,Σ, Γ, δ, q0 , z,F) with LE (M) = L(G).

• Define: Q = {q0}; Γ = Σ∪V ∪{zf } with zf 6∈ Γ∪Σ; F = ∅. F = ∅ {q0}

• The transition function δ is similar to that for the multi-state version.

Initialize: (q0,Szf) ∈ δ(q0, λ, z).

Conjecture: For each A → α ∈ V , (q0, α) ∈ δ(q0, λ,A).

Match: For each a ∈ Σ, (q0, λ) ∈ δ(q0, a, a).

Accept: (q0, λ) ∈ δ(q0, λ, zf).

• Two “bottom-of-stack” symbols are used, z and zf , to ensure that the
machine does not accept λ without using the grammar.

Theorem: For any CFL L, there is a one-state NPDA M with LE (M) = L. �

• To get LE (M) = LAE (M) = L, make q0 an accepting state.

Pushdown Automata 20101004 Slide 20 of 35

An Illustration of Basic One-State Top-Down Parsing

• Let Σ = {a, b} and G = {{S},Σ,S , {S → aSa, | bSb | λ}}.

• L(G) = {α · αR | α ∈ Σ∗}.

• The operation is almost identical to that of the multi-state version.

• The acceptance of baaaab is shown to the right.

q0q0

(λ, (z ,Szf))

(λ, (S , aSa)) (λ, (S , bSb))

(λ, (S , λ))

(a, (a, λ)) (b, (b, λ))

(λ, (zf , λ))

• To get
LE (M) = LAE (M) = L,
make q0 an accepting
state.

(q0, baaaab, z)
⊢ (q0, baaaab,Szf) Initialize
⊢ (q0, baaaab, bSbzf) Conjecture S → bSb
⊢ (q0, aaaab,Sbzf) Match b
⊢ (q0, aaaab, aSabzf) Conjecture S → aSa
⊢ (q0, aaab,Sabzf) Match a
⊢ (q0, aaab, aSaabzf) Conjecture S → aSa
⊢ (q0, aab,Saabzf) Match a
⊢ (q0, aab, aabzf) Conjecture S → λ

⊢ (q0, ab, abzf) Match a
⊢ (q0, b, bzf) Match a
⊢ (q0, λ, zf) Match b
⊢ (q0, λ, λ) Accept

Pushdown Automata 20101004 Slide 21 of 35

Recall Acceptance by an NPDA

Context: M = (Q,Σ, Γ, δ, q0 , z,F) an NPDA.

• There are three common notions of acceptance by M of a string α ∈ Σ∗.

• Acceptance by final state:
LA(M) = {α ∈ Σ∗ | (q0, α, z) ⊢

∗

M
(q, λ, γ) for some q ∈ F and γ ∈ Γ∗}

• Acceptance by empty stack:
LE (M) = {α ∈ Σ∗ | (q0, α, z) ⊢

∗

M
(q, λ, λ) for some q ∈ Q}

• Acceptance by final state and empty stack.
LAE (M) = {α ∈ Σ∗ | (q0, α, z) ⊢

∗

M
(q, λ, λ) for some q ∈ F}

Theorem: For any L ⊆ Σ∗, the following are equivalent:

(i) L = LA(M
′) for some NDPA M ′.

(ii) L = LE (M
′) for some NDPA M ′.

(iii) L = LAE (M
′) for some NDPA M ′.

Furthermore, there are algorithms to convert between the forms.

Proof: Algorithms follow on the next slides.

Pushdown Automata 20101004 Slide 22 of 35

Conversion from Acceptance by Final State

Context: M = (Q,Σ, Γ, δ, q0 , z,F) an NPDA.

Algorithm: Construct an NPDA M ′ = (Q ′,Σ, Γ′, δ′, q′0 , z
′,F ′) with

LA(M
′) = LE (M

′) = LAE (M
′) = LA(M).

• Q ′ = Q ∪ {q′0, q
′

f }, with q0, q
′

f 6∈ Q.

• Γ′ = Γ ∪ {z ′}, with z ′ 6∈ Γ.

• F ′ = {q′
f
}

• The transition function δ′ : Q ′ × Σ ∪ {λ} × Γ′ → Q ′ × Γ′∗ is defined by:

• Prepare to simulate: δ′(q′0, λ, z
′) = {(q0, zz

′)}.
• Simulate M:

δ(q, x , y) ⊆ δ′(q, x , y) for all (q, x , y) ∈ Q × Σ∗ ∪ {λ} × Γ.

• Guess that input has ended:
(q′

f
, λ) ∈ δ′(q, λ, y) for all q ∈ F and y ∈ Γ.

• Empty the stack: δ′(q′
f
, λ, y) = {(q′

f
, λ)} for all y ∈ Γ′. �

• z ′ prevents the simulation from emptying the stack.

Pushdown Automata 20101004 Slide 23 of 35

Conversion from Acceptance by Final State + Empty Stack

Context: M = (Q,Σ, Γ, δ, q0 , z,F) an NPDA.

Algorithm: Construct an NPDA M ′ = (Q ′,Σ, Γ′, δ′, q′0 , z
′,F ′) with

LA(M
′) = LE (M

′) = LAE (M
′) = LAE (M).

• Q ′ = Q ∪ {q′0, q
′

f
}, with q0, q

′

f
6∈ Q.

• Γ′ = Γ ∪ {z ′}, with z ′ 6∈ Γ.

• F ′ = {q′
f
}

• The transition function δ′ : Q ′ × Σ ∪ {λ} × Γ′ → Q ′ × Γ′∗ is defined by:

• Prepare to simulate: δ′(q′0, λ, z
′) = {(q0, zz

′)}.

• Simulate M:
δ′(q, x , y) = δ(q, x , y) for all (q, x , y) ∈ Q × Σ ∪ {λ} × Γ.

• When the simulated stack is empty and the simulated state of M is
accepting, delete z ′ and move to the accepting state of M ′:

δ′(q, λ, z ′) = {(q′f , λ)} for all q ∈ F . �

• z ′ prevents the simulation from emptying the stack.

Pushdown Automata 20101004 Slide 24 of 35

Conversion from Acceptance by Empty Stack

Context: M = (Q,Σ, Γ, δ, q0 , z,F) an NPDA.

Algorithm: Construct an NPDA M ′ = (Q ′,Σ, Γ′, δ′, q′0 , z
′,F ′) with

LA(M
′) = LE (M

′) = LAE (M
′) = LE (M).

• Just apply the previous algorithm with Q = F .

• In that case, LAE (M) = LE (M).

Theorem: For any L ⊆ Σ∗, the following are equivalent:

(i) L = LA(M
′) for some NDPA M ′.

(ii) L = LE (M
′) for some NDPA M ′.

(iii) L = LAE (M
′) for some NDPA M ′.

Furthermore, there are algorithms to convert between the forms. �

Pushdown Automata 20101004 Slide 25 of 35

Obtaining a CFG from a One-State NPDA

Context: A one-state NPDA M = (Q,Σ, Γ, δ, q0 , z,F).

Algorithm: Construct a CFG G = (V,Σ,S,P) with LE (M) = L(L).

• Without loss of generality, assume that Σ ∩ Γ = ∅.

• Define:V = Γ; S = z ;

• Define
P = {y → xβ | y ∈ Γ and x ∈ Σ∗ ∪ {λ} and (q0, β) ∈ δ(q0, x , y)}. �

• This algorithm is best illustrated by example.

Pushdown Automata 20101004 Slide 26 of 35

Application to the Previous Top-Down Example

q0

(λ, (z ,Szf))

(λ, (S , a′Sa′)) (λ, (S , b′Sb′))

(λ, (S , λ))

(a, (a′, λ)) (b, (b′, λ))

(λ, (zf , λ))

• The stack symbols a and b are renamed
to a′ and b′.

Transition(δ) Production

(q0, λ, z) 7→ (q0,Szf) z → Szf

(q0, λ,S) 7→ (q0, a
′Sa′) S → a′Sa′

(q0, λ,S) 7→ (q0, b
′Sb′) S → b′Sb′

(q0, λ,S) 7→ (q0, λ) S → λ

(q0, a, a
′) 7→ (q0, λ) a′ → a

(q0, b, b
′) 7→ (q0, λ) b′ → b

(q0, λ, zf) 7→ (q0, λ) zf → λ

• The start symbol of the grammar is z , not S .

• The task is to extend this construction to general NPDAs.

• The approach is to show that for every NPDA M, there is an one-state
NPDA M ′ with LE (M) = LE (M

′).
Pushdown Automata 20101004 Slide 27 of 35

Simulation of an NPDA with a One-State Unit

Context: M = (Q,Σ, Γ, δ, q0 , z,F) an NPDA.

• The idea is to simulate the states of M with stack symbols of a one-state
NPDA M ′.

• A transition triple for M is a triple 〈q, y , q′〉 in which:

• q, q′ ∈ Q ;

• y ∈ Γ;

• (q, α, y · γ) ⊢∗
M
(q′, α′, γ) for some α,α′ ∈ Σ∗ and γ ∈ Γ∗.

• The stack alphabet of the simulating one-state NPDA consists of
transition triples (plus a start symbol).

• If γ = y1y2 . . . yk is the stack contents of M, and the state is q, then the
stack contents of M ′ in the simulation is of the form
〈q, y1, q1〉〈q1, y2, q2〉 . . . 〈qk−1, yk , qk〉 for some q1, q2, . . . , qk ∈ Q.

• In effect, the state of M is simulated in M ′ as an entry in the stack
symbol.

Pushdown Automata 20101004 Slide 28 of 35

Formal Construction:NPDA → One-State NPDA

Context: An NPDA M = (Q,Σ, Γ, δ, q0 , z,F).

Algorithm: Construct a one-state NPDA with
LAE (M

′) = LE (M
′) = LE (M).

• Q ′ = q0 = F ′.

• Γ′ = (Q × Γ× Q) ∪ {z ′}

• The transition function δ′ : Q ′ × Σ ∪ {λ} × Γ′ → Q ′ × Γ′∗ is defined by:

• Initialize: δ′(q′0, λ, z
′) = {(q′0, 〈q0, z , q〉) | q ∈ Q}

• Simulate:

δ′(q′0, x , 〈p, y , q〉) =

{(q′0, β) | β = 〈q1, b1, q2〉〈q2, b2, q3〉, . . . , 〈qk , bk , qk+1〉

and p = q1 and q = qk+1 and (q, b1b2 . . . bk) ∈ δ(p, x , y)}

∪ {(q′0, λ) | (q, λ) ∈ δ(q, x , y)}

for x ∈ Σ ∪ {λ} and 〈p, y , q〉 ∈ Q × Γ×Q.

Pushdown Automata 20101004 Slide 29 of 35

Discussion of the Formal Construction

• Each stack symbol of the simulator (except the initial stack symbol)
encodes three pieces of information

〈 p , b , q 〉 ∈ Q × Γ× Q

State of M
in simulation

Stack symbol
in M

The state that M must
go to when b is replaced by λ

• In the first step
of the simulation, a triple of the following form is placed on the stack of M ′.

〈 q0 , z , q 〉 ∈ Q × Γ× Q

Start simulation
in Q of M

Start simulation
with initial stack symbol of M

End simulation
in some state of M

Pushdown Automata 20101004 Slide 30 of 35

Discussion of the Formal Construction — 2

• To pop this triple off of the stack of the simulator directly, M must have
the transition (q, z) ∈ δ(q0, x , z) with x either the current input symbol
or else λ.

• To pop this triple off of the stack of the simulator indirectly, conjecture
that M goes through intermediate transitions.

• The first step must be to replace the initial stack symbol z with some
string β ∈ Γ∗ and go to some state q ∈ Q: (q, β) ∈ δ(q0, x , z) for input
x ∈ Σ ∪ {λ}.

• 〈q0, z , q〉 〈q0, b1, p1〉〈p1, b2, p2〉 . . . 〈pk , bk , p〉 with β = b1b2 . . . bk .

• The process continues, possibly replacing 〈q0, b1, p1〉 with another string
of transition triples.

• In an acceptance, the stack of the simulator M ′ will eventually be
emptied.

Pushdown Automata 20101004 Slide 31 of 35

Deterministic PDAs and CFLs

• An NPDA is deterministic if there is at most one possible move from any
ID.

• Specifically, this means the following:

• Card(δ(q, a, y)) ≤ 1 for all (q, a, y) ∈ Q × Σ∗ ∪ {λ} × Γ.

• For any q ∈ Q and y ∈ Γ,
if δ(q, λ, y) 6= ∅, then δ(q, a, y) = ∅ for all a ∈ Σ.

• The abbreviation DPDA is used for deterministic NPDA.

• A CFL L is deterministic if there is a DPDA M with L(M) = L.

Pushdown Automata 20101004 Slide 32 of 35

Example of a DPDA

• Let Σ = {a, b, c} and let L = {α · c · αR | α ∈ {a, b}∗}.

• The accepter given earlier is also a DPDA.

• Γ = {a, b, z}; Q = {q0, q1, q2}; F = {q2}.

Current Next

State Input Stack State Stack

q0 a x q0 ax
q0 b x q0 bx
q0 c x q1 x

q1 a a q1 λ

q1 b b q1 λ

q1 λ z q2 λ

q0

q1 q2

(a, (x , ax))

(b, (x , bx))

(c , (x , x))

(λ, (z , λ))(a, (a, λ))

(b, (b, λ))

• The symbol x is used as a wildcard to reduce the number of entries.

• LA(M) = LE (M) = LAE (M) = L.

Pushdown Automata 20101004 Slide 33 of 35

An Example Which Does Not Admit a DPDA Accepter

• Let Σ = {a, b, c} and let L = {α · αR | α ∈ {a, b}∗}.

• For this language, it is not possible to design a DPDA which accepts it..

• Γ = {a, b, z}; Q = {q0, q1}; F = {q2}.

• Guessing is essential.

Current Next

State Input Stack State Stack

q0 a x q0 ax
q0 b x q0 bx
q0 λ x q1 x

q1 a a q1 λ

q1 b b q1 λ

q1 λ z q2 λ

q0

q1 q2

(a, (x , ax))

(b, (x , bx))

(λ, (x , x))

(λ, (z , λ))(a, (a, λ))

(b, (b, λ))

• LA(M) = LE (M) = LAE (M) = L.

Pushdown Automata 20101004 Slide 34 of 35

Characterization of Deterministic CFLs

• Determinism for a CFL is important in practice, because it means that it
may be parsed with a deterministic PDA.

Theorem: Every deterministic CFL is unambiguous, but the converse fails to
hold. �

• For a proof, consult an advanced textbook.

• In general, the languages accepted by NPDAs are represented by CFLs.

Question: Is there a similar characterization of the languages accepted by
DPDAs?

Answer: Yes, the class of LR(k) grammars.

• These grammars are extremely important in practice, and are used in the
construction of practical parsers.

• They will be discussed briefly later in a following set of slides.

Pushdown Automata 20101004 Slide 35 of 35

