Pushdown Automata

5DV037 - Fundamentals of Computer Science Umeå University Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se
http://www.cs.umu.se/~hegner

The Idea of a Pushdown Automaton

- The model of accepter for CFLs is called a pushdown automaton or PDA.
- It is basically an NFA with an auxiliary stack.
- The stack is a true stack; only push and pop operations are allowed.
- Only one stack is allowed.

Formal Definition of a Pushdown Automaton

- In this context, nondeterministic machines will be considered first.
- Deterministic machines will be considered as a special case later.
- A nondeterministic pushdown automaton or NPDA is a seven tuple

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)
$$

in which

- Q is finite set of states;
- Σ is an alphabet, called the input alphabet;
- Γ is an alphabet, called the stack alphabet;
- $\delta: Q \times(\Sigma \cup\{\lambda\}) \times \Gamma \rightarrow 2_{\text {finite }}^{Q \times \Gamma^{*}}$ is a total function, the state-transition function;
- $q_{0} \in Q$ is the initial state;
- $z_{0} \in \Gamma$ is the initial stack symbol;
- $F \subseteq Q$ is the set of final or accepting states.
- Here $2_{\text {finite }}^{X}$ denotes the set of finite subsets of X.

The Operation of an NPDA

- The number of possibilities at each step must be finite.
- Γ^{*} is an infinite set.
- Hence the restriction to finite subsets.

Formal Representation:

- Instead of an extended transition function, it is convenient to represent the operation of an NPDA with the move relation.
- First, a review of this notion for finite automata is given.

Review: IDs and the Move Relation for NFAs

- An instantaneous description (or machine configuration or ID) for the NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a pair $(q, \alpha) \in Q \times \Sigma^{*}$ in which:
- q represents the current state;
- α represents the part of the input string which has not yet been read.
- $\operatorname{ID}\langle M\rangle=Q \times \Sigma^{*}$; the set of all possible IDs of M.
- The move relation $t_{M} \subseteq \mathrm{ID}\langle M\rangle \times \mathrm{ID}\langle M\rangle$ represents one step of M and is defined by $\left(q_{1}, \alpha_{1}\right) \vdash_{M}\left(q_{2}, \alpha_{2}\right)$ iff
- $\alpha_{2}=\operatorname{Rest}\left\langle\alpha_{1}\right\rangle$ and $q_{2} \in \delta\left(q_{1}, \operatorname{First}\left\langle\alpha_{1}\right\rangle\right)$; or
- $\alpha_{2}=\alpha_{1}$ and $q_{2} \in \delta\left(q_{1}, \lambda\right)$.
- \vdash_{M}^{*} is the reflexive and transitive closure of ${t_{M}}$:
- $(q, \alpha) \vdash_{M}^{*}(q, \alpha)$;
- $\left(q_{1}, \alpha_{1}\right) \vdash_{M}^{*}\left(q_{2}, \alpha_{2}\right),\left(q_{2}, \alpha_{2}\right) \vdash_{M}^{*}\left(q_{3}, \alpha_{3}\right) \Rightarrow\left(q_{1}, \alpha_{1}\right) \vdash_{M}^{*}\left(q_{3}, \alpha_{3}\right)$.
- Thus $\left(q, \alpha_{1} \alpha_{2}\right) \vdash_{M}^{*}\left(\delta^{*}\left(q, \alpha_{1}\right), \alpha_{2}\right)$.

IDs and the Move Relation of an NPDA

- An instantaneous description (or machine configuration or ID) for the NPDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$ is a triple $(q, \alpha, \gamma) \in Q \times \Sigma^{*} \times \Gamma^{*}$ in which:
- q represents the current state;
- α represents the part of the input string which has not yet been read.
- γ represents the contents of the stack, top to bottom.
- $\operatorname{ID}\langle M\rangle=Q \times \Sigma^{*} \times \Gamma^{*}$; the set of all possible IDs of M.
- The move relation $t_{M} \subseteq \mathrm{ID}\langle M\rangle \times \mathrm{ID}\langle M\rangle$ represents one step of M and is defined by $\left(q_{1}, \alpha_{1}, \gamma_{1}\right) \vdash_{M}\left(q_{2}, \alpha_{2}, \gamma_{2}\right)$ iff $\gamma_{1} \neq \lambda$ and
- $\alpha_{2}=\operatorname{Rest}\left\langle\alpha_{1}\right\rangle$ and $\left(q_{2}, \gamma_{2}^{\prime}\right) \in \delta\left(q_{1}\right.$, First $\left\langle\alpha_{1}\right\rangle$, First $\left.\left\langle\gamma_{1}\right\rangle\right)$
for some $\gamma_{2}^{\prime} \in \Gamma^{*}$ with $\gamma_{2}=\gamma_{2}^{\prime} \cdot \operatorname{Rest}\left\langle\gamma_{1}\right\rangle$; or
- $\alpha_{2}=\alpha_{1}$ and $\left(q_{2}, \gamma_{2}^{\prime}\right) \in \delta\left(q_{1}, \lambda, \operatorname{First}\left\langle\gamma_{1}\right\rangle\right)$

$$
\text { for some } \gamma_{2}^{\prime} \in \Gamma^{*} \text { with } \gamma_{2}=\gamma_{2}^{\prime} \cdot \operatorname{Rest}\left\langle\gamma_{1}\right\rangle
$$

- \vdash_{M}^{*} is the reflexive and transitive closure of ${t_{M}}$:
- $(q, \alpha, \gamma) \vdash_{M}^{*}(q, \alpha, \gamma)$;
- $\left(q_{1}, \alpha_{1}, \gamma_{1}\right) \vdash_{M}^{*}\left(q_{2}, \alpha_{2}, \gamma_{2}\right),\left(q_{2}, \alpha_{2}, \gamma_{2}\right) \stackrel{\rightharpoonup}{M}_{\stackrel{*}{2}}\left(q_{3}, \alpha_{3}, \gamma_{3}\right)$

$$
\Rightarrow\left(q_{1}, \alpha_{1}, \gamma_{1}\right) \vdash_{M}^{*}\left(q_{3}, \alpha_{3}, \gamma_{3}\right)
$$

Acceptance by an NPDA

Context: $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$ an NPDA.

- There are three common notions of acceptance by M of a string $\alpha \in \Sigma^{*}$.
- Acceptance by final state:

$$
\mathcal{L}_{A}(M)=\left\{\alpha \in \Sigma^{*} \mid\left(q_{0}, \alpha, z\right) \vdash_{M}^{*}(q, \lambda, \gamma) \text { for some } q \in F \text { and } \gamma \in \Gamma^{*}\right\}
$$

- Acceptance by empty stack:

$$
\mathcal{L}_{E}(M)=\left\{\alpha \in \Sigma^{*}\left|\left(q_{0}, \alpha, z\right)\right|_{M}^{*}(q, \lambda, \lambda) \text { for some } q \in Q\right\}
$$

- Acceptance by final state and empty stack.

$$
\mathcal{L}_{A E}(M)=\left\{\alpha \in \Sigma^{*} \mid\left(q_{0}, \alpha, z\right) \vdash_{M}^{*}(q, \lambda, \lambda) \text { for some } q \in F\right\}
$$

- All three are equivalent in expressive power; this will be established later.
- The textbook uses only acceptance by final state, so this will be taken to be the default: $\mathcal{L}(M)=\mathcal{L}_{A}(M)$.

Example of an NPDA

- Let $\Sigma=\{a, b, c\}$ and let $L=\left\{\alpha \cdot c \cdot \alpha^{R} \mid \alpha \in\{a, b\}^{*}\right\}$.
- Design a NPDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$ which accepts L.
- $\Gamma=\{a, b, z\} ; Q=\left\{q_{0}, q_{1}, q_{2}\right\} ; F=\left\{q_{2}\right\}$.
- The transition function δ may be described either by table or by diagram.

Current			Next	
State	Input	Stack	State	Stack
q_{0}	a	x	q_{0}	$a x$
q_{0}	b	x	q_{0}	$b x$
q_{0}	c	x	q_{1}	x
q_{1}	a	a	q_{1}	λ
q_{1}	b	b	q_{1}	λ
q_{1}	λ	z	q_{2}	λ

- The symbol x is used as a wildcard to reduce the number of entries.
- $\mathcal{L}_{A}(M)=\mathcal{L}_{E}(M)=\mathcal{L}_{A E}(M)=L$.

A Second Example of an Accepter

- Let $\Sigma=\{a, b, c\}$ and let $L=\left\{\alpha \cdot \alpha^{R} \mid \alpha \in\{a, b\}^{*}\right\}$.
- Design a NPDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$ which accepts L.
- $\Gamma=\{a, b, z\} ; Q=\left\{q_{0}, q_{1}\right\} ; F=\left\{q_{2}\right\}$.
- The solution is almost the same as for the previous example.
- Guess that the middle of string has been reached.

Current			Next	
State	Input	Stack	State	Stack
q_{0}	a	x	q_{0}	$a x$
q_{0}	b	x	q_{0}	$b x$
q_{0}	λ	x	q_{1}	x
q_{1}	a	a	q_{1}	λ
q_{1}	b	b	q_{1}	λ
q_{1}	λ	z	q_{2}	λ
$\mathcal{L}_{A}(M)=\mathcal{L}_{E}(M)=\mathcal{L}_{A E}(M)=L$				

Basic Nondeterministic Top-Down Parsing

Algorithm (Basic top-down parsing): Given a CFG $G=(V, \Sigma, S, P)$, build an NPDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$ with $\mathcal{L}(M)=\mathcal{L}(G)$.

- Define: $Q=\left\{q_{0}, q_{w}, q_{f}\right\} ; F=\left\{q_{f}\right\} ; \Gamma=\Sigma \cup V$.
- The transition function δ is defined by two main operations and two auxiliary operations:
Initialize: $\left(q_{w}, S z\right) \in \delta\left(q_{0}, \lambda, z\right)$.
Conjecture: For each $A \rightarrow \alpha \in V,\left(q_{w}, \alpha\right) \in \delta\left(q_{w}, \lambda, A\right)$.
Match: For each $a \in \Sigma,\left(q_{w}, \lambda\right) \in \delta\left(q_{w}, a, a\right)$.
Accept: $\left(q_{f}, \lambda\right) \in \delta\left(q_{w}, \lambda, z\right)$.
Theorem: Given any CFL L, there is an NPDA M with $\mathcal{L}_{A}(M)=L . \square$
- This form of parsing is best illustrated by example.

An Illustration of Basic Top-Down Parsing

- Let $\Sigma=\{a, b\}$ and $G=\{\{S\}, \Sigma, S,\{S \rightarrow a S a,|b S b| \lambda\}\}$.
- $\mathcal{L}(G)=\left\{\alpha \cdot \alpha^{R} \mid \alpha \in \Sigma^{*}\right\}$.
- The algorithm on the previous slide yields the following machine:
- with the acceptance of baaaab shown to the right.

Basic Top-Down Parsing is not a Practical Solution

- From a practical point of view, there are two major problems with basic top-down parsing:

Nondeterminism: The process is inherently nondeterministic

- The correct production must be chosen for each shift step.

Unbounded descent: If the grammar is left recursive, the algorithm may never terminate.

- This problem may be resolved by using grammars in Greibach normal form.
- Still, this form of parsing is useful because it proves that every CFG is accepted by some NPDA.
- More practical parsing will be examined briefly later.

Constructing a CFG from an NPDA - Conditions

- The construction of a CFG from an NPDA is substantially more complex than the construction of a parser for a CFG.
- There is no easy proof.
- However, it is easier if acceptance by empty store is allowed.
- In the textbook, acceptance by empty store is covered only in an exercise (17 of Sec. 17.1).
- The proof of equivalence is very easy and will be covered here.
- Notions of acceptance by the NPDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$;
- Acceptance by final state:

$$
\mathcal{L}_{A}(M)=\left\{\alpha \in \Sigma^{*} \mid\left(q_{0}, \alpha, z\right) \vdash_{M}^{*}(q, \lambda, \gamma) \text { for some } q \in F \text { and } \gamma \in \Gamma^{*}\right\}
$$

- Acceptance by empty stack:

$$
\mathcal{L}_{E}(M)=\left\{\alpha \in \Sigma^{*} \mid\left(q_{0}, \alpha, z\right) \vdash_{M}^{*}(q, \lambda, \lambda) \text { for some } q \in Q\right\}
$$

- Acceptance by final state and empty stack.

$$
\mathcal{L}_{A E}(M)=\left\{\alpha \in \Sigma^{*} \mid\left(q_{0}, \alpha, z\right) \vdash_{M}^{*}(q, \lambda, \lambda) \text { for some } q \in F\right\}
$$

Recall this Example of an NPDA

- Let $\Sigma=\{a, b, c\}$ and let $L=\left\{\alpha \cdot c \cdot \alpha^{R} \mid \alpha \in\{a, b\}^{*}\right\}$.
- Design a NPDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$ which accepts L.
- $\Gamma=\{a, b, z\} ; Q=\left\{q_{0}, q_{1}, q_{2}\right\} ; F=\left\{q_{2}\right\}$.

Current			Next	
State	Input	Stack	State	Stack
q_{0}	a	x	q_{0}	$a x$
q_{0}	b	x	q_{0}	$b x$
q_{0}	c	x	q_{1}	x
q_{1}	a	a	q_{1}	λ
q_{1}	b	b	q_{1}	λ
q_{1}	λ	z	q_{2}	λ

- The symbol x is used as a wildcard to reduce the number of entries.
- $\mathcal{L}_{A}(M)=\mathcal{L}_{E}(M)=\mathcal{L}_{A E}(M)=L$.

Example of Acceptance by Empty Stack

- With acceptance by empty stack, q_{2} is not necessary.
- Let $\Sigma=\{a, b, c\}$ and let $L=\left\{\alpha \cdot c \cdot \alpha^{R} \mid \alpha \in\{a, b\}^{*}\right\}$.
- Design a NPDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$ with $\mathcal{L}_{E}(M)=L$.
- $\Gamma=\{a, b, z\} ; Q=\left\{q_{0}, q_{1}\right\} ; F=\emptyset . F=\notin\left\{q_{1}\right\}$

Current			Next	
State	Input	Stack	State	Stack
q_{0}	a	x	q_{0}	$a x$
q_{0}	b	x	q_{0}	$b x$
q_{0}	c	x	q_{1}	x
q_{1}	a	a	q_{1}	λ
q_{1}	b	b	q_{1}	λ
q_{1}	λ	z	q_{1}	λ

- To get $\mathcal{L}_{E}(M)=\mathcal{L}_{A E}(M)=L$, make q_{1} an accepting state.

A Single-State Acceptor by Empty Stack

- In fact, q_{1} is not necessary either.
- Let $\Sigma=\{a, b, c\}$ and let $L=\left\{\alpha \cdot c \cdot \alpha^{R} \mid \alpha \in\{a, b\}^{*}\right\}$.
- Design a one-state NPDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$ with $\mathcal{L}_{E}(M)=L$.
- $\Gamma=\{a, b, z, A\} ; Q=\left\{q_{0}\right\} ; F=\emptyset . F=母\left\{q_{0}\right\}$

Current			Next	
State	Input	Stack	State	Stack
q_{0}	a	z	q_{0}	$A a z$
q_{0}	b	z	q_{0}	$A b z$
q_{0}	a	A	q_{0}	$A a$
q_{0}	b	A	q_{0}	$A b$
q_{0}	c	z	q_{0}	λ
q_{0}	c	A	q_{0}	λ
q_{0}	a	a	q_{0}	λ
q_{0}	b	b	q_{0}	λ
q_{0}	λ	z	q_{0}	λ

$(a,(z, A a z))(b,(z, A b z))(a,(A, A a))$ $(b,(A, A b))(c,(z, \lambda))(c,(A, \lambda))$ $(a,(a, \lambda))(b,(b, \lambda))(\lambda,(z, \lambda))$

- To get $\mathcal{L}_{E}(M)=\mathcal{L}_{A E}(M)=L$, make q_{0} an accepting state.

Recall a Second Example of an Accepter

- Let $\Sigma=\{a, b, c\}$ and let $L=\left\{\alpha \cdot \alpha^{R} \mid \alpha \in\{a, b\}^{*}\right\}$.
- Design a NPDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$ which accepts L.
- $\Gamma=\{a, b, z\} ; Q=\left\{q_{0}, q_{1}\right\} ; F=\left\{q_{1}\right\}$.
- The solution is almost the same as for the $\alpha \cdot c \cdot \alpha^{R}$ example.
- Guess that the middle of string has been reached.

Current			Next	
State	Input	Stack	State	Stack
q_{0}	a	x	q_{0}	$a x$
q_{0}	b	x	q_{0}	$b x$
q_{0}	λ	x	q_{1}	x
q_{1}	a	a	q_{1}	λ
q_{1}	b	b	q_{1}	λ
q_{1}	λ	z	q_{2}	λ
$\mathcal{L}_{A}(M)=\mathcal{L}_{E}(M)=\mathcal{L}_{A E}(M)=L$				

A Second Example of Acceptance by Empty Stack

- With acceptance by empty stack, q_{2} is not necessary.
- Let $\Sigma=\{a, b, c\}$ and let $L=\left\{\alpha \cdot c \cdot \alpha^{R} \mid \alpha \in\{a, b\}^{*}\right\}$.
- Design a NPDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$ with $\mathcal{L}_{E}(M)=L$.
- $\Gamma=\{a, b, z\} ; Q=\left\{q_{0}, q_{1}\right\} ; F=\emptyset . F=\notin\left\{q_{1}\right\}$

Current			Next	
State	Input	Stack	State	Stack
q_{0}	a	x	q_{0}	$a x$
q_{0}	b	x	q_{0}	$b x$
q_{0}	λ	x	q_{1}	x
q_{1}	a	a	q_{1}	λ
q_{1}	b	b	q_{1}	λ
q_{1}	λ	z	q_{1}	λ

- To get $\mathcal{L}_{E}(M)=\mathcal{L}_{A E}(M)=L$, make q_{1} an accepting state.

A Second Example of a Single-State Acceptor

- In fact, q_{1} is not necessary either.
- Let $\Sigma=\{a, b, c\}$ and let $L=\left\{\alpha \cdot \alpha^{R} \mid \alpha \in\{a, b\}^{*}\right\}$.
- Design a one-state NPDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$ with $\mathcal{L}_{E}(M)=L$.
- $\Gamma=\{a, b, z, A\} ; Q=\left\{q_{0}\right\} ; F=\emptyset . F=\emptyset\left\{q_{0}\right\}$

Current			Next	
State	Input	Stack	State	Stack
q_{0}	a	z	q_{0}	$A a z$
q_{0}	b	z	q_{0}	$A b z$
q_{0}	a	A	q_{0}	$A a$
q_{0}	b	A	q_{0}	$A b$
q_{0}	λ	A	q_{0}	λ
q_{0}	a	a	q_{0}	λ
q_{0}	b	b	q_{0}	λ
q_{0}	λ	z	q_{0}	λ

$$
\begin{aligned}
& (a,(z, A a z))(b,(z, A b z)) \\
& \left.\begin{array}{l}
a,(A, A a))(b,(A, A b))(\lambda,(A, \lambda)) \\
(a,(a, \lambda))
\end{array}\right)(b,(b, \lambda))(\lambda,(z, \lambda)) \\
& \text { - To get } \mathcal{L}_{E}(M)=\mathcal{L}_{A E}(M)=L \text {, } \\
& \text { make } q_{0} \text { an accepting state. }
\end{aligned}
$$

Single-State Basic Top-Down Parsing

Algorithm (Basic top-down parsing): Given a CFG $G=(V, \Sigma, S, P)$, build a one-state NPDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$ with $\mathcal{L}_{E}(M)=\mathcal{L}(G)$.

- Define: $Q=\left\{q_{0}\right\} ; \Gamma=\Sigma \cup V \cup\left\{z_{f}\right\}$ with $z_{f} \notin \Gamma \cup \Sigma ; F=\emptyset . F=\notin\left\{q_{0}\right\}$
- The transition function δ is similar to that for the multi-state version. Initialize: $\left(q_{0}, S z_{f}\right) \in \delta\left(q_{0}, \lambda, z\right)$.
Conjecture: For each $A \rightarrow \alpha \in V,\left(q_{0}, \alpha\right) \in \delta\left(q_{0}, \lambda, A\right)$.
Match: For each $a \in \Sigma,\left(q_{0}, \lambda\right) \in \delta\left(q_{0}, a, a\right)$.
Accept: $\left(q_{0}, \lambda\right) \in \delta\left(q_{0}, \lambda, z_{f}\right)$.
- Two "bottom-of-stack" symbols are used, z and z_{f}, to ensure that the machine does not accept λ without using the grammar.

Theorem: For any CFL L, there is a one-state NPDA M with $\mathcal{L}_{E}(M)=L . \square$

- To get $\mathcal{L}_{E}(M)=\mathcal{L}_{A E}(M)=L$, make q_{0} an accepting state.

An Illustration of Basic One-State Top-Down Parsing

- Let $\Sigma=\{a, b\}$ and $G=\{\{S\}, \Sigma, S,\{S \rightarrow a S a,|b S b| \lambda\}\}$.
- $\mathcal{L}(G)=\left\{\alpha \cdot \alpha^{R} \mid \alpha \in \Sigma^{*}\right\}$.
- The operation is almost identical to that of the multi-state version.
- The acceptance of baaaab is shown to the right.

$\left(\lambda,\left(z, S z_{f}\right)\right.$)	(q_{0}, baaaab, z)	
$(\lambda,(S, a S a))(\lambda,(S, b S b))$	$\vdash\left(q_{0}\right.$, baaaab, $\left.S z_{f}\right)$	Initialize
$(\lambda,(S, \lambda))$	$\vdash\left(q_{0}, b_{\text {baaab }}, \mathrm{bSbz}_{f}\right)$	Conjecture $S \rightarrow b S b$
$(a,(a, \lambda))(b,(b, \lambda))$	$\vdash\left(q_{0}\right.$, aaaab, $\left.S b z_{f}\right)$	Match b
($\lambda,\left(z_{f}, \lambda\right)$)	$\vdash\left(q_{0}, a a a a b, a S a b z_{f}\right)$	Conjecture $S \rightarrow a S a$
	$\vdash\left(q_{0}, a a a b, S a b z_{f}\right)$	Match a
	$\vdash\left(q_{0}, a a a b, a S a a b z_{f}\right)$	Conjecture $S \rightarrow$ aSa
	$\left(q_{0}, a a b, S a a b z_{f}\right)$	Match
	$\vdash\left(q_{0}, a a b, a a b z_{f}\right)$	Conjecture $S \rightarrow \lambda$
To get	$\vdash\left(q_{0}, a b, a b z_{f}\right)$	Match a
$\mathcal{L}_{E}(M)$	$\vdash\left(q_{0}, b, b z_{f}\right)$	Match a
make q_{0} an accepting	$\vdash\left(q_{0}, \lambda, z_{f}\right)$	Match b
state.	$\vdash\left(q_{0}, \lambda, \lambda\right)$	Accept

Recall Acceptance by an NPDA

Context: $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$ an NPDA.

- There are three common notions of acceptance by M of a string $\alpha \in \Sigma^{*}$.
- Acceptance by final state:

$$
\mathcal{L}_{A}(M)=\left\{\alpha \in \Sigma^{*} \mid\left(q_{0}, \alpha, z\right) \vdash_{M}^{*}(q, \lambda, \gamma) \text { for some } q \in F \text { and } \gamma \in \Gamma^{*}\right\}
$$

- Acceptance by empty stack:

$$
\mathcal{L}_{E}(M)=\left\{\alpha \in \Sigma^{*} \mid\left(q_{0}, \alpha, z\right) \vdash_{M}^{*}(q, \lambda, \lambda) \text { for some } q \in Q\right\}
$$

- Acceptance by final state and empty stack.

$$
\mathcal{L}_{A E}(M)=\left\{\alpha \in \Sigma^{*} \mid\left(q_{0}, \alpha, z\right) \vdash_{M}^{*}(q, \lambda, \lambda) \text { for some } q \in F\right\}
$$

Theorem: For any $L \subseteq \Sigma^{*}$, the following are equivalent:
(i) $L=\mathcal{L}_{A}\left(M^{\prime}\right)$ for some NDPA M^{\prime}.
(ii) $L=\mathcal{L}_{E}\left(M^{\prime}\right)$ for some NDPA M^{\prime}.
(iii) $L=\mathcal{L}_{A E}\left(M^{\prime}\right)$ for some NDPA M^{\prime}.

Furthermore, there are algorithms to convert between the forms.
Proof: Algorithms follow on the next slides.

Conversion from Acceptance by Final State

Context: $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$ an NPDA.
Algorithm: Construct an NPDA $M^{\prime}=\left(Q^{\prime}, \Sigma, \Gamma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, z^{\prime}, F^{\prime}\right)$ with

$$
\mathcal{L}_{A}\left(M^{\prime}\right)=\mathcal{L}_{E}\left(M^{\prime}\right)=\mathcal{L}_{A E}\left(M^{\prime}\right)=\mathcal{L}_{A}(M)
$$

- $Q^{\prime}=Q \cup\left\{q_{0}^{\prime}, q_{f}^{\prime}\right\}$, with $q_{0}, q_{f}^{\prime} \notin Q$.
- $\Gamma^{\prime}=\Gamma \cup\left\{z^{\prime}\right\}$, with $z^{\prime} \notin \Gamma$.
- $F^{\prime}=\left\{q_{f}^{\prime}\right\}$
- The transition function $\delta^{\prime}: Q^{\prime} \times \Sigma \cup\{\lambda\} \times \Gamma^{\prime} \rightarrow Q^{\prime} \times \Gamma^{\prime *}$ is defined by:
- Prepare to simulate: $\delta^{\prime}\left(q_{0}^{\prime}, \lambda, z^{\prime}\right)=\left\{\left(q_{0}, z z^{\prime}\right)\right\}$.
- Simulate M :

$$
\delta(q, x, y) \subseteq \delta^{\prime}(q, x, y) \text { for all }(q, x, y) \in Q \times \Sigma^{*} \cup\{\lambda\} \times \Gamma
$$

- Guess that input has ended:

$$
\left(q_{f}^{\prime}, \lambda\right) \in \delta^{\prime}(q, \lambda, y) \text { for all } q \in F \text { and } y \in \Gamma .
$$

- Empty the stack: $\delta^{\prime}\left(q_{f}^{\prime}, \lambda, y\right)=\left\{\left(q_{f}^{\prime}, \lambda\right)\right\}$ for all $y \in \Gamma^{\prime}$. \square
- z^{\prime} prevents the simulation from emptying the stack.

Conversion from Acceptance by Final State + Empty Stack

Context: $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$ an NPDA.
Algorithm: Construct an NPDA $M^{\prime}=\left(Q^{\prime}, \Sigma, \Gamma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, z^{\prime}, F^{\prime}\right)$ with

$$
\mathcal{L}_{A}\left(M^{\prime}\right)=\mathcal{L}_{E}\left(M^{\prime}\right)=\mathcal{L}_{A E}\left(M^{\prime}\right)=\mathcal{L}_{A E}(M)
$$

- $Q^{\prime}=Q \cup\left\{q_{0}^{\prime}, q_{f}^{\prime}\right\}$, with $q_{0}, q_{f}^{\prime} \notin Q$.
- $\Gamma^{\prime}=\Gamma \cup\left\{z^{\prime}\right\}$, with $z^{\prime} \notin \Gamma$.
- $F^{\prime}=\left\{q_{f}^{\prime}\right\}$
- The transition function $\delta^{\prime}: Q^{\prime} \times \Sigma \cup\{\lambda\} \times \Gamma^{\prime} \rightarrow Q^{\prime} \times \Gamma^{\prime *}$ is defined by:
- Prepare to simulate: $\delta^{\prime}\left(q_{0}^{\prime}, \lambda, z^{\prime}\right)=\left\{\left(q_{0}, z z^{\prime}\right)\right\}$.
- Simulate M :

$$
\delta^{\prime}(q, x, y)=\delta(q, x, y) \text { for all }(q, x, y) \in Q \times \Sigma \cup\{\lambda\} \times \Gamma .
$$

- When the simulated stack is empty and the simulated state of M is accepting, delete z^{\prime} and move to the accepting state of M^{\prime} :

$$
\delta^{\prime}\left(q, \lambda, z^{\prime}\right)=\left\{\left(q_{f}^{\prime}, \lambda\right)\right\} \text { for all } q \in F
$$

- z^{\prime} prevents the simulation from emptying the stack.

Conversion from Acceptance by Empty Stack

Context: $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$ an NPDA.
Algorithm: Construct an NPDA $M^{\prime}=\left(Q^{\prime}, \Sigma, \Gamma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, z^{\prime}, F^{\prime}\right)$ with

$$
\mathcal{L}_{A}\left(M^{\prime}\right)=\mathcal{L}_{E}\left(M^{\prime}\right)=\mathcal{L}_{A E}\left(M^{\prime}\right)=\mathcal{L}_{E}(M)
$$

- Just apply the previous algorithm with $Q=F$.
- In that case, $\mathcal{L}_{A E}(M)=\mathcal{L}_{E}(M)$.

Theorem: For any $L \subseteq \Sigma^{*}$, the following are equivalent:
(i) $L=\mathcal{L}_{A}\left(M^{\prime}\right)$ for some NDPA M^{\prime}.
(ii) $L=\mathcal{L}_{E}\left(M^{\prime}\right)$ for some NDPA M^{\prime}.
(iii) $L=\mathcal{L}_{A E}\left(M^{\prime}\right)$ for some NDPA M^{\prime}.

Furthermore, there are algorithms to convert between the forms. \square

Obtaining a CFG from a One-State NPDA

Context: A one-state NPDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$.
Algorithm: Construct a CFG $G=(V, \Sigma, S, P)$ with $\mathcal{L}_{E}(M)=\mathcal{L}(L)$.

- Without loss of generality, assume that $\Sigma \cap \Gamma=\emptyset$.
- Define: $V=\Gamma ; S=z$;
- Define
$P=\left\{y \rightarrow x \beta \mid y \in \Gamma\right.$ and $x \in \Sigma^{*} \cup\{\lambda\}$ and $\left.\left(q_{0}, \beta\right) \in \delta\left(q_{0}, x, y\right)\right\} . \square$
- This algorithm is best illustrated by example.

Application to the Previous Top-Down Example

- The stack symbols a and b are renamed to a^{\prime} and b^{\prime}.

Transition (δ)	Production
$\left(q_{0}, \lambda, z\right) \mapsto\left(q_{0}, S z_{f}\right)$	$z \rightarrow S z_{f}$
$\left(q_{0}, \lambda, S\right) \mapsto\left(q_{0}, a^{\prime} S a^{\prime}\right)$	$S \rightarrow a^{\prime} S a^{\prime}$
$\left(q_{0}, \lambda, S\right) \mapsto\left(q_{0}, b^{\prime} S b^{\prime}\right)$	$S \rightarrow b^{\prime} S b^{\prime}$
$\left(q_{0}, \lambda, S\right) \mapsto\left(q_{0}, \lambda\right)$	$S \rightarrow \lambda$
$\left(q_{0}, a, a^{\prime}\right) \mapsto\left(q_{0}, \lambda\right)$	$a^{\prime} \rightarrow a$
$\left(q_{0}, b, b^{\prime}\right) \mapsto\left(q_{0}, \lambda\right)$	$b^{\prime} \rightarrow b$
$\left(q_{0}, \lambda, z_{f}\right) \mapsto\left(q_{0}, \lambda\right)$	$z_{f} \rightarrow \lambda$

- The start symbol of the grammar is z, not S.
- The task is to extend this construction to general NPDAs.
- The approach is to show that for every NPDA M, there is an one-state NPDA M^{\prime} with $\mathcal{L}_{E}(M)=\mathcal{L}_{E}\left(M^{\prime}\right)$.

Simulation of an NPDA with a One-State Unit

Context: $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$ an NPDA.

- The idea is to simulate the states of M with stack symbols of a one-state NPDA M^{\prime}.
- A transition triple for M is a triple $\left\langle q, y, q^{\prime}\right\rangle$ in which:
- $q, q^{\prime} \in Q$;
- $y \in \Gamma$;
- $(q, \alpha, y \cdot \gamma) \vdash_{M}^{*}\left(q^{\prime}, \alpha^{\prime}, \gamma\right)$ for some $\alpha, \alpha^{\prime} \in \Sigma^{*}$ and $\gamma \in \Gamma^{*}$.
- The stack alphabet of the simulating one-state NPDA consists of transition triples (plus a start symbol).
- If $\gamma=y_{1} y_{2} \ldots y_{k}$ is the stack contents of M, and the state is q, then the stack contents of M^{\prime} in the simulation is of the form $\left\langle q, y_{1}, q_{1}\right\rangle\left\langle q_{1}, y_{2}, q_{2}\right\rangle \ldots\left\langle q_{k-1}, y_{k}, q_{k}\right\rangle$ for some $q_{1}, q_{2}, \ldots, q_{k} \in Q$.
- In effect, the state of M is simulated in M^{\prime} as an entry in the stack symbol.

Formal Construction:NPDA \rightarrow One-State NPDA

Context: An NPDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$.
Algorithm: Construct a one-state NPDA with

$$
\mathcal{L}_{A E}\left(M^{\prime}\right)=\mathcal{L}_{E}\left(M^{\prime}\right)=\mathcal{L}_{E}(M) .
$$

- $Q^{\prime}=q_{0}=F^{\prime}$.
- $\Gamma^{\prime}=(Q \times \Gamma \times Q) \cup\left\{z^{\prime}\right\}$
- The transition function $\delta^{\prime}: Q^{\prime} \times \Sigma \cup\{\lambda\} \times \Gamma^{\prime} \rightarrow Q^{\prime} \times \Gamma^{\prime *}$ is defined by:
- Initialize: $\delta^{\prime}\left(q_{0}^{\prime}, \lambda, z^{\prime}\right)=\left\{\left(q_{0}^{\prime},\left\langle q_{0}, z, q\right\rangle\right) \mid q \in Q\right\}$
- Simulate:

$$
\left.\begin{array}{l}
\delta^{\prime}\left(q_{0}^{\prime}, x,\langle p, y, q\rangle\right)= \\
\quad\left\{\left(q_{0}^{\prime}, \beta\right) \mid \beta=\left\langle q_{1}, b_{1}, q_{2}\right\rangle\left\langle q_{2}, b_{2}, q_{3}\right\rangle, \ldots,\left\langle q_{k}, b_{k}, q_{k+1}\right\rangle\right. \\
\left.\quad \text { and } p=q_{1} \text { and } q=q_{k+1} \text { and }\left(q, b_{1} b_{2} \ldots b_{k}\right) \in \delta(p, x, y)\right\} \\
\quad \cup\left\{\left(q_{0}^{\prime}, \lambda\right) \mid(q, \lambda) \in \delta(q, x, y)\right\}
\end{array}\right\}
$$

Discussion of the Formal Construction

- Each stack symbol of the simulator (except the initial stack symbol) encodes three pieces of information

- In the first step of the simulation, a triple of the following form is placed on the stack of M^{\prime}.

Discussion of the Formal Construction - 2

- To pop this triple off of the stack of the simulator directly, M must have the transition $(q, z) \in \delta\left(q_{0}, x, z\right)$ with x either the current input symbol or else λ.
- To pop this triple off of the stack of the simulator indirectly, conjecture that M goes through intermediate transitions.
- The first step must be to replace the initial stack symbol z with some string $\beta \in \Gamma^{*}$ and go to some state $q \in Q:(q, \beta) \in \delta\left(q_{0}, x, z\right)$ for input $x \in \Sigma \cup\{\lambda\}$.
- $\left\langle q_{0}, z, q\right\rangle \rightsquigarrow\left\langle q_{0}, b_{1}, p_{1}\right\rangle\left\langle p_{1}, b_{2}, p_{2}\right\rangle \ldots\left\langle p_{k}, b_{k}, p\right\rangle$ with $\beta=b_{1} b_{2} \ldots b_{k}$.
- The process continues, possibly replacing $\left\langle q_{0}, b_{1}, p_{1}\right\rangle$ with another string of transition triples.
- In an acceptance, the stack of the simulator M^{\prime} will eventually be emptied.

Deterministic PDAs and CFLs

- An NPDA is deterministic if there is at most one possible move from any ID.
- Specifically, this means the following:
- $\operatorname{Card}(\delta(q, a, y)) \leq 1$ for all $(q, a, y) \in Q \times \Sigma^{*} \cup\{\lambda\} \times \Gamma$.
- For any $q \in Q$ and $y \in \Gamma$, if $\delta(q, \lambda, y) \neq \emptyset$, then $\delta(q, a, y)=\emptyset$ for all $a \in \Sigma$.
- The abbreviation DPDA is used for deterministic NPDA.
- A CFL L is deterministic if there is a DPDA M with $\mathcal{L}(M)=L$.

Example of a DPDA

- Let $\Sigma=\{a, b, c\}$ and let $L=\left\{\alpha \cdot c \cdot \alpha^{R} \mid \alpha \in\{a, b\}^{*}\right\}$.
- The accepter given earlier is also a DPDA.
- $\Gamma=\{a, b, z\} ; Q=\left\{q_{0}, q_{1}, q_{2}\right\} ; F=\left\{q_{2}\right\}$.

Current			Next	
State	Input	Stack	State	Stack
q_{0}	a	x	q_{0}	$a x$
q_{0}	b	x	q_{0}	$b x$
q_{0}	c	x	q_{1}	x
q_{1}	a	a	q_{1}	λ
q_{1}	b	b	q_{1}	λ
q_{1}	λ	z	q_{2}	λ

- The symbol x is used as a wildcard to reduce the number of entries.
- $\mathcal{L}_{A}(M)=\mathcal{L}_{E}(M)=\mathcal{L}_{A E}(M)=L$.

An Example Which Does Not Admit a DPDA Accepter

- Let $\Sigma=\{a, b, c\}$ and let $L=\left\{\alpha \cdot \alpha^{R} \mid \alpha \in\{a, b\}^{*}\right\}$.
- For this language, it is not possible to design a DPDA which accepts it..
- $\Gamma=\{a, b, z\} ; Q=\left\{q_{0}, q_{1}\right\} ; F=\left\{q_{2}\right\}$.
- Guessing is essential.

Current			Next	
State	Input	Stack	State	Stack
q_{0}	a	x	q_{0}	$a x$
q_{0}	b	x	q_{0}	$b x$
q_{0}	λ	x	q_{1}	x
q_{1}	a	a	q_{1}	λ
q_{1}	b	b	q_{1}	λ
q_{1}	λ	z	q_{2}	λ
$\mathcal{L}_{A}(M)=\mathcal{L}_{E}(M)=\mathcal{L}_{A E}(M)=L$				

Characterization of Deterministic CFLs

- Determinism for a CFL is important in practice, because it means that it may be parsed with a deterministic PDA.

Theorem: Every deterministic CFL is unambiguous, but the converse fails to hold. \square

- For a proof, consult an advanced textbook.
- In general, the languages accepted by NPDAs are represented by CFLs.

Question: Is there a similar characterization of the languages accepted by DPDAs?

Answer: Yes, the class of $L R(k)$ grammars.

- These grammars are extremely important in practice, and are used in the construction of practical parsers.
- They will be discussed briefly later in a following set of slides.

