
Simplification and Normalization

of Context-Free Grammars

5DV037 — Fundamentals of Computer Science
Ume̊a University

Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 1 of 23

Motivation

• The material in this presentation is motivated by two needs in the
processing of CFGs.

• Some of the productions of a CFG may be “useless” in terms of
generating terminal strings; such parts may be safely eliminated.

• By converting a CFG to an equivalent one which is of a certain form,
or has certain properties, it may become easier to establish certain
results or carry out certain tasks (such as parsing).

• This material is necessarily of a technical nature, sometimes without
immediate motivation.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 2 of 23

Useless Symbols

Example: G = (V ,Σ,E ,P), V = {E ,F ,T ,R}, Σ = {a,+, ∗,−, (,)}

P =

E → E + E | T | F

F → F ∗ E | (T) | a

T → E − T | E + R

R → T + E | T − E

A → (E) | a

• Neither T nor R can derive a terminal string.

• A can never be used in a derivation starting from E .

• Such symbols are called useless because they can never be used in a
derivation, from the start symbol, of a string of terminal symbols.

• It is useful to have a means of eliminating useless symbols from a
grammar in a systematic fashion.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 3 of 23

Formal Definition of Useful and Useless Symbols

Context: A CFG G = (V ,Σ,S ,P).

• Let A ∈ V .

• A is observable (in G) if A
∗

⇒ α (equivalently A
+
⇒ α) for some

α ∈ Σ∗.

• G is observable if each A ∈ V has that property.

• A is reachable (in G) if S
∗

⇒ α1Aα2 for some α1, α2 ∈ (V ∪ Σ)∗.

• G is reachable if each A ∈ V has that property.

• A ∈ V is useful if it is both reachable and observable.

• Otherwise, it is useless.

• Define O〈G 〉 = {A ∈ V | A is observable in G}.

• Define R〈G 〉 = {A ∈ V | A is reachable in G}.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 4 of 23

Construction of the Observable Set of a CFG

Context: A CFG G = (V ,Σ,S ,P).

Algorithm: Construct O〈G 〉:

• O1〈G 〉 = {A ∈ V | A → α for some α ∈ Σ∗}.

• Ok+1〈G 〉 = {A ∈ V | A → α for some α ∈ (Ok〈G 〉 ∪Σ)∗}.

• O〈G 〉 = Ok〈G 〉 for the first k ∈ N with Ok〈G 〉 = Ok+1〈G 〉.

Example: (Start symbol is E): E → E + E | T | F

F → F ∗ E | (T) | a

T → E − T | E + R

R → T + E | T − E

A → (E) | a

• O1〈G 〉 = {F ,A}, O2〈G 〉 = O3〈G 〉 = {F ,A,E},

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 5 of 23

Construction of an Equivalent Observable CFG

Context: A CFG G = (V ,Σ,S ,P).

Algorithm: Construct an CFG G ′ = (V ′,Σ,S ′,P ′) with L(G ′) = L(G) which
is observable provided that L(G) 6= ∅.

• V ′ = O〈G 〉 ∪ {S}

• P ′ = {A →
P

α | α ∈ (O〈G 〉 ∪ Σ)∗}.

Observation: L(G) = ∅ iff S 6∈ O〈G 〉. �

Example: (Start symbol is E):
E → E + E | T | F

F → F ∗ E | (T) | a

T → E − T | E + R

R → T + E | T − E

A → (E) | a

E → E + E | F

F → F ∗ E | a

A → (E) | a

• O1〈G 〉 = {F ,A}, O2〈G 〉 = O3〈G 〉 = {F ,A,E},

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 6 of 23

An Equivalent Observable CFG when L(G) = ∅

Context: A CFG G = (V ,Σ,S ,P).

Recall: L(G) = ∅ iff S 6∈ O〈G 〉. �

Algorithm: Construct an observable G ′ with L(G ′) = L(G).

• V ′ = O〈G 〉 ∪ {S}

• If S ∈ O〈G 〉 then P ′ = {A →
G

α | α ∈ (O〈G 〉 ∪ Σ)∗}.

• If S 6∈ O〈G 〉 then P ′ = ∅.

• Thus, if L(G) = ∅, the start symbol S is useless (but must be retained as
part of the grammar nevertheless).

Example: Remove E → F from the previous example. (Start symbol still E):

E → E + E | T | 6 F

F → F ∗ E | (T) | a

T → E − T | E + R

R → T + E | T − E

A → (E) | a

O1〈G 〉 = O2〈G 〉 = {A,F}

L(G) = ∅

G ′ = ({S},Σ,S , ∅)
Simplification and Normalization , of Context-Free Grammars 20100927 Slide 7 of 23

Construction of the Reachable Set of a CFG

Context: A CFG G = (V ,Σ,S ,P).

Algorithm: Construct R〈G 〉:

• R0〈G 〉 = {S}.

• Rk+1〈G 〉 = Rk〈G 〉 ∪ {A ∈ V | B →
G

α1Aα2

for some B ∈ Rk〈G 〉 and α1, α2 ∈ (V ∪ Σ)∗}.

• R〈G 〉 = Rk〈G 〉 for the first k ∈ N with Rk〈G 〉 = Rk+1〈G 〉.

Example: (Start symbol is E):
E → E + E | F

F → F ∗ E | a

A → (E) | a

• R0〈G 〉 = {E}, R1〈G 〉 = R2〈G 〉 = {E ,F},

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 8 of 23

Construction of an Equivalent Reachable CFG

Context: A CFG G = (V ,Σ,S ,P).

Algorithm: Construct a reachable CFG G ′ = (V ′,Σ,S ′,P ′) with
L(G ′) = L(G).

• V ′ = R〈G 〉

• P ′ = {A →
G

α | A ∈ V ′}.

Example: (Start symbol is E):
E → E + E | F

F → F ∗ E | a

A → (E) | a

E → E + E | F

F → F ∗ E | a

• R0〈G 〉 = {E}, R1〈G 〉 = R2〈G 〉 = {E ,F},

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 9 of 23

Reduced Grammars

Context: A CFG G = (V ,Σ,S ,P).

• Need to exercise a little care in defining a grammar with no useless
symbols.

• If L(G) = ∅, then the start symbol must be useless, yet every grammar
must have a start symbol.

• Call G reduced if it has one of the following two properties:

• P = ∅ and V = {S}; or

• G is both observable and reachable.

Algorithm: Construct a grammar G ′ = (V ′,Σ,S ′,P ′) which is reduced and
which satisfies L(G ′) = L(G).

• Apply the previous two algorithms, which already take these cases
into account.

• Must remove unobservable variables first, then unreachable.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 10 of 23

Order Matters in Reduction

Example: (Start symbol is E): E → E + E | T | F

F → F ∗ E | (T) | a

T → E − T | E + R

R → T + E | T − E | RA

A → (E) | a

• All variables are reachable: R〈G 〉 = {E ,F ,T ,R ,A}.

• Only {E ,F ,A} are observable.

• If unreachable variables are removed first, and then the unobservable
ones, the resulting grammar will not be reachable: E → E + E | F

F → F ∗ E | a

A → (E) | a

• Thus, the unobservable symbols must be removed first.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 11 of 23

Null Rules

Context: A CFG G = (V ,Σ,S ,P).

• A null rule is a production of the form

A → λ
• Why null rules are anomalous:

• They are the only productions A → α in which

Length(A) > Length(α).

• Thus, if G has no null rules, Length(A) ≤ Length(α) for every
production A → α.

• It would be nice to be able to eliminate null rules entirely.

• However, this is clearly not possible if λ ∈ L(G).

• There is, however, a solution which is almost as good:

• If λ ∈ L(G), then S → λ

• No other null rules are allowed.

• The means to transform G to achieve this will now be addressed.
Simplification and Normalization , of Context-Free Grammars 20100927 Slide 12 of 23

Nonerasing Grammars

Context: A CFG G = (V ,Σ,S ,P).

• A variable A ∈ V is recursive if A
+
⇒ α1Aα2 for some α1, α2 ∈ (V ∪ Σ)∗.

• Here
+
⇒ means “derives in one or more steps”.

• The trivial derivation A
∗

⇒ A in zero steps, (always present), is excluded.

• The variable A ∈ V is nullable if A
∗

⇒ λ.

• Define N〈G 〉 to be the set of all nullable variables of G .

• Call G nonerasing if

• S is not recursive, and

• N〈G 〉 ⊆ {S}.

• This means:

• S → λ is the only possible null rule; and

• it is the only way to derive λ.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 13 of 23

Construction of N〈G 〉

Context: A CFG G = (V ,Σ,S ,P).

Algorithm: Construct N〈G 〉 inductively:

• N0〈G 〉 = ∅
• Nk+1〈G 〉 = Nk〈G 〉 ∪ {A ∈ V | A → α for some α ∈ Nk〈G 〉∗}.

• Stop when Nk〈G 〉 = Nk+1〈G 〉 with N〈G 〉 = Nk〈G 〉.

• Example: V = {S ,O,Q,E}, Σ = {a, b, c};

P =

S → aOb

O → QEQ | aOb | OOO | OEcEO

Q → c | EE

E → a | λ

• N0〈G 〉 = ∅; N1〈G 〉 = {E}; N2〈G 〉 = {E ,Q};
N3〈G 〉 = {E ,Q,O} = N4〈G 〉 = N〈G 〉.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 14 of 23

Construction of an Equivalent Nonerasing CFG

Context: A CFG G = (V ,Σ,S ,P).

Algorithm: Construct an equivalent nonerasing CFG G ′ = (V ′,Σ,S ′,P ′).

• V ′ = V ∪ S ′.

• The productions in P ′ are of the following three forms:

• S ′ → S

• S ′ → λ if S ∈ N〈G 〉

• A → α1 . . . αk iff

• α1 . . . αk 6= λ, and

• There are (not necessarily distinct) A1, . . .An ∈ N〈G 〉 with
A → α1A1α2A2 . . .Anαn ∈ P .

• The last form must be done for all combinations of variables
which produce λ.

Remark: This algorithm has exponential complexity. It is possible to do
much better (linear).

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 15 of 23

Example of Nonerasing Construction

• Example: V = {S ,O,Q,E}, Σ = {a, b, c};

P =

S → aOb

O → QEQ | aOb | OOO | OEcEO

Q → c | EE

E → a | λ

• N〈G 〉 = {E ,Q,O}.

• New productions:

• S ′ → S

• S → aOb | ab

• O → QEQ | QE | QQ | EQ | Q | E | aOb | ab

| OOO | OO | O | OEcEO | OEcE | OEcO | OcEO | EcEO
| OEc | OcE | OcO | cEO | EcE | EcO | Oc | Ec | cE | cO | c

• Q → c | E | EE

• E → a

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 16 of 23

Chain Rules

Context: A CFG G = (V ,Σ,S ,P).

• A unit production or chain rule is a production of the form

A → B

for some A,B ∈ V .

• Unit productions rules are not necessarily bad.

• Examples from programming language specification:

• 〈stmt〉 → 〈if stmt〉

• 〈number〉 → 〈digit〉

• It is recursive chain rules which are can lead to problems.

• In any case, from a theoretical point of view, it is often useful to
eliminate such rules from a grammar.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 17 of 23

The Chain Set of a Grammar

• For A ∈ V , define

• C1〈G ,A〉 = {B ∈ V | A → B}.

• Ck+1〈G ,A〉 = Ck〈G ,A〉 ∪ {B ∈ V | C → B for some C ∈ Ck〈G ,A〉}.

Observation: The addition of new elements to C〈G ,A〉 stops as soon as
Ck〈G ,A〉 = Ck+1〈G ,A〉, so this set may be computed in a finite number
of steps. �

• For A ∈ V , define

• C〈G ,A〉 = Ck〈G ,A〉, where k is the first index for which
Ck〈G ,A〉 = Ck+1〈G ,A〉.

• The variable A ∈ V is called chain recursive if A ∈ C〈G ,A〉.

• Thus, A is chain recursive if it can be derived from itself using unit
productions.

• A “chain loop”

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 18 of 23

Example of a Chain Set

Nonterminals: {〈Expr〉, 〈Ident〉}

Terminals: {A, B, . . . , Z, (,), +, *}

Start symbol: 〈Expr〉

Productions: 〈Ident〉 → A | B | . . . | Y | Z

〈Expr〉 → 〈Expr〉 + 〈Term〉 | 〈Term〉

〈Term〉 → 〈Term〉 ∗ 〈Factor〉 | 〈Factor〉

〈Factor〉 → (〈Expr〉) | 〈Ident〉

• C1〈G , 〈Ident〉〉 = C2〈G , 〈Ident〉〉 = ∅,

• C1〈G , 〈Expr〉〉 = {〈Term〉}, C2〈G , 〈Expr〉〉 = {〈Term〉, 〈Factor〉},
C3〈G , 〈Expr〉〉 = C4〈G , 〈Expr〉〉 = {〈Term〉, 〈Factor〉, 〈Ident〉},

• C1〈G , 〈Term〉〉 = {〈Factor〉},
C2〈G , 〈Term〉〉 = C3〈G , 〈Term〉〉 = {〈Factor〉, 〈Ident〉},

• C1〈G , 〈Factor〉〉 = C2〈G , 〈Factor〉〉 = {〈Ident〉},

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 19 of 23

Eliminating Chain Rules

Context: A CFG G = (V ,Σ,S ,P).

Algorithm: Construct an equivalent CFG G ′ = (V ′,Σ,S ′,P ′) without unit
productions.
P ′ = {A → α | α 6∈ V and there is a B →

G

α with B ∈ {A} ∪ C〈G ,A〉}.

Example: 〈Ident〉 → A | B | . . . | Y | Z

〈Expr〉 → 〈Expr〉 + 〈Term〉 | 〈Term〉

〈Term〉 → 〈Term〉 ∗ 〈Factor〉 | 〈Factor〉

〈Factor〉 → (〈Expr〉) | 〈Ident〉

Repaired:
〈Ident〉 → A | B | . . . | Y | Z

〈Expr〉 → 〈Expr〉 + 〈Term〉 | 〈Term〉 ∗ 〈Factor〉 | (〈Expr〉) | A | . . . | Z

〈Term〉 → 〈Term〉 ∗ 〈Factor〉 | (〈Expr〉) | A | . . . | Z

〈Factor〉 → (〈Expr〉) | A | . . . | Z

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 20 of 23

Nonerasing and No Chain Rules

Context: A CFG G = (V ,Σ,S ,P).

• The algorithm which makes a grammar nonerasing can easily introduce
new chain rules.

• On the other hand, the algorithm which removes chain rules does not
introduce any new null rules.

• Therefore, to construct a grammar which is both nonerasing and without
chain rules, remove the null rules first, and then remove the chain rules.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 21 of 23

Left Recursion and Greibach Normal Form

Context: A CFG G = (V ,Σ,S ,P).

• G is left recursive if there is a derivation of the form A
+
⇒ Aα for some

A ∈ V and α ∈ (V ∪ Σ)∗.

• Left recursion makes the design of parsers more difficult, because of the
possibility of an infinite loop for so-called “recursive descent” parsers
which always try to replace the leftmost symbol first.

• G is in Greibach normal form if every production is of one of the
following two forms:

• A → aα for some A ∈ V , a ∈ Σ, and α ∈ (V \ {S})∗; or

• S → λ.

Theorem: There is an algorithm to convert any CFG G into an equivalent
one which is in Greibach normal form.

Proof: Consult an advanced textbook. (The proof is tedious but not
particularly deep.) �

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 22 of 23

Chomsky Normal Form

Context: A CFG G = (V ,Σ,S ,P).

• Chomsky normal form guarantees that the productions are very short.

• G is in Chomsky normal form if every productions is of one of the
following three forms:

• A → BC for some A ∈ V , and B ,C ∈ V \ {S}.

• A → a for some A ∈ V and a ∈ Σ.

• S → λ.

Theorem: There is an algorithm which converts any CFG G into an
equivalent one in Chomsky normal form.

Proof: There is a sketch in the textbook. Consult a more advanced book for
a complete proof. �

Note: The proof uses ideas similar to that used in converting a right-linear
grammar to a simple right-linear grammar.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 23 of 23

