Simplification and Normalization of Context-Free Grammars

5DV037 - Fundamentals of Computer Science Umeå University
Department of Computing Science
Stephen J. Hegner
hegner@cs.umu.se
http://www.cs.umu.se/~hegner

Motivation

- The material in this presentation is motivated by two needs in the processing of CFGs.
- Some of the productions of a CFG may be "useless" in terms of generating terminal strings; such parts may be safely eliminated.
- By converting a CFG to an equivalent one which is of a certain form, or has certain properties, it may become easier to establish certain results or carry out certain tasks (such as parsing).
- This material is necessarily of a technical nature, sometimes without immediate motivation.

Useless Symbols

Example: $G=(V, \Sigma, E, P), V=\{E, F, T, R\}, \Sigma=\{a,+, *,-,()$,

$$
P=\left\{\begin{array}{l}
E \rightarrow E+E|T| F \\
F \rightarrow F * E|(T)| a \\
T \rightarrow E-T \mid E+R \\
R \rightarrow T+E \mid T-E \\
A \rightarrow(E) \mid a
\end{array}\right.
$$

- Neither T nor R can derive a terminal string.
- A can never be used in a derivation starting from E.
- Such symbols are called useless because they can never be used in a derivation, from the start symbol, of a string of terminal symbols.
- It is useful to have a means of eliminating useless symbols from a grammar in a systematic fashion.

Formal Definition of Useful and Useless Symbols

Context: A CFG $G=(V, \Sigma, S, P)$.

- Let $A \in V$.
- A is observable (in G) if $A \stackrel{*}{\Rightarrow} \alpha$ (equivalently $A \stackrel{+}{\Rightarrow} \alpha$) for some $\alpha \in \Sigma^{*}$.
- G is observable if each $A \in V$ has that property.
- \boldsymbol{A} is reachable (in G) if $S \stackrel{*}{\Rightarrow} \alpha_{1} A \alpha_{2}$ for some $\alpha_{1}, \alpha_{2} \in(V \cup \Sigma)^{*}$.
- G is reachable if each $A \in V$ has that property.
- $A \in V$ is useful if it is both reachable and observable.
- Otherwise, it is useless.
- Define $\mathcal{O}\langle G\rangle=\{A \in V \mid A$ is observable in $G\}$.
- Define $\mathcal{R}\langle G\rangle=\{A \in V \mid A$ is reachable in $G\}$.

Construction of the Observable Set of a CFG

Context: A CFG $G=(V, \Sigma, S, P)$.
Algorithm: Construct $\mathcal{O}\langle G\rangle$:

- $\mathcal{O}_{1}\langle G\rangle=\left\{A \in V \mid A \rightarrow \alpha\right.$ for some $\left.\alpha \in \Sigma^{*}\right\}$.
- $\mathcal{O}_{k+1}\langle G\rangle=\left\{A \in V \mid A \rightarrow \alpha\right.$ for some $\left.\alpha \in\left(\mathcal{O}_{k}\langle G\rangle \cup \Sigma\right)^{*}\right\}$.
- $\mathcal{O}\langle G\rangle=\mathcal{O}_{k}\langle G\rangle$ for the first $k \in \mathbb{N}$ with $\mathcal{O}_{k}\langle G\rangle=\mathcal{O}_{k+1}\langle G\rangle$.

Example: (Start symbol is E): $E \rightarrow E+E|T| F$
$F \rightarrow F * E|(T)| a$
$T \rightarrow E-T \mid E+R$
$R \rightarrow T+E \mid T-E$
$A \rightarrow(E) \mid a$

- $\mathcal{O}_{1}\langle G\rangle=\{F, A\}, \mathcal{O}_{2}\langle G\rangle=\mathcal{O}_{3}\langle G\rangle=\{F, A, E\}$,

Construction of an Equivalent Observable CFG

Context: A CFG $G=(V, \Sigma, S, P)$.
Algorithm: Construct an CFG $G^{\prime}=\left(V^{\prime}, \Sigma, S^{\prime}, P^{\prime}\right)$ with $\mathcal{L}\left(G^{\prime}\right)=\mathcal{L}(G)$ which is observable provided that $\mathcal{L}(G) \neq \emptyset$.

- $V^{\prime}=\mathcal{O}\langle G\rangle \cup\{S\}$
- $P^{\prime}=\left\{A \underset{P}{\rightarrow} \alpha \mid \alpha \in(\mathcal{O}\langle G\rangle \cup \Sigma)^{*}\right\}$.

Observation: $\mathcal{L}(G)=\emptyset$ iff $S \notin \mathcal{O}\langle G\rangle . \square$
Example: (Start symbol is E):

$$
\begin{array}{lll}
E \rightarrow E+E|T| F & & \rightarrow E+E \mid F \\
F \rightarrow F * E|(T)| a & & \rightarrow \\
T \rightarrow E-T \mid E+R & \rightsquigarrow & \\
R \rightarrow T+E \mid T-E & & A \rightarrow(E) \mid a \\
A \rightarrow(E) \mid a & & A \rightarrow E \mid a \\
A & & \rightarrow C
\end{array}
$$

- $\mathcal{O}_{1}\langle G\rangle=\{F, A\}, \mathcal{O}_{2}\langle G\rangle=\mathcal{O}_{3}\langle G\rangle=\{F, A, E\}$,

An Equivalent Observable CFG when $\mathcal{L}(G)=\emptyset$

Context: A CFG $G=(V, \Sigma, S, P)$.
Recall: $\mathcal{L}(G)=\emptyset$ iff $S \notin \mathcal{O}\langle G\rangle$. \square
Algorithm: Construct an observable G^{\prime} with $\mathcal{L}\left(G^{\prime}\right)=\mathcal{L}(G)$.

- $V^{\prime}=\mathcal{O}\langle G\rangle \cup\{S\}$
- If $S \in \mathcal{O}\langle G\rangle$ then $P^{\prime}=\left\{A \underset{G}{\rightarrow} \alpha \mid \alpha \in(\mathcal{O}\langle G\rangle \cup \Sigma)^{*}\right\}$.
- If $S \notin \mathcal{O}\langle G\rangle$ then $P^{\prime}=\emptyset$.
- Thus, if $\mathcal{L}(G)=\emptyset$, the start symbol S is useless (but must be retained as part of the grammar nevertheless).
Example: Remove $E \rightarrow F$ from the previous example. (Start symbol still E):

$$
\begin{array}{ccc}
E \rightarrow E+E|T| F & \mathcal{O}_{1}\langle G\rangle=\mathcal{O}_{2}\langle G\rangle=\{A, F\} \\
F \rightarrow F * E|(T)| a & & \mathcal{L}(G)=\emptyset \\
T \rightarrow E-T \mid E+R & \rightsquigarrow & G^{\prime}=(\{S\}, \Sigma, S, \emptyset) \\
R \rightarrow T+E \mid T-E & & \\
A \rightarrow(E) \mid a & &
\end{array}
$$

Construction of the Reachable Set of a CFG

Context: A CFG $G=(V, \Sigma, S, P)$.
Algorithm: Construct $\mathcal{R}\langle G\rangle$:

- $\mathcal{R}_{0}\langle G\rangle=\{S\}$.
- $\mathcal{R}_{k+1}\langle G\rangle=\mathcal{R}_{k}\langle G\rangle \cup\left\{A \in V \mid B \underset{G}{\rightarrow} \alpha_{1} A \alpha_{2}\right.$ for some $B \in \mathcal{R}_{k}\langle G\rangle$ and $\left.\alpha_{1}, \alpha_{2} \in(V \cup \Sigma)^{*}\right\}$.
- $\mathcal{R}\langle G\rangle=\mathcal{R}_{k}\langle G\rangle$ for the first $k \in \mathbb{N}$ with $\mathcal{R}_{k}\langle G\rangle=\mathcal{R}_{k+1}\langle G\rangle$.

Example: (Start symbol is E):

$$
\begin{aligned}
& E \rightarrow E+E \mid F \\
& F \rightarrow F * E \mid a \\
& A \rightarrow(E) \mid a
\end{aligned}
$$

- $\mathcal{R}_{0}\langle G\rangle=\{E\}, \mathcal{R}_{1}\langle G\rangle=\mathcal{R}_{2}\langle G\rangle=\{E, F\}$,

Construction of an Equivalent Reachable CFG

Context: A CFG $G=(V, \Sigma, S, P)$.
Algorithm: Construct a reachable CFG $G^{\prime}=\left(V^{\prime}, \Sigma, S^{\prime}, P^{\prime}\right)$ with

$$
\begin{aligned}
& \mathcal{L}\left(G^{\prime}\right)=\mathcal{L}(G) \text {. } \\
& \text { - } V^{\prime}=\mathcal{R}\langle G\rangle \\
& \text { - } P^{\prime}=\left\{\underset{\sigma}{\vec{\sigma}} \alpha \mid A \in V^{\prime}\right\} \text {. }
\end{aligned}
$$

Example: (Start symbol is E):

$$
\begin{aligned}
& E \rightarrow E+E \mid F \\
& F \rightarrow F * E|a \rightarrow E \rightarrow E+E| F \\
& A \rightarrow(E) \mid a
\end{aligned}
$$

- $\mathcal{R}_{0}\langle G\rangle=\{E\}, \mathcal{R}_{1}\langle G\rangle=\mathcal{R}_{2}\langle G\rangle=\{E, F\}$,

Reduced Grammars

Context: A CFG $G=(V, \Sigma, S, P)$.

- Need to exercise a little care in defining a grammar with no useless symbols.
- If $\mathcal{L}(G)=\emptyset$, then the start symbol must be useless, yet every grammar must have a start symbol.
- Call G reduced if it has one of the following two properties:
- $P=\emptyset$ and $V=\{S\}$; or
- G is both observable and reachable.

Algorithm: Construct a grammar $G^{\prime}=\left(V^{\prime}, \Sigma, S^{\prime}, P^{\prime}\right)$ which is reduced and which satisfies $\mathcal{L}\left(G^{\prime}\right)=\mathcal{L}(G)$.

- Apply the previous two algorithms, which already take these cases into account.
- Must remove unobservable variables first, then unreachable.

Order Matters in Reduction

Example: (Start symbol is E): $E \rightarrow E+E|T| F$

$$
F \rightarrow F * E|(T)| a
$$

$$
T \rightarrow E-T \mid E+R
$$

$$
R \rightarrow T+E|T-E| R A
$$

$$
A \rightarrow(E) \mid a
$$

- All variables are reachable: $\mathcal{R}\langle G\rangle=\{E, F, T, R, A\}$.
- Only $\{E, F, A\}$ are observable.
- If unreachable variables are removed first, and then the unobservable ones, the resulting grammar will not be reachable: $E \rightarrow E+E \mid F$

$$
\begin{aligned}
& F \rightarrow F * E \mid a \\
& A \rightarrow(E) \mid a
\end{aligned}
$$

- Thus, the unobservable symbols must be removed first.

Null Rules

Context: A CFG $G=(V, \Sigma, S, P)$.

- A null rule is a production of the form
- Why null rules are anomalous:
- They are the only productions $A \rightarrow \alpha$ in which Length $(\mathrm{A})>$ Length (α).
- Thus, if G has no null rules, Length $(\mathrm{A}) \leq$ Length (α) for every production $A \rightarrow \alpha$.
- It would be nice to be able to eliminate null rules entirely.
- However, this is clearly not possible if $\lambda \in \mathcal{L}(G)$.
- There is, however, a solution which is almost as good:
- If $\lambda \in \mathcal{L}(G)$, then $S \rightarrow \lambda$
- No other null rules are allowed.
- The means to transform G to achieve this will now be addressed.

Nonerasing Grammars

Context: A CFG $G=(V, \Sigma, S, P)$.

- A variable $A \in V$ is recursive if $A \stackrel{+}{\Rightarrow} \alpha_{1} A \alpha_{2}$ for some $\alpha_{1}, \alpha_{2} \in(V \cup \Sigma)^{*}$.
- Here $\stackrel{+}{\Rightarrow}$ means "derives in one or more steps".
- The trivial derivation $A \stackrel{*}{\Rightarrow} A$ in zero steps, (always present), is excluded.
- The variable $A \in V$ is nullable if $A \stackrel{*}{\Rightarrow} \lambda$.
- Define $\mathcal{N}\langle G\rangle$ to be the set of all nullable variables of G.
- Call G nonerasing if
- S is not recursive, and
- $\mathcal{N}\langle G\rangle \subseteq\{S\}$.
- This means:
- $S \rightarrow \lambda$ is the only possible null rule; and
- it is the only way to derive λ.

Construction of $\mathcal{N}\langle G\rangle$

Context: A CFG $G=(V, \Sigma, S, P)$.
Algorithm: Construct $\mathcal{N}\langle G\rangle$ inductively:

- $\mathcal{N}_{0}\langle G\rangle=\emptyset$
- $\mathcal{N}_{k+1}\langle G\rangle=\mathcal{N}_{k}\langle G\rangle \cup\left\{A \in V \mid A \rightarrow \alpha\right.$ for some $\left.\alpha \in \mathcal{N}_{k}\langle G\rangle^{*}\right\}$.
- Stop when $\mathcal{N}_{k}\langle G\rangle=\mathcal{N}_{k+1}\langle G\rangle$ with $\mathcal{N}\langle G\rangle=\mathcal{N}_{k}\langle G\rangle$.
- Example: $V=\{S, O, Q, E\}, \Sigma=\{a, b, c\}$;

$$
P=\left\{\begin{array}{l}
S \rightarrow a O b \\
O \rightarrow Q E Q|a O b| O O O \mid O E c E O \\
Q \rightarrow c \mid E E \\
E \rightarrow a \mid \lambda
\end{array}\right.
$$

- $\mathcal{N}_{0}\langle G\rangle=\emptyset ; \quad \mathcal{N}_{1}\langle G\rangle=\{E\} ;$
$\mathcal{N}_{2}\langle G\rangle=\{E, Q\} ;$
$\mathcal{N}_{3}\langle G\rangle=\{E, Q, O\}=\mathcal{N}_{4}\langle G\rangle=\mathcal{N}\langle G\rangle$.

Construction of an Equivalent Nonerasing CFG

Context: A CFG $G=(V, \Sigma, S, P)$.
Algorithm: Construct an equivalent nonerasing CFG $G^{\prime}=\left(V^{\prime}, \Sigma, S^{\prime}, P^{\prime}\right)$.

- $V^{\prime}=V \cup S^{\prime}$.
- The productions in P^{\prime} are of the following three forms:
- $S^{\prime} \rightarrow S$
- $S^{\prime} \rightarrow \lambda$ if $S \in \mathcal{N}\langle G\rangle$
- $A \rightarrow \alpha_{1} \ldots \alpha_{k}$ iff
- $\alpha_{1} \ldots \alpha_{k} \neq \lambda$, and
- There are (not necessarily distinct) $A_{1}, \ldots A_{n} \in \mathcal{N}\langle G\rangle$ with $A \rightarrow \alpha_{1} A_{1} \alpha_{2} A_{2} \ldots A_{n} \alpha_{n} \in P$.
- The last form must be done for all combinations of variables which produce λ.

Remark: This algorithm has exponential complexity. It is possible to do much better (linear).

Example of Nonerasing Construction

- Example: $V=\{S, O, Q, E\}, \Sigma=\{a, b, c\}$;

$$
P=\left\{\begin{array}{l}
S \rightarrow a O b \\
O \rightarrow Q E Q|a O b| O O O \mid O E c E O \\
Q \rightarrow c \mid E E \\
E \rightarrow a \mid \lambda
\end{array}\right.
$$

- $\mathcal{N}\langle G\rangle=\{E, Q, O\}$.
- New productions:
- $S^{\prime} \rightarrow S$
- $S \rightarrow a O b \mid a b$
- $O \rightarrow Q E Q|Q E| Q Q|E Q| Q|E| a O b \mid a b$

OOO |OO |O|OEcEO |OEcE|OEcO | OcEO | EcEO $O E c|O c E| O c O|c E O| E c E|E c O| O c|E c| c E|c O| c$

- $Q \rightarrow c|E| E E$
- $E \rightarrow a$

Chain Rules

Context: A CFG $G=(V, \Sigma, S, P)$.

- A unit production or chain rule is a production of the form

$$
A \rightarrow B
$$

for some $A, B \in V$.

- Unit productions rules are not necessarily bad.
- Examples from programming language specification:
- $\langle s t m t\rangle \rightarrow\left\langle i f _s t m t\right\rangle$
- \langle number $\rangle \rightarrow\langle$ digit \rangle
- It is recursive chain rules which are can lead to problems.
- In any case, from a theoretical point of view, it is often useful to eliminate such rules from a grammar.

The Chain Set of a Grammar

- For $A \in V$, define
- $\mathcal{C}_{1}\langle G, A\rangle=\{B \in V \mid A \rightarrow B\}$.
- $\mathcal{C}_{k+1}\langle G, A\rangle=\mathcal{C}_{k}\langle G, A\rangle \cup\left\{B \in V \mid C \rightarrow B\right.$ for some $\left.C \in \mathcal{C}_{k}\langle G, A\rangle\right\}$.

Observation: The addition of new elements to $\mathcal{C}\langle G, A\rangle$ stops as soon as $\mathcal{C}_{k}\langle G, A\rangle=\mathcal{C}_{k+1}\langle G, A\rangle$, so this set may be computed in a finite number of steps.

- For $A \in V$, define
- $\mathcal{C}\langle G, A\rangle=\mathcal{C}_{k}\langle G, A\rangle$, where k is the first index for which $\mathcal{C}_{k}\langle G, A\rangle=\mathcal{C}_{k+1}\langle G, A\rangle$.
- The variable $A \in V$ is called chain recursive if $A \in \mathcal{C}\langle G, A\rangle$.
- Thus, A is chain recursive if it can be derived from itself using unit productions.
- A "chain loop"

Example of a Chain Set

Nonterminals: $\{\langle$ Expr \rangle,\langle Ident $\rangle\}$
Terminals: $\{\mathrm{A}, \mathrm{B}, \ldots, \mathrm{Z},(),,+, *\}$
Start symbol: 〈Expr〉
Productions: $\quad\langle I d e n t\rangle \rightarrow \mathrm{A}|\mathrm{B}| \ldots|\mathrm{Y}| \mathrm{Z}$

$$
\begin{aligned}
\langle\text { Expr }\rangle & \rightarrow\langle\text { Expr }\rangle+\langle\text { Term }\rangle \mid\langle\text { Term }\rangle \\
\langle\text { Term }\rangle & \rightarrow\langle\text { Term }\rangle *\langle\text { Factor }\rangle \mid\langle\text { Factor }\rangle \\
\langle\text { Factor }\rangle & \rightarrow(\langle\text { Expr }\rangle) \mid\langle\text { Ident }\rangle
\end{aligned}
$$

- $\mathcal{C}_{1}\langle G,\langle$ Ident $\rangle\rangle=\mathcal{C}_{2}\langle G,\langle$ Ident $\rangle\rangle=\emptyset$,
- $\mathcal{C}_{1}\langle G,\langle$ Expr $\rangle\rangle=\{\langle$ Term $\rangle\}, \mathcal{C}_{2}\langle G,\langle$ Expr $\rangle\rangle=\{\langle$ Term \rangle,\langle Factor $\rangle\}$, $\mathcal{C}_{3}\langle G,\langle$ Expr $\rangle\rangle=\mathcal{C}_{4}\langle G,\langle$ Expr $\rangle\rangle=\{\langle$ Term \rangle,\langle Factor \rangle,\langle Ident $\rangle\}$,
- $\mathcal{C}_{1}\langle G,\langle$ Term $\rangle\rangle=\{\langle$ Factor $\rangle\}$,
$\mathcal{C}_{2}\langle G,\langle$ Term $\rangle\rangle=\mathcal{C}_{3}\langle G,\langle$ Term $\rangle\rangle=\{\langle$ Factor \rangle,\langle Ident $\rangle\}$,
- $\mathcal{C}_{1}\langle G,\langle$ Factor $\rangle\rangle=\mathcal{C}_{2}\langle G,\langle$ Factor $\rangle\rangle=\{\langle$ Ident $\rangle\}$,

Eliminating Chain Rules

Context: A CFG $G=(V, \Sigma, S, P)$.
Algorithm: Construct an equivalent CFG $G^{\prime}=\left(V^{\prime}, \Sigma, S^{\prime}, P^{\prime}\right)$ without unit productions.
$P^{\prime}=\{A \rightarrow \alpha \mid \alpha \notin V$ and there is a $B \underset{G}{\rightarrow} \alpha$ with $B \in\{A\} \cup \mathcal{C}\langle G, A\rangle\}$.
Example: \langle Ident $\rangle \rightarrow \mathrm{A}|\mathrm{B}| \ldots|\mathrm{Y}| \mathrm{Z}$
\langle Expr $\rangle \rightarrow\langle$ Expr $\rangle+\langle$ Term $\rangle \mid\langle$ Term \rangle
\langle Term $\rangle \rightarrow\langle$ Term $\rangle *\langle$ Factor $\rangle \mid\langle$ Factor \rangle
\langle Factor $\rangle \rightarrow(\langle$ Expr $\rangle) \mid\langle$ Ident \rangle
Repaired:

$$
\begin{aligned}
\langle\text { Ident }\rangle & \rightarrow \mathrm{A}|\mathrm{~B}| \ldots|\mathrm{Y}| \mathrm{Z} \\
\langle\text { Expr }\rangle & \rightarrow\langle\text { Expr }\rangle+\langle\text { Term }\rangle \mid\langle\text { Term }\rangle *\langle\text { Factor }\rangle \mid(\langle\text { Expr }\rangle)|A| \ldots \mid Z \\
\langle\text { Term }\rangle & \rightarrow\langle\text { Term }\rangle *\langle\text { Factor }\rangle \mid(\langle\text { Expr }\rangle)|A| \ldots \mid Z \\
\langle\text { Factor }\rangle & \rightarrow(\langle\text { Expr }\rangle)|A| \ldots \mid Z
\end{aligned}
$$

Nonerasing and No Chain Rules

Context: A CFG $G=(V, \Sigma, S, P)$.

- The algorithm which makes a grammar nonerasing can easily introduce new chain rules.
- On the other hand, the algorithm which removes chain rules does not introduce any new null rules.
- Therefore, to construct a grammar which is both nonerasing and without chain rules, remove the null rules first, and then remove the chain rules.

Left Recursion and Greibach Normal Form

Context: $\mathrm{A} C F G \mathrm{G}=(V, \Sigma, S, P)$.

- G is left recursive if there is a derivation of the form $A \stackrel{+}{\Rightarrow} A \alpha$ for some $A \in V$ and $\alpha \in(V \cup \Sigma)^{*}$.
- Left recursion makes the design of parsers more difficult, because of the possibility of an infinite loop for so-called "recursive descent" parsers which always try to replace the leftmost symbol first.
- G is in Greibach normal form if every production is of one of the following two forms:
- $A \rightarrow a \alpha$ for some $A \in V, a \in \Sigma$, and $\alpha \in(V \backslash\{S\})^{*}$; or
- $S \rightarrow \lambda$.

Theorem: There is an algorithm to convert any CFG G into an equivalent one which is in Greibach normal form.

Proof: Consult an advanced textbook. (The proof is tedious but not particularly deep.) \square

Chomsky Normal Form

Context: A CFG $G=(V, \Sigma, S, P)$.

- Chomsky normal form guarantees that the productions are very short.
- G is in Chomsky normal form if every productions is of one of the following three forms:
- $A \rightarrow B C$ for some $A \in V$, and $B, C \in V \backslash\{S\}$.
- $A \rightarrow a$ for some $A \in V$ and $a \in \Sigma$.
- $S \rightarrow \lambda$.

Theorem: There is an algorithm which converts any CFG G into an equivalent one in Chomsky normal form.

Proof: There is a sketch in the textbook. Consult a more advanced book for a complete proof. \square

Note: The proof uses ideas similar to that used in converting a right-linear grammar to a simple right-linear grammar.

