Simplification and Normalization
of Context-Free Grammars

5DV037 — Fundamentals of Computer Science
Umed University
Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se
http://www.cs.umu.se/ hegner

Simplification and Normalization , of Context-Free Grammars

20100927 Slide 1 of 23

Motivation

e The material in this presentation is motivated by two needs in the
processing of CFGs.

e Some of the productions of a CFG may be "useless” in terms of
generating terminal strings; such parts may be safely eliminated.

e By converting a CFG to an equivalent one which is of a certain form,
or has certain properties, it may become easier to establish certain
results or carry out certain tasks (such as parsing).

e This material is necessarily of a technical nature, sometimes without
immediate motivation.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 2 of 23

Useless Symbols

Example: G =(V,X,E,P), V={E,F, T,R}, L ={a,+,%,—,(,)}

;

w
I
D 4 T om

A

N
.
N
N

%

E+E|TI|F
FxE|(T)|a
E-T|E+R
THE|T—E
(E)|a

Neither T nor R can derive a terminal string.

e A can never be used in a derivation starting from E.

Such symbols are called useless because they can never be used in a

derivation, from the start symbol, of a string of terminal symbols.

It is useful to have a means of eliminating useless symbols from a

grammar in a systematic fashion.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 3 of 23

Formal Definition of Useful and Useless Symbols

Context: A CFG G =(V,X,S,P).

o let Ac V.
e Ais observable (in G) if A= a (equivalently A = a) for some
a€X”.
e G is observable if each A € V has that property.

A'is reachable (in G) if S = a1Aasy for some ag,a € (V UX)".

e G is reachable if each A € V has that property.
e A€ Vis useful if it is both reachable and observable.

o Otherwise, it is useless.
e Define O(G) = {A€ V| Ais observable in G}.
e Define R(G) = {A € V| Ais reachable in G}.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 4 of 23

Construction of the Observable Set of a CFG

Context: A CFG G =(V,X,S,P).

Algorithm: Construct O(G):

e 01(G)={Ae€ V|A— aforsome o € X*}.
e 041(Gy={Ae V| A— aforsome ac (O(G)UX)"}.
o O(G) = Ok(G) for the first k € IN with Ox(G) = Ok4+1(G).

Example: (Start symbol is E): E

F
T
R
A

_>

Ll

E+E|T|F
F+«E|(T)|a
E-T|E+R
T+E|T—E
(E)|a

o O1(G) = {F,A}, O2(G) = O3(G) = {F, A E}

Simplification and Normalization , of Context-Free Grammars

20100927 Slide 5 of 23

Construction of an Equivalent Observable CFG

Context: A CFG G =(V,X,S,P).
Algorithm: Construct an CFG G’ = (V/, X, 5', P") with £(G") = L(G) which
is observable provided that £(G) # 0.
o V' =0(G)U{S}
o P’:{A?a|ae (O(G)u L)}
Observation: £(G) =0iff S € O(G). O
Example: (Start symbol is E):

E — E+E[TI|F E - E+E|F
F — F*E\(T)|a F = F*E|a
T - E-T|E+R .

R - T+E|T-E

A = (E)|a A = (E)|a

* 01(G) = {F,A}, 02(G) = O3(G) = {F,A E},

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 6 of 23

An Equivalent Observable CFG when £(G) =0

Context: A CFG G =(V,X,S,P).
Recall: L(G)=0iff S ¢ O(G). O

Algorithm: Construct an observable G’ with L(G') = L(G).
e V' =0(G)U{S}
e If S € O(G) then P = {A —a | € (O(G)UX)*}.

e If S & O(G) then P' =1{.

e Thus, if £(G) = 0, the start symbol S is useless (but must be retained as
part of the grammar nevertheless).

Example: Remove E — F from the previous example. (Start symbol still E):

E — E+E|T|F 0 — O — A F
F — F+E|(T)]|a 1{6) = 02(6) ={A F}
T - E-T|E+R £(G) =0

R - T+E|T-E

A S (B)] ¢ = ({S},%,5,0)

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 7 of 23

Construction of the Reachable Set of a CFG

Context: A CFG G =(V,X,S,P).
Algorithm: Construct R(G):
* Ro(G) ={S}
° Rk+1<G> = Rk<G> U {A eV | B ? a1Aas
for some B € R (G) and a1, a0 € (VUI)"}.
e R(G) = Rk(G) for the first k € IN with R¢(G) = Rk+1(G).

Example: (Start symbol is E):
E —- E+E|F

F — F+E|a
A — (E)|a
e Ro(G) = {E}, Ra(G) = Ra(G) = {E. F},

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 8 of 23

Construction of an Equivalent Reachable CFG

Context: A CFG G =(V,X,S,P).
Algorithm: Construct a reachable CFG G’ = (V/, %, 5’, P’) with
L(G") = L(G).
o V' =R(G)
o P’:{A?a|AE v’}

Example: (Start symbol is E):
E —- E+E|F

F — FxE|la ~
A = (E)a
e Ro(G) = {E}, R1(G) = Ro(G) = {E,F},

E —- E+E|F
F — FxE|a

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 9 of 23

Reduced Grammars

Context: A CFG G = (V,X,S, P).

e Need to exercise a little care in defining a grammar with no useless
symbols.

e If £L(G) =0, then the start symbol must be useless, yet every grammar
must have a start symbol.

e Call G reduced if it has one of the following two properties:

e P=0and V={S}; or
e G is both observable and reachable.

Algorithm: Construct a grammar G’ = (V/, X, S’, P") which is reduced and

which satisfies £(G') = L(G).
o Apply the previous two algorithms, which already take these cases
into account.

e Must remove unobservable variables first, then unreachable.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 10 of 23

Order Matters in Reduction

Example: (Start symbolis E): E — E+E|T|F
F — FxE|(T)|a
T — E-T|E+R
R - T+E|T—E|RA
A — (E)]|a

e All variables are reachable: R(G) ={E,F, T,R,A}.
e Only {E, F, A} are observable.

e |f unreachable variables are removed first, and then the unobservable
ones, the resulting grammar will not be reachable: E — E+ E|F

F — FxE|a
A — (E)|a

e Thus, the unobservable symbols must be removed first.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 11 of 23

Null Rules
Context: A CFG G =(V,X,S,P).

e A null rule is a production of the form

A— A

Why null rules are anomalous:
e They are the only productions A — « in which
Length(A) > Length(«).
e Thus, if G has no null rules, Length(A) < Length(«) for every
production A — a.

It would be nice to be able to eliminate null rules entirely.

However, this is clearly not possible if A € L(G).

There is, however, a solution which is almost as good:
o If A€ L(G), then S — A

o No other null rules are allowed.

e The means to transform G to achieve this will now be addressed.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 12 of 23

Nonerasing Grammars
Context: A CFG G =(V,X,S,P).

e A variable A € V is recursive if A= a3 Aas for some ay,ap € (VU E)*.
e Here = means “derives in one or more steps”.

The trivial derivation A = A in zero steps, (always present), is excluded.

The variable A € V is nullable if A =>).

Define N(G) to be the set of all nullable variables of G.

Call G nonerasing if
e S is not recursive, and
e N(G) C {S}.
This means:
e S —)\ is the only possible null rule; and

e it is the only way to derive \.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 13 of 23

Construction of N(G)

Context: A CFG G =(V,X,S,P).

Algorithm: Construct N(G) inductively:
o No(G) =10
o Nii1(G) =Nk (GYU{A € V| A— a for some a € Ni(G)*}.
e Stop when Ny (G) = Ni11(G) with N(G) = N (G).
e Example: V ={S5,0,Q,E}, X ={a, b, c};

S — aO0b
O — QEQ|aOb| 000 | OECEO
P=0q = clee
E — a|A
0/\/0() =0; Ni(G) = {E}; N2 (G) = {E, Q};
N3(G) = {E, Q, O} = N4(G) = N(G).

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 14 of 23

Construction of an Equivalent Nonerasing CFG

Context: A CFG G =(V,X,S,P).

Algorithm: Construct an equivalent nonerasing CFG G’ = (V' ¥, 5, P).
o VI =VUS.
e The productions in P are of the following three forms:
eSS

o S' 5 \ifSeNG)
e A— ay ...« iff

® Q1...q # A, and
e There are (not necessarily distinct) As,... A, € N(G) with

A= a1AtanAs .. Apa, € P.
e The last form must be done for all combinations of variables
which produce A.
Remark: This algorithm has exponential complexity. It is possible to do

much better (linear).
20100927 Slide 15 of 23

Simplification and Normalization , of Context-Free Grammars

Example of Nonerasing Construction
e Example: V ={S5,0,Q,E}, X ={a, b,c};
S — a0Ob
O — QEQ|aOb| 000 | OECEO
Q — c|EE
E — a|A\

e N(G) ={E,Q,O}.
e New productions:
eSS
e S—a0b|ab
O—=QEQ|QE|QQR|EQ|Q|E|aOb]|ab
| OO0 | OO | O | OECEO | OECE | OEcO | OcEO | EcEO
| OEc | OcE | OcO | cEO | EcE | EcO | Oc | Ec | cE | cO | ¢
Q> c|E|EE
e £ —a

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 16 of 23

Chain Rules

Context: A CFG G = (V,X,S, P).

e A unit production or chain rule is a production of the form

A— B
for some A,B € V.

e Unit productions rules are not necessarily bad.
e Examples from programming language specification:
e (stmt) — (if _stmt)
e (number) — (digit)
e It is recursive chain rules which are can lead to problems.
e In any case, from a theoretical point of view, it is often useful to

eliminate such rules from a grammar.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 17 of 23

The Chain Set of a Grammar

e For A€ V, define
e C1(G,A)={Be V|A— B}.

o Cii1(G,A) =Ck(G,A) U{B € V| C — B for some C € Cx(G,A)}.
Observation: The addition of new elements to C(G, A) stops as soon as

Ck(G,A) = Cx11(G, A), so this set may be computed in a finite number
of steps. [

e For A€ V, define
o C(G,A) =Ck(G,A), where k is the first index for which
Ck<G7A> :Ck+1<G’A>'

e The variable A € V is called chain recursive if A € C(G, A).

e Thus, A is chain recursive if it can be derived from itself using unit
productions.
e A “chain loop”

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 18 of 23

Example of a Chain Set

Nonterminals: {{Expr), (Ident)}
Terminals: {A,B,...,Z, (,),+,*}
Start symbol: <Expr>

Productions: (ldent) — A|B| ... |Y|Z
(Expry — (Expr) + (Term) | (Term)
(Term) — (Term) x (Factor) | (Factor)
(Factor) — ({Expr)) | (Ident)
o C1(G, (Ident)) = Co(G, (Ident)) = ()
. Cl(G, (Expr)) = {(Term)} Co(G, (Expr)) = {(Term), (Factor)},
C3(G, (Expr)) = C4(G, (Expr)) = {(Term), (Factor), (ldent)},
. Cl(G, (Term)) = {(Factor)},
C2(G, (Term)) = C3(G, (Term)) = {(Factor), (Ident)},
e C1(G,(Factor)) = C2(G, (Factor)) = {(Ident)},

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 19 of 23

Eliminating Chain Rules

Context: A CFG G =(V,X,S,P).

Algorithm: Construct an equivalent CFG G’ = (V/, X, S’, P’) without unit

productions.
P'={A— a|a¢gV and there is a B?awith B e {A} UC(G,A)}.

Example: (ldent) — A|B| ... |Y|Z
(Expr) — (Expr) + (Term) | (Term)
(Term) — (Term) x (Factor) | (Factor)
(Factor) — ({Expr)) | (Ident)
Repaired:
(Ident) — A|B|...|Y]|Z
(Expry — (Expr) + (Term) | (Term) x (Factor) | ((Expr)) | A| ... | Z
(Term) — (Term) x (Factor) | ((Expr)) |A| ... | Z
(Factor) — ((Expr)) |A| ... |Z

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 20 of 23

Nonerasing and No Chain Rules

Context: A CFG G =(V,X,S,P).

e The algorithm which makes a grammar nonerasing can easily introduce
new chain rules.

e On the other hand, the algorithm which removes chain rules does not
introduce any new null rules.

e Therefore, to construct a grammar which is both nonerasing and without
chain rules, remove the null rules first, and then remove the chain rules.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 21 of 23

Left Recursion and Greibach Normal Form

Context: A CFG G =(V,X,S,P).
e G is left recursive if there is a derivation of the form A = Aq for some
A€ Vanda e (VUX)"

e Left recursion makes the design of parsers more difficult, because of the
possibility of an infinite loop for so-called “recursive descent” parsers
which always try to replace the leftmost symbol first.

e G is in Greibach normal form if every production is of one of the
following two forms:

e A= aaforsome Ae V,ae X, and a € (V\{S})"; or

e S—)\

Theorem: There is an algorithm to convert any CFG G into an equivalent
one which is in Greibach normal form.

Proof: Consult an advanced textbook. (The proof is tedious but not
particularly deep.) O

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 22 of 23

Chomsky Normal Form

Context: A CFG G =(V,X,S,P).
e Chomsky normal form guarantees that the productions are very short.

e G is in Chomsky normal form if every productions is of one of the
following three forms:
e A— BC forsome Ac V,and B,C € V' \ {S}.

e A— aforsome Ac VandacX.
e S—)\

Theorem: There is an algorithm which converts any CFG G into an
equivalent one in Chomsky normal form.

Proof: There is a sketch in the textbook. Consult a more advanced book for
a complete proof. [

Note: The proof uses ideas similar to that used in converting a right-linear
grammar to a simple right-linear grammar.

Simplification and Normalization , of Context-Free Grammars 20100927 Slide 23 of 23

