Context Free Grammars and Languages

5DV037 - Fundamentals of Computer Science Umeå University Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se http://www.cs.umu.se/~hegner

Relevance

- Context-free grammars (CFGs) are the most important class of grammars in computer science.
- The main syntactic structure of virtually all modern programming languages is expressed using them.
- Modern parsers for programming languages are based upon them.
- Tools have been developed which generate parsers automatically from CFGs, and such tools are widely used.
- Many approaches to the modelling and understanding of natural language are also based upon context-free "backbones".
- In short, CFGs are a central notion in practical as well as theoretical computer science.

A Review of the Notion of a Grammar

Definition: A (phrase-structure) grammar is a four-tuple

$$
G=(V, \Sigma, S, P)
$$

in which

- V is a finite alphabet, called the variables or nonterminal symbols;
- Σ is a finite alphabet, called the set of terminal symbols;
- $S \in V$ is the start symbol;
- P is a finite subset of $(V \cup \Sigma)^{+} \times(V \cup \Sigma)^{*}$ called the set of productions or rewrite rules;
- $V \cap \Sigma=\emptyset$;
- The production $\left(w_{1}, w_{2}\right) \in P$ is typically written $w_{1} \underset{G}{\rightarrow} w_{2}$, or just $w_{1} \rightarrow w_{2}$ if the context G is clear.
- The meaning of $w_{1} \rightarrow w_{2}$ is that w_{1} may be replaced by w_{2} in a string.
- Note that w_{1} may be any nonempty string in this definition.

Context-Free Grammars

- In a context-free grammar, the left-hand side of each production must be a single nonterminal symbol.
- Thus, the replacement is independent of the context in which the nonterminal occurs.

Definition: A context-free grammar or CFG is a four-tuple

$$
G=(V, \Sigma, S, P)
$$

in which

- V is a finite alphabet, called the variables or nonterminal symbols;
- Σ is a finite alphabet, called the set of terminal symbols;
- $S \in V$ is the start symbol;
- P is a finite subset of $V \times(V \cup \Sigma)^{*}$ called the set of productions or rewrite rules;
- $V \cap \Sigma=\emptyset$;
- Productions are thus of the form $A \rightarrow w$

$$
\text { for some } A \in V \text { and } w \in(V \cup \Sigma)^{*} .
$$

Derivation in the Context of a CFG

Context: $G=(V, \Sigma, S, P)$ a CFG.

- Let $A \underset{G}{\rightarrow} w$, and let $\beta \in(V \cup \Sigma)^{+}$be a string which contains A;

$$
\text { i.e., } \beta=\alpha_{1} A \alpha_{2} \text { for some } \alpha_{1}, \alpha_{2} \in(V \cup \Sigma)^{*} \text {. }
$$

- A possible single-step derivation on w replaces A with w.
- Write $\alpha_{1} A \alpha_{2} \underset{G}{\Rightarrow} \alpha_{1} w \alpha_{2}$ (or just $\alpha_{1} A \alpha_{2} \Rightarrow \alpha_{1} w \alpha_{2}$).
- Note that many derivation steps may be possible on a given string.
- This process is thus inherently nondeterministic.
- Write $w \underset{G}{*} u($ or just $w \stackrel{*}{\Rightarrow} u$) if $w=u$ or else there is a sequence

$$
w=\alpha_{0} \underset{G}{\stackrel{*}{\Rightarrow}} \alpha_{1} \underset{G}{\stackrel{*}{\Rightarrow}} \alpha_{2} \ldots \stackrel{*}{\Rightarrow} \alpha_{k}=u
$$

called a derivation of u from w (for G).

- Write $w \underset{G}{+} u$ (or just $w \stackrel{+}{\Rightarrow} u$) if the derivation is at least one step long.
- The language of G is $\mathcal{L}(G)=\left\{w \in \Sigma^{*} \mid S \underset{G}{*} w\right\}$.
- A language L is context free (or a CFL) if $L=\mathcal{L}(G)$ for some CFG G.
- The CFGs G_{1} and G_{2} are equivalent if $\mathcal{L}\left(G_{1}\right)=\mathcal{L}\left(G_{2}\right)$.

Degrees of Ambiguity for CFGs

- There are four possible levels of ambiguity with respect to derivations in a CFG $G=(V, \Sigma, S, P)$.
- First, these will be listed, and then an example of each will be presented. Unique derivations: For each $\alpha \in \mathcal{L}(G)$, there is exactly one derivation for α.
Essentially unique derivations: The various derivations of each $\alpha \in \mathcal{L}(G)$ differ only in the order in which the variables are replaced.
- Unique derivation tree.

Non-unique derivations but repairable: There is some $\alpha \in \mathcal{L}(G)$ with at least two distinct derivation trees, but there is another CFG G^{\prime} with $\mathcal{L}(G)=\mathcal{L}\left(G^{\prime}\right)$ for which each $\alpha \in \mathcal{L}\left(G^{\prime}\right)$ has a unique derivation tree.
Inherently non-unique derivations: For every CFG G^{\prime} with $\mathcal{L}\left(G^{\prime}\right)=\mathcal{L}(G)$, there is some string $\alpha \in \mathcal{L}(G)$ which has at least two distinct derivation trees in G^{\prime}.

An Example of Unique Derivation

Let $G=(V, \Sigma, S, P)=(\{S\},\{a, b\}, S,\{S \rightarrow a S b \mid a b\}$

- It is easy to see that $\mathcal{L}(G)=\left\{a^{n} b^{n} \mid n \geq 1\right\}$.
- The string $a a a b b b$ has the unique derivation

$$
S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow a a a b b b
$$

and hence is in $\mathcal{L}(G)$.

- In general, the string $a^{k} b^{k}$ has the unique derivation

$$
S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow \ldots \Rightarrow a^{i} S b^{i} \ldots \Rightarrow a^{k-1} S b^{k-1} \Rightarrow a^{k} b^{k}
$$

- Thus, every string in $\mathcal{L}(G)$ has a unique derivation in G.
- This type of uniqueness is very rare in practice.

Inessential Non-Uniqueness in Derivation

Let $G=(V, \Sigma, S, P)=\left(\left\{S, S_{1}, S_{2}\right\},\{a, b\}, S\right.$,

$$
\left\{S \rightarrow S_{1} S_{2}, S_{1} \rightarrow a S_{1} b\left|a b, S_{2} \rightarrow a S_{2} b\right| a b\right\} .
$$

- Here $\mathcal{L}(G)=\left\{a^{n_{1}} b^{n_{1}} a^{n_{2}} b^{n_{2}} \mid n_{1}, n_{2} \geq 1\right\}$.
- In this case even the simple string $a b a b$ has two distinct derivations:
$S \Rightarrow S_{1} S_{2} \Rightarrow a b S_{2} \Rightarrow a b a b$
$S \Rightarrow S_{1} S_{2} \Rightarrow S_{1} a b \Rightarrow a b a b$
- However, there is only one tree-like representation of the derivation.

- Such a tree, called a derivation tree, provides more useful information than just a linear derivation using \Rightarrow.
- In this setting, it is only the order of replacements of the variables, and not the replacements themselves, which is not unique.
- This idea will be formalized shortly.

Inessential Non-uniqueness of derivations

- A CFG G is ambiguous if there is some $\alpha \in \mathcal{L}(G)$ which has two distinct derivation trees.

Example: Let $G=(V, \Sigma, S, P)=\left(\left\{S, S_{1}, S_{2}\right\},\{a, b\}, S\right.$,

$$
\left\{S \rightarrow S_{1} S_{2}, S_{1} \rightarrow a S_{1} b\left|\lambda, S_{2} \rightarrow a S_{2} b\right| \lambda\right\}
$$

- Here $\mathcal{L}(G)=\left\{a^{n_{1}} b^{n_{1}} a^{n_{2}} b^{n_{2}} \mid n_{1}, n_{2} \geq 0\right\}$.
- For any $k>0$, the string $a^{k} b^{k}$ has two distinct derivations.
- Here are the two derivations for $a b$, represented as trees:

- This non-uniqueness issue may easily be repaired.

A Repair of the Non-Uniqueness Example

- The original grammar

$$
\begin{aligned}
G=(V, \Sigma, S, P)=\left(\left\{S, S_{1},\right.\right. & \left.S_{2}\right\},\{a, b\}, S \\
& \left\{S \rightarrow S_{1} S_{2}, S_{1} \rightarrow a S_{1} b\left|\lambda, S_{2} \rightarrow a S_{2} b\right| \lambda\right\} .
\end{aligned}
$$

- The repaired grammar:

$$
\begin{aligned}
G^{\prime}=\left(V, \Sigma, S, P^{\prime}\right) & =\left(\left\{S, S_{1}, S_{2}\right\},\{a, b\}, S\right. \\
& \left\{S \rightarrow \lambda\left|S_{1}\right| S_{1} S_{2}, S_{1} \rightarrow a S_{1} b\left|a b, S_{2} \rightarrow a S_{2} b\right| a b\right\} .
\end{aligned}
$$

- The only derivation of $a b$:

- Unfortunately, it can be shown that there is no algorithm which takes as input an arbitrary CFG and decides whether or not it is ambiguous, much less construct a CFG which is equivalent.

Inherent Ambiguity

- A CFG $G=(V, \Sigma, S, P)$ is inherently ambiguous if for every CFG G^{\prime} with $\mathcal{L}\left(G^{\prime}\right)=\mathcal{L}(G)$ is ambiguous.
- A CFL L is inherently ambiguous if every CFG G with $\mathcal{L}(G)=L$ is ambiguous.
- Thus, while ambiguity is a property of a grammar, inherent ambiguity is a property of a language and not of a specific grammar.
- Establishing that a CFL is inherently ambiguous is nontrivial.
- Here is a well-known example, presented without proof:

$$
\left\{a^{i} b^{j} c^{k} \mid i=j \text { or } j=k\right\}
$$

- Do important inherently ambiguous CFLs exist in practice?
- It can be proven that there is no algorithm to decide whether or not a CFG is inherently ambiguous.

A More Formal Presentation of Derivation Trees

Context: A CFG $G=(V, \Sigma, S, P)$.

- A partial derivation tree (or (partial) parse tree) for G with root $A \in V$ is a rooted tree with ordered subtrees such that
- The root is labelled A.
- Interior vertices are labelled with members of V.
- Leaf vertices are labelled by members of $V \cup \Sigma \cup\{\lambda\}$.
- If interior vertex x has label B with children labelled $c_{1} \ldots c_{k}$ from left to right, then $B \rightarrow c_{1} \ldots c_{k} \in P$.
- Particularly, a leaf labelled λ can have no siblings.
- The yield (or frontier) of a partial derivation tree is the concatenation of leaf labels, read from left to right.

Observation: Let $A \in V$ and $\alpha \in(V \cup \Sigma)^{*}$. Then $A \underset{G}{\rightarrow} \alpha$ iff there is a partial derivation tree for G with root A and frontier α. \square

- A partial derivation tree T with root S and yield $\alpha \in \Sigma^{*}$ is called a derivation tree for α.

Leftmost Derivations

- There is a natural correspondence between derivations which always replace the leftmost variable first and parse trees.
- Let $G=(V, \Sigma, S, P)$ be a CFG with $A \in V$ and $\alpha \in(V \cup \Sigma)^{*}$. The derivation

$$
A \underset{G}{\Rightarrow} \alpha_{1} \underset{G}{\Rightarrow} \alpha_{2} \ldots \alpha_{i} \Rightarrow \alpha_{i+1} \ldots \alpha_{n}=\alpha
$$

is a leftmost derivation of α from A if in each step $\alpha_{i} \underset{G}{\Rightarrow} \alpha_{i+1}$ the leftmost variable in the string α_{i} is replaced.

- A rightmost derivation is defined analogously.

Leftmost and Rightmost Derivation Illustrated

Example: $G^{\prime}=\left(V, \Sigma, S, P^{\prime}\right)=\left(\left\{S, S_{1}, S_{2}\right\},\{a, b\}, S\right.$,

$$
\left\{S \rightarrow \lambda\left|S_{1}\right| S_{1} S_{2}, S_{1} \rightarrow a S_{1} b\left|a b, S_{2} \rightarrow a S_{2} b\right| a b\right\} .
$$

- Here are the leftmost and rightmost derivations for aabbaabb:

$$
\begin{aligned}
& S \Rightarrow S_{1} S_{2} \Rightarrow a S_{1} b S_{2} \Rightarrow a a b b S_{2} \Rightarrow a a b b a S_{2} b \Rightarrow a a b b a a b b \\
& S \Rightarrow S_{1} S_{2} \Rightarrow S_{1} a S_{2} b \Rightarrow S_{1} a a b b \Rightarrow a a S_{1} b b a a b b \Rightarrow \text { aabbaabb }
\end{aligned}
$$

- And here is the common derivation tree:

A Practical Example - If-Then-Else Ambiguity

- Consider the grammar with the following productions:

$$
\begin{array}{ll}
\langle\text { stmt }\rangle & \rightarrow\langle\text { if_stmt }\rangle \mid\langle\text { nif_stmt }\rangle \\
\langle\text { if_stmt }\rangle & \rightarrow \text { if }\langle\text { cond }\rangle \text { then }\langle\text { stm }\rangle \mid \text { if }\langle\text { cond }\rangle \text { then }\langle\text { stmt }\rangle \text { else }\langle s t m t\rangle \\
\langle\text { nif_stmt }\rangle & \rightarrow s_{1}\left|s_{2}\right| s_{3} \mid(\langle\text { stmt }\rangle) \\
\langle\text { cond }\rangle & \rightarrow c_{1}\left|c_{2}\right| c_{3}
\end{array}
$$

- The bracketed names are nonterminals, with $\langle s t m t\rangle$ the start symbol.
- The terminals are $\left\{\right.$ if, then, else, $\left.s_{1}, s_{2}, s_{3}, c_{1}, c_{2}, c_{3},(),\right\}$.
- The statement

$$
\text { if } c_{1} \text { then if } c_{2} \text { then } s_{1} \text { else } s_{2}
$$

has two parses, which corresponding to two distinct meanings, indicated by indentation:

$$
\begin{array}{cr}
\text { if } c_{1} \text { then if } c_{2} \text { then } s_{1} & \text { if } c_{1} \text { then } \\
\text { else } s_{2} & \text { if } c_{2} \text { then } s_{1} \text { else } s_{2}
\end{array}
$$

The Two Derivation Trees for If-Then-Else Ambiguity

- The corresponding derivation trees:

- In the "correct" tree, the meaning of the statement is recaptured by evaluating subtrees in a bottom-up fashion.
- The tree to the right recaptures the usual convention.
- Else-part associated with nearest then-part.

Resolution of If-Then-Else-Ambiguity

- Here is the repair of the grammar:

$\left\langle\right.$ stmt ${ }^{\text {d }}$	\rightarrow	
		$\mid\left\langle n i f _s t m t\right\rangle$
〈ifs-stmt>		if $\left\langle\right.$ cond ${ }^{\text {d }}$ then $\left\langle\right.$ stmt ${ }^{\text {d }}$
〈if_then_stmt ${ }^{\text {d }}$	\rightarrow	if \langle cond \rangle then $\langle s t m t\rangle$
$\left\langle i f _t h e n _e l s e _s t m t\right\rangle$	\rightarrow	if \langle cond \rangle then \langle nif_stmt \rangle else \langle stmt \rangle
\langle nif_stmt \rangle	\rightarrow	$s_{1}\left\|s_{2}\right\| s_{3} \mid(\langle s t m t\rangle)$
<cond ${ }^{\text {d }}$	\rightarrow	$c_{1}\left\|c_{2}\right\| c_{3}$

- Note in particular that $\left\langle i f_{_} s t m t\right\rangle$ has been replaced with
- $\left\langle i f _t h e n _s t m t\right\rangle$ and
- $\langle i f$ _then_else_stmt \rangle.
- An if statement in parentheses is "protected".

Parse Tree for the Repaired If-Then-Else Example

- The statement to be parsed is:

$$
\text { if } c_{1} \text { then if } c_{2} \text { then } s_{1} \text { else } s_{2}
$$

- To the right is the the unique pare tree in the repaired grammar.
- To the left is the old parse tree which is blocked by this new grammar.
- The one to the right is similar to the second one in the original grammar.

Another Practical Example - Precedence of Operations

- Here is a simple grammar for arithmetic expressions:

Nonterminals: $\{\langle$ Expr $\rangle,\langle |$ dent $\rangle\}$.
Terminals: $\{A, B, \ldots, Z,(),,+, *\}$.
Start symbol: 〈Expr〉
Productions:

$$
\begin{aligned}
\langle\text { Ident }\rangle & \rightarrow \mathrm{A}|\mathrm{~B}| \ldots|\mathrm{Y}| \mathrm{Z} \\
\langle\text { Expr }\rangle & \rightarrow\langle\text { Expr }\rangle+\langle\text { Expr }\rangle \mid\langle\text { Expr }\rangle *\langle\text { Expr }\rangle \mid(\langle\text { Expr }\rangle) \mid\langle\text { Ident }\rangle
\end{aligned}
$$

- The expression $\mathrm{X}+\mathrm{Y} * \mathrm{Z}$ has two parse trees:

Repair of the Operator-Precedence Problem

- Here is the repair using factors and terms:

Productions: $\quad\langle$ Ident $\rangle \rightarrow \mathrm{A}|\mathrm{B}| \ldots|\mathrm{Y}| \mathrm{Z}$

$$
\begin{aligned}
\langle\text { Expr }\rangle & \rightarrow\langle\text { Expr }\rangle+\langle\text { Term }\rangle \mid\langle\text { Term }\rangle \\
\langle\text { Term }\rangle & \rightarrow\langle\text { Term }\rangle *\langle\text { Factor }\rangle \mid\langle\text { Factor }\rangle \\
\langle\text { Factor }\rangle & \rightarrow(\langle\text { Expr }\rangle) \mid\langle\text { Ident }\rangle
\end{aligned}
$$

- The unique parse tree for $\mathrm{X}+\mathrm{Y} * \mathrm{Z}$:

