
Context Free Grammars and Languages

5DV037 — Fundamentals of Computer Science

Ume̊a University

Department of Computing Science

Stephen J. Hegner

hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Context Free Grammars and Languages 20100916 Slide 1 of 20

Relevance

• Context-free grammars (CFGs) are the most important class of grammars
in computer science.

• The main syntactic structure of virtually all modern programming
languages is expressed using them.

• Modern parsers for programming languages are based upon them.

• Tools have been developed which generate parsers automatically from
CFGs, and such tools are widely used.

• Many approaches to the modelling and understanding of natural
language are also based upon context-free “backbones”.

• In short, CFGs are a central notion in practical as well as theoretical
computer science.

Context Free Grammars and Languages 20100916 Slide 2 of 20

A Review of the Notion of a Grammar

Definition: A (phrase-structure) grammar is a four-tuple

G = (V ,Σ,S ,P)

in which

• V is a finite alphabet, called the variables or nonterminal symbols;

• Σ is a finite alphabet, called the set of terminal symbols;

• S ∈ V is the start symbol;

• P is a finite subset of (V ∪Σ)+ × (V ∪ Σ)∗ called the set of
productions or rewrite rules;

• V ∩ Σ = ∅;

• The production (w1,w2) ∈ P is typically written w1 →
G

w2, or just

w1 → w2 if the context G is clear.

• The meaning of w1 → w2 is that w1 may be replaced by w2 in a string.

• Note that w1 may be any nonempty string in this definition.

Context Free Grammars and Languages 20100916 Slide 3 of 20

Context-Free Grammars

• In a context-free grammar, the left-hand side of each production must be
a single nonterminal symbol.

• Thus, the replacement is independent of the context in which the
nonterminal occurs.

Definition: A context-free grammar or CFG is a four-tuple

G = (V ,Σ,S ,P)
in which

• V is a finite alphabet, called the variables or nonterminal symbols;

• Σ is a finite alphabet, called the set of terminal symbols;

• S ∈ V is the start symbol;

• P is a finite subset of V × (V ∪ Σ)∗ called the set of productions or
rewrite rules;

• V ∩ Σ = ∅;

• Productions are thus of the form A → w

for some A ∈ V and w ∈ (V ∪ Σ)∗.

Context Free Grammars and Languages 20100916 Slide 4 of 20

Derivation in the Context of a CFG
Context: G = (V ,Σ,S ,P) a CFG.

• Let A →
G

w , and let β ∈ (V ∪ Σ)+ be a string which contains A;

i.e., β = α1Aα2 for some α1, α2 ∈ (V ∪ Σ)∗.

• A possible single-step derivation on w replaces A with w .

• Write α1Aα2 ⇒
G

α1wα2 (or just α1Aα2 ⇒ α1wα2).

• Note that many derivation steps may be possible on a given string.

• This process is thus inherently nondeterministic.

• Write w
∗
⇒
G

u (or just w
∗
⇒ u) if w = u or else there is a sequence

w = α0
∗
⇒
G

α1
∗
⇒
G

α2 . . .
∗
⇒
G

αk = u

called a derivation of u from w (for G).

• Write w
+
⇒
G

u (or just w
+
⇒ u) if the derivation is at least one step long.

• The language of G is L(G) = {w ∈ Σ∗ | S
∗
⇒
G

w}.

• A language L is context free (or a CFL) if L = L(G) for some CFG G .

• The CFGs G1 and G2 are equivalent if L(G1) = L(G2).
Context Free Grammars and Languages 20100916 Slide 5 of 20

Degrees of Ambiguity for CFGs

• There are four possible levels of ambiguity with respect to derivations in
a CFG G = (V ,Σ,S ,P).

• First, these will be listed, and then an example of each will be presented.

Unique derivations: For each α ∈ L(G), there is exactly one derivation
for α.

Essentially unique derivations: The various derivations of each
α ∈ L(G) differ only in the order in which the variables are replaced.

• Unique derivation tree.

Non-unique derivations but repairable: There is some α ∈ L(G) with at
least two distinct derivation trees, but there is another CFG G ′ with
L(G) = L(G ′) for which each α ∈ L(G ′) has a unique derivation
tree.

Inherently non-unique derivations: For every CFG G ′ with
L(G ′) = L(G), there is some string α ∈ L(G) which has at least
two distinct derivation trees in G ′.

Context Free Grammars and Languages 20100916 Slide 6 of 20

An Example of Unique Derivation

Let G = (V ,Σ,S ,P) = ({S}, {a, b},S , {S → aSb | ab}

• It is easy to see that L(G) = {anbn | n ≥ 1}.

• The string aaabbb has the unique derivation

S ⇒ aSb ⇒ aaSbb ⇒ aaabbb

and hence is in L(G).

• In general, the string akbk has the unique derivation

S ⇒ aSb ⇒ aaSbb ⇒ . . . ⇒ aiSbi . . . ⇒ ak−1Sbk−1 ⇒ akbk

• Thus, every string in L(G) has a unique derivation in G .

• This type of uniqueness is very rare in practice.

Context Free Grammars and Languages 20100916 Slide 7 of 20

Inessential Non-Uniqueness in Derivation
Let G = (V ,Σ,S ,P) = ({S ,S1,S2}, {a, b},S ,

{S → S1S2, S1 → aS1b | ab, S2 → aS2b | ab}.

• Here L(G) = {an1bn1an2bn2 | n1, n2 ≥ 1}.

• In this case even the simple string abab has two distinct derivations:
S ⇒ S1S2 ⇒ abS2 ⇒ abab

S ⇒ S1S2 ⇒ S1ab ⇒ abab

• However, there is only one tree-like representation of the derivation.
S

S1

a b

S2

a b

• Such a tree, called a derivation tree, provides more useful information
than just a linear derivation using ⇒.

• In this setting, it is only the order of replacements of the variables, and
not the replacements themselves, which is not unique.

• This idea will be formalized shortly.
Context Free Grammars and Languages 20100916 Slide 8 of 20

Inessential Non-uniqueness of derivations

• A CFG G is ambiguous if there is some α ∈ L(G) which has two distinct
derivation trees.

Example: Let G = (V ,Σ,S ,P) = ({S ,S1,S2}, {a, b},S ,
{S → S1S2, S1 → aS1b | λ, S2 → aS2b | λ}.

• Here L(G) = {an1bn1an2bn2 | n1, n2 ≥ 0}.

• For any k > 0, the string akbk has two distinct derivations.

• Here are the two derivations for ab, represented as trees:
S

S1

a S1

λ

b

S2

λ

S

S1

λ

S2

a S2

λ

b

• This non-uniqueness issue may easily be repaired.

Context Free Grammars and Languages 20100916 Slide 9 of 20

A Repair of the Non-Uniqueness Example

• The original grammar
G = (V ,Σ,S ,P) = ({S ,S1,S2}, {a, b},S ,

{S → S1S2, S1 → aS1b | λ, S2 → aS2b | λ}.

• The repaired grammar:
G ′ = (V ,Σ,S ,P ′) = ({S ,S1,S2}, {a, b},S ,

{S → λ | S1 | S1S2, S1 → aS1b | ab, S2 → aS2b | ab}.

• The only derivation of ab:
S

S1

a b

• Unfortunately, it can be shown that there is no algorithm which takes as
input an arbitrary CFG and decides whether or not it is ambiguous, much
less construct a CFG which is equivalent.

Context Free Grammars and Languages 20100916 Slide 10 of 20

Inherent Ambiguity

• A CFG G = (V ,Σ,S ,P) is inherently ambiguous if for every CFG G ′

with L(G ′) = L(G) is ambiguous.

• A CFL L is inherently ambiguous if every CFG G with L(G) = L is
ambiguous.

• Thus, while ambiguity is a property of a grammar, inherent ambiguity is
a property of a language and not of a specific grammar.

• Establishing that a CFL is inherently ambiguous is nontrivial.

• Here is a well-known example, presented without proof:

{aibjck | i = j or j = k}

• Do important inherently ambiguous CFLs exist in practice?

• It can be proven that there is no algorithm to decide whether or not a
CFG is inherently ambiguous.

Context Free Grammars and Languages 20100916 Slide 11 of 20

A More Formal Presentation of Derivation Trees

Context: A CFG G = (V ,Σ,S ,P).

• A partial derivation tree (or (partial) parse tree) for G with root A ∈ V is
a rooted tree with ordered subtrees such that

• The root is labelled A.

• Interior vertices are labelled with members of V .

• Leaf vertices are labelled by members of V ∪Σ ∪ {λ}.

• If interior vertex x has label B with children labelled c1 . . . ck from
left to right, then B → c1 . . . ck ∈ P .

• Particularly, a leaf labelled λ can have no siblings.

• The yield (or frontier) of a partial derivation tree is the concatenation of
leaf labels, read from left to right.

Observation: Let A ∈ V and α ∈ (V ∪ Σ)∗. Then A →
G

α iff there is a

partial derivation tree for G with root A and frontier α. �

• A partial derivation tree T with root S and yield α ∈ Σ∗ is called a
derivation tree for α.

Context Free Grammars and Languages 20100916 Slide 12 of 20

Leftmost Derivations

• There is a natural correspondence between derivations which always
replace the leftmost variable first and parse trees.

• Let G = (V ,Σ,S ,P) be a CFG with A ∈ V and α ∈ (V ∪Σ)∗. The
derivation

A ⇒
G

α1 ⇒
G

α2 . . . αi ⇒ αi+1 . . . αn = α

is a leftmost derivation of α from A if in each step αi ⇒
G

αi+1 the

leftmost variable in the string αi is replaced.

• A rightmost derivation is defined analogously.

Context Free Grammars and Languages 20100916 Slide 13 of 20

Leftmost and Rightmost Derivation Illustrated

Example: G ′ = (V ,Σ,S ,P ′) = ({S ,S1,S2}, {a, b},S ,
{S → λ | S1 | S1S2, S1 → aS1b | ab, S2 → aS2b | ab}.

• Here are the leftmost and rightmost derivations for aabbaabb:
S ⇒ S1S2 ⇒ aS1bS2 ⇒ aabbS2 ⇒ aabbaS2b ⇒ aabbaabb

S ⇒ S1S2 ⇒ S1aS2b ⇒ S1aabb ⇒ aaS1bbaabb ⇒ aabbaabb

• And here is the common derivation tree:
S

S1

a S1

a b

b

S2

a S2

a b

b

Context Free Grammars and Languages 20100916 Slide 14 of 20

A Practical Example — If-Then-Else Ambiguity

• Consider the grammar with the following productions:
〈stmt〉 → 〈if stmt〉 | 〈nif stmt〉

〈if stmt〉 → if〈cond〉then〈stmt〉 | if〈cond〉then〈stmt〉else〈stmt〉

〈nif stmt〉→ s1 | s2 | s3 | (〈stmt〉)

〈cond〉 → c1 | c2 | c3

• The bracketed names are nonterminals, with 〈stmt〉 the start symbol.

• The terminals are {if, then, else, s1, s2, s3, c1, c2, c3, (,)}.

• The statement
if c1 then if c2 then s1 else s2

has two parses, which corresponding to two distinct meanings, indicated
by indentation:

if c1 then if c2 then s1
else s2

if c1 then

if c2 then s1 else s2

Context Free Grammars and Languages 20100916 Slide 15 of 20

The Two Derivation Trees for If-Then-Else Ambiguity

• The corresponding derivation trees:

〈stmt〉

〈if stmt〉

if 〈cond〉

c1

then 〈stmt〉

〈if stmt〉

if 〈cond〉

c2

then 〈stmt〉

〈nif stmt〉

s1

else 〈stmt〉

〈nif stmt〉

s2

〈stmt〉

〈if stmt〉

if 〈cond〉

c1

then 〈stmt〉

〈if stmt〉

if 〈cond〉

c2

then 〈stmt〉

〈nif stmt〉

s1

else 〈stmt〉

〈nif stmt〉

s2

• In the “correct” tree, the meaning of the statement is recaptured by
evaluating subtrees in a bottom-up fashion.

• The tree to the right recaptures the usual convention.

• Else-part associated with nearest then-part.
Context Free Grammars and Languages 20100916 Slide 16 of 20

Resolution of If-Then-Else-Ambiguity

• Here is the repair of the grammar:
〈stmt〉 → 〈if stmt〉 〈if then stmt〉 | 〈if then else stmt〉

| 〈nif stmt〉
〈if stmt〉 → if〈cond〉then〈stmt〉

| if〈cond〉then〈stmt〉else〈stmt〉
〈if then stmt〉 → if〈cond〉then〈stmt〉

〈if then else stmt〉 → if〈cond〉then〈nif stmt〉else〈stmt〉

〈nif stmt〉 → s1 | s2 | s3 | (〈stmt〉)

〈cond〉 → c1 | c2 | c3

• Note in particular that 〈if stmt〉 has been replaced with

• 〈if then stmt〉 and

• 〈if then else stmt〉.

• An if statement in parentheses is “protected”.

Context Free Grammars and Languages 20100916 Slide 17 of 20

Parse Tree for the Repaired If-Then-Else Example

• The statement to be parsed is:

if c1 then if c2 then s1 else s2

• To the right is the the unique pare tree in the repaired grammar.

• To the left is the old parse tree which is blocked by this new grammar.

• The one to the right is similar to the second one in the original grammar.

〈stmt〉

〈if then else stmt〉

if 〈cond〉

c1

then 〈stmt〉

〈if stmt〉

if 〈cond〉

c2

then 〈stmt〉

〈nif stmt〉

s1

else 〈stmt〉

〈nif stmt〉

s2

〈stmt〉

〈if then stmt〉

if 〈cond〉

c1

then 〈stmt〉

〈if then else stmt〉

if 〈cond〉

c2

then 〈nif stmt〉

s1

else 〈stmt〉

〈nif stmt〉

s2
Context Free Grammars and Languages 20100916 Slide 18 of 20

Another Practical Example – Precedence of Operations

• Here is a simple grammar for arithmetic expressions:

Nonterminals: {〈Expr〉, 〈Ident〉}.

Terminals: {A, B, . . . , Z, (,), +, *}.

Start symbol: 〈Expr〉

Productions:
〈Ident〉 → A | B | . . . | Y | Z

〈Expr〉 → 〈Expr〉 + 〈Expr〉 | 〈Expr〉 ∗ 〈Expr〉 | (〈Expr〉) | 〈Ident〉

• The expression X+Y*Z has two parse trees:
〈Expr〉

〈Expr〉

〈Expr〉

〈Ident〉

X

+ 〈Expr〉

〈Ident〉

Y

∗ 〈Expr〉

〈Ident〉

Z

〈Expr〉

〈Expr〉

〈Ident〉

X

+ 〈Expr〉

〈Expr〉

〈Ident〉

Y

∗ 〈Expr〉

〈Ident〉

Z

Context Free Grammars and Languages 20100916 Slide 19 of 20

Repair of the Operator-Precedence Problem

• Here is the repair using factors and terms:

Productions: 〈Ident〉 → A | B | . . . | Y | Z

〈Expr〉 → 〈Expr〉 + 〈Term〉 | 〈Term〉

〈Term〉 → 〈Term〉 ∗ 〈Factor〉 | 〈Factor〉

〈Factor〉 → (〈Expr〉) | 〈Ident〉

• The unique parse tree for X+Y*Z:
〈Expr〉

〈Expr〉

〈Term〉

〈Factor〉

〈Ident〉

X

+ 〈Term〉

〈Term〉

〈Factor〉

〈Ident〉

Y

* 〈Factor〉

〈Ident〉

Z

Context Free Grammars and Languages 20100916 Slide 20 of 20

