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Three Basic Areas of Application

• Three basic areas in which regular expressions are used in applications
within computer science are the following.

• Lexical analysis in the compilation of programming languages and
the processing of natural (human) language.

• (Extended) regular expressions in programming environments.

• Modelling computer systems using finite-state machines.

• A very brief overview of these areas will be presented.
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Motivation for Lexical Analysis

• Consider the tabloid headline:
Man bites dog!

• Rather than processing each character separately, one naturally breaks it
into three words and a terminating punctuation mark.

• The need for this is more apparent if the sentence is in a language which
is unfamiliar.

Homme mord chien !

• To understand the sentence, one might strip away the punctuation marks
and look up each word separately in dictionary and then try to piece
together the results.

• The key is that the input is first broken into words.

• In processing a program in a computer programming language, a similar
process is involved.
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Lexical Analysis for Computer Programs

• Consider the following program fragment from a fictitious language:
While X1<=X2*1.25E12 do X2:=foo(X1); end while;

• The first thing that a compiler will do is to break up this string into
“words” and “punctuation marks”, called tokens.

• This string has the following 17 tokens (separated by spaces):

While X1 <= X2 * 1.25E12 do X2 := foo ( X1 ) ; end while ;

• These tokens include:

keywords: While do end while

identifiers: X1 X2 foo

numbers: 1.25E12

operators: <= :=

punctuation: ( ) ;

• Just as words in a natural language, tokens have meaning only as units.

• <=, <, and = are each distinct tokens with distinct meanings, just as
“do”, “or”, and “door” are distinct words in English.
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Lexical Analysis for Computer Programs 2

• The language which describes tokens is almost always regular.

• There are tools to build an accepter automatically from the description of
a regular language.

• Lex, Flex, SimpLex

• These classical tools were built to generate C code, but variations for
other host languages have been developed as well.

Clarification: C is the language in which the compiler is written, not the
language which is to be compiled.

• These tools take a representation (using REs or regular grammars) and
produce an NFA which accepts the language consisting of legal tokens.

• Instead of just answering yes or no, there is a program associated with
each accepting state. It is executed when the NFA halts in that state.

• Nondeterminism is handled by ordering the accepting states, and running
the program for the first one in the list which accepts.
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A Simple Example of Token Description

• Here is a simple recursive description, using regular expressions, of the
numbers in a typical programming language.

• First some special names to avoid symbol conflicts:
〈plus〉 = the symbol + 〈dot〉 = the symbol .

〈minus〉 = the symbol −

• Now the main definitions:
〈digit〉 = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
〈sign〉 = 〈plus〉+ 〈minus〉+ λ

〈integer〉 = 〈digit〉 · 〈digit〉∗

〈signed int〉 = 〈sign〉 · 〈integer〉
〈dec num〉 = 〈signed int〉 · 〈dot〉 · 〈integer〉

+ 〈sign〉 · 〈dot〉 · 〈integer〉 + 〈signed int〉
〈exp num〉 = 〈dec num〉+ 〈dec num〉 · E · 〈signed int〉
〈real num〉 = 〈dec num〉+ 〈exp num〉

• Modulo some syntactic conventions, this sort of specification is actually
used in the specification of lexical analyzers.
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Alternate Represenatation of Token Descriptions

Note: It is more common to express such defintions using a grammar
formalism, although the two representations differ only in minor ways.

〈digit〉 → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

〈sign〉 → 〈plus〉 | 〈minus〉 | λ

〈integer〉 → 〈digit〉 · 〈digit〉∗

〈signed int〉 → 〈sign〉 · 〈integer〉

〈dec num〉 → 〈signed int〉 · 〈dot〉 · 〈integer〉

| 〈sign〉 · 〈dot〉 · 〈integer〉 | 〈signed int〉
〈exp num〉 → 〈dec num〉 | 〈dec num〉 · E · 〈signed int〉

〈real num〉 → 〈dec num〉 | 〈exp num〉
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Regular Expressions in Programming

• An extended form of regular expressions (often called regexps is widely
used in programming and systems applications (e.g., GnuEmacs).

• There are two principal flavors, which differ in minor ways:

• The POSIX regexps, used in Unix/Linux and their friends.

• The Perl flavor.

• Compared to the regular expressions which have been studied in this
course, these differ in two principal ways.

• They allow for the recall of matched patterns, so they are strictly
more powerful than the REs in the theory world.

• They have syntactic conventions adapted to the real world:

• Expressions may include symbols which are reserved for
punctuation in the formal REs, such as “+”, “(“, and the like.

• Ways to match special characters, such as tabs and the
beginning or end of a line, are included.

• Abbreviations to match common sets, such as all letters, or all
uppercase letters, are available.
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Some Syntax for Regexps

• The real world regexps have a very ugly syntax which is difficult to read,
but it is not clear that there are better alternatives.

• Some examples:
Classical REs Posix Perl Comments

a+b a\|b a|b

a · a∗ a+ a+ at least one occurrence

a+ λ a? a? zero or one occurrence

complex a{m, n} a{m, n} ≥ m and ≤ n occurrences

(a+b+c) [abc] [abc]

(e) \(e\) (e) grouping

b+c+. . .+g [b-g] [b-g] Any range of letters or digits

complex [^b-g] [b-g] Anything except b through g

complex . . any character

\n \n linefeed

ˆ ˆ beginning of line

$ $ end of line
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Some Syntax for Regexps 2

• Special characters are generally escaped to obtain the literal character:

• \[ gives the bracket character [; likewise for \] and ].

• Note that the left parenthesis ( is ordinary in Posix but special in
Perl. Likewise for ) and |.

Example: Match a legal e-mail address (simplified):

\b[A-Za-z0-9 %+-]+@[A-Za-z0-9-]+(\.[A-Za-z]+){1,4}\b

• \b matches the empty string.
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Matching in Regexps

• The extended language also allows copying of previously matched
expressions.

• The sed stream editor uses Posix regexps for editing scripts.

• This little script uses the sed stream editor to translate a
semicolon-separated list into an SQL insert statement.

#!/bin/sh

sed "s/\(.*\)\;\(.*\)\;\(.*\)/Insert into Student Values(’\1’,’\2’,’\3’\)\;/"

• Sed format: s/〈regexp〉/〈result〉/

• \i matches the ith pattern, for 1 ≤ i ≤ 9.
wellensittich[17]===>cat testdat.sxc

Aardvark, Alvin A;1234456-7890;aardvark

Perfect, Penelope P;555555-5555;penny

Zebra, Zelda Z;987654-3210;zebra

wellensittich[18]===>./sedscript.sh < testdat.sxc

Insert into Student Values(’Aardvark, Alvin A’,’1234456-7890’,’aardvark’);

Insert into Student Values(’Perfect, Penelope P’,’555555-5555’,’penny’);

Insert into Student Values(’Zebra, Zelda Z’,’987654-3210’,’zebra’);

• This match-and-retrieve feature gives accepting power beyond REs.
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Modelling Computer Systems Using DFAs

• Finite automata are often used to model the behavior of certain aspects
of a computer system.

• The issue is generally not so much acceptance as the characterization of
some property based upon the current state of the machine.

• You will see many examples during your studies of computer science.
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