
Regular Languages and Representation in the Real

World

5DV037 — Fundamentals of Computer Science

Ume̊a University

Department of Computing Science

Stephen J. Hegner

hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Regular Languages and Representation in the Real World 20100913 Slide 1 of 12

Three Basic Areas of Application

• Three basic areas in which regular expressions are used in applications
within computer science are the following.

• Lexical analysis in the compilation of programming languages and
the processing of natural (human) language.

• (Extended) regular expressions in programming environments.

• Modelling computer systems using finite-state machines.

• A very brief overview of these areas will be presented.

Regular Languages and Representation in the Real World 20100913 Slide 2 of 12

Motivation for Lexical Analysis

• Consider the tabloid headline:
Man bites dog!

• Rather than processing each character separately, one naturally breaks it
into three words and a terminating punctuation mark.

• The need for this is more apparent if the sentence is in a language which
is unfamiliar.

Homme mord chien !

• To understand the sentence, one might strip away the punctuation marks
and look up each word separately in dictionary and then try to piece
together the results.

• The key is that the input is first broken into words.

• In processing a program in a computer programming language, a similar
process is involved.

Regular Languages and Representation in the Real World 20100913 Slide 3 of 12

Lexical Analysis for Computer Programs

• Consider the following program fragment from a fictitious language:
While X1<=X2*1.25E12 do X2:=foo(X1); end while;

• The first thing that a compiler will do is to break up this string into
“words” and “punctuation marks”, called tokens.

• This string has the following 17 tokens (separated by spaces):

While X1 <= X2 * 1.25E12 do X2 := foo (X1) ; end while ;

• These tokens include:

keywords: While do end while

identifiers: X1 X2 foo

numbers: 1.25E12

operators: <= :=

punctuation: () ;

• Just as words in a natural language, tokens have meaning only as units.

• <=, <, and = are each distinct tokens with distinct meanings, just as
“do”, “or”, and “door” are distinct words in English.

Regular Languages and Representation in the Real World 20100913 Slide 4 of 12

Lexical Analysis for Computer Programs 2

• The language which describes tokens is almost always regular.

• There are tools to build an accepter automatically from the description of
a regular language.

• Lex, Flex, SimpLex

• These classical tools were built to generate C code, but variations for
other host languages have been developed as well.

Clarification: C is the language in which the compiler is written, not the
language which is to be compiled.

• These tools take a representation (using REs or regular grammars) and
produce an NFA which accepts the language consisting of legal tokens.

• Instead of just answering yes or no, there is a program associated with
each accepting state. It is executed when the NFA halts in that state.

• Nondeterminism is handled by ordering the accepting states, and running
the program for the first one in the list which accepts.

Regular Languages and Representation in the Real World 20100913 Slide 5 of 12

A Simple Example of Token Description

• Here is a simple recursive description, using regular expressions, of the
numbers in a typical programming language.

• First some special names to avoid symbol conflicts:
〈plus〉 = the symbol + 〈dot〉 = the symbol .

〈minus〉 = the symbol −

• Now the main definitions:
〈digit〉 = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
〈sign〉 = 〈plus〉+ 〈minus〉+ λ

〈integer〉 = 〈digit〉 · 〈digit〉∗

〈signed int〉 = 〈sign〉 · 〈integer〉
〈dec num〉 = 〈signed int〉 · 〈dot〉 · 〈integer〉

+ 〈sign〉 · 〈dot〉 · 〈integer〉 + 〈signed int〉
〈exp num〉 = 〈dec num〉+ 〈dec num〉 · E · 〈signed int〉
〈real num〉 = 〈dec num〉+ 〈exp num〉

• Modulo some syntactic conventions, this sort of specification is actually
used in the specification of lexical analyzers.

Regular Languages and Representation in the Real World 20100913 Slide 6 of 12

Alternate Represenatation of Token Descriptions

Note: It is more common to express such defintions using a grammar
formalism, although the two representations differ only in minor ways.

〈digit〉 → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

〈sign〉 → 〈plus〉 | 〈minus〉 | λ

〈integer〉 → 〈digit〉 · 〈digit〉∗

〈signed int〉 → 〈sign〉 · 〈integer〉

〈dec num〉 → 〈signed int〉 · 〈dot〉 · 〈integer〉

| 〈sign〉 · 〈dot〉 · 〈integer〉 | 〈signed int〉
〈exp num〉 → 〈dec num〉 | 〈dec num〉 · E · 〈signed int〉

〈real num〉 → 〈dec num〉 | 〈exp num〉

Regular Languages and Representation in the Real World 20100913 Slide 7 of 12

Regular Expressions in Programming

• An extended form of regular expressions (often called regexps is widely
used in programming and systems applications (e.g., GnuEmacs).

• There are two principal flavors, which differ in minor ways:

• The POSIX regexps, used in Unix/Linux and their friends.

• The Perl flavor.

• Compared to the regular expressions which have been studied in this
course, these differ in two principal ways.

• They allow for the recall of matched patterns, so they are strictly
more powerful than the REs in the theory world.

• They have syntactic conventions adapted to the real world:

• Expressions may include symbols which are reserved for
punctuation in the formal REs, such as “+”, “(“, and the like.

• Ways to match special characters, such as tabs and the
beginning or end of a line, are included.

• Abbreviations to match common sets, such as all letters, or all
uppercase letters, are available.

Regular Languages and Representation in the Real World 20100913 Slide 8 of 12

Some Syntax for Regexps

• The real world regexps have a very ugly syntax which is difficult to read,
but it is not clear that there are better alternatives.

• Some examples:
Classical REs Posix Perl Comments

a+b a\|b a|b

a · a∗ a+ a+ at least one occurrence

a+ λ a? a? zero or one occurrence

complex a{m, n} a{m, n} ≥ m and ≤ n occurrences

(a+b+c) [abc] [abc]

(e) \(e\) (e) grouping

b+c+. . .+g [b-g] [b-g] Any range of letters or digits

complex [^b-g] [b-g] Anything except b through g

complex . . any character

\n \n linefeed

ˆ ˆ beginning of line

$ $ end of line

Regular Languages and Representation in the Real World 20100913 Slide 9 of 12

Some Syntax for Regexps 2

• Special characters are generally escaped to obtain the literal character:

• \[gives the bracket character [; likewise for \] and].

• Note that the left parenthesis (is ordinary in Posix but special in
Perl. Likewise for) and |.

Example: Match a legal e-mail address (simplified):

\b[A-Za-z0-9 %+-]+@[A-Za-z0-9-]+(\.[A-Za-z]+){1,4}\b

• \b matches the empty string.

Regular Languages and Representation in the Real World 20100913 Slide 10 of 12

Matching in Regexps

• The extended language also allows copying of previously matched
expressions.

• The sed stream editor uses Posix regexps for editing scripts.

• This little script uses the sed stream editor to translate a
semicolon-separated list into an SQL insert statement.

#!/bin/sh

sed "s/\(.*\)\;\(.*\)\;\(.*\)/Insert into Student Values(’\1’,’\2’,’\3’\)\;/"

• Sed format: s/〈regexp〉/〈result〉/

• \i matches the ith pattern, for 1 ≤ i ≤ 9.
wellensittich[17]===>cat testdat.sxc

Aardvark, Alvin A;1234456-7890;aardvark

Perfect, Penelope P;555555-5555;penny

Zebra, Zelda Z;987654-3210;zebra

wellensittich[18]===>./sedscript.sh < testdat.sxc

Insert into Student Values(’Aardvark, Alvin A’,’1234456-7890’,’aardvark’);

Insert into Student Values(’Perfect, Penelope P’,’555555-5555’,’penny’);

Insert into Student Values(’Zebra, Zelda Z’,’987654-3210’,’zebra’);

• This match-and-retrieve feature gives accepting power beyond REs.

Regular Languages and Representation in the Real World 20100913 Slide 11 of 12

Modelling Computer Systems Using DFAs

• Finite automata are often used to model the behavior of certain aspects
of a computer system.

• The issue is generally not so much acceptance as the characterization of
some property based upon the current state of the machine.

• You will see many examples during your studies of computer science.

Regular Languages and Representation in the Real World 20100913 Slide 12 of 12

