Membership Properties for Regular Languages

5DV037 - Fundamentals of Computer Science Umeå University Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se http://www.cs.umu.se/~hegner

RE-Based Closure Properties

Notation: Recall that RegLang (Σ) denotes the set of all regular languages over the alphabet Σ.

Theorem: The class of regular languages over Σ is closed under union, concatenation, and Kleene star. More precisely, given $L_{1}, L_{2} \in \operatorname{RegLang}(\Sigma)$, the following languages are also in $\operatorname{RegLang}(\Sigma)$.

- $L_{1} \cup L_{2}$
- $L_{1} \cdot L_{2}$
- $L_{1}{ }^{*}$

Proof: Based upon the closure of regular expressions under the corresponding operations. \square

Closure under Complement

- Recall: the complement of the language L (relative to Σ) is $\bar{L}=\Sigma^{*} \backslash L$.

Theorem: The class of regular languages over Σ is closed under complement with respect to Σ.
Proof: Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA with $\mathcal{L}(M)=L$, and let
$M^{\prime}=\left(Q, \Sigma, \delta, q_{0}, Q \backslash F\right)$. Then $\mathcal{L}\left(M^{\prime}\right)=\bar{L} . \square$
Example: The machine on the right accepts the complement of the language of the machine on the left.

- Note that the machine must be deterministic for this construction to work.

Closure under Intersection

Theorem: The class of regular languages over Σ is closed under intersection with respect to Σ. More precisely, if $M_{1}, M_{2} \in \operatorname{RegLang}(\Sigma)$, then $L_{1} \cap L_{2} \in \operatorname{RegLang}(\Sigma)$ as well.

Proof 1: Use De Morgan's law

$$
L_{1} \cap L_{2}=\overline{\left(\overline{L_{1}} \cup \overline{L_{2}}\right)}
$$

and the fact that RegLang (Σ) is closed under union and complement. \square
Proof 2: Construct an accepter directly which runs accepters for each
language in parallel. Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{01}, F_{1}\right)$ and
$M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{02}, F_{2}\right)$ be DFAs with $\mathcal{L}\left(M_{1}\right)=L_{1}$ and $\mathcal{L}\left(M_{2}\right)=L_{2}$.
Define

$$
M_{1} \times M_{2}=\left(Q_{1} \times Q_{2}, \Sigma, \delta_{1} \times \delta_{2},\left(q_{o 1}, q_{02}\right), F_{1} \times F_{2}\right)
$$

with $\left(\delta_{1} \times \delta_{2}\right):\left(\left(q_{1}, q_{2}\right), a\right) \mapsto\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)$. Then
$\mathcal{L}\left(M_{1} \times M_{2}\right)=L_{1} \cap L_{2} . \square$

- Proof 2 works only for DFAs!

Closure under other Set Operations

- There are two other set operations which will be of use in that which follows.

Observation: Let $L_{1}, L_{2} \in \operatorname{RegLang}(\Sigma)$. Then $L_{1} \backslash L_{2} \in \operatorname{RegLang}(L)$ as well.
Proof: $L_{1} \backslash L_{2}=L_{1} \cap \overline{L_{2}}$; use closure under intersection and complement . \square

- Let $L_{1}, L_{2} \in \Sigma^{*}$. Define the symmetric difference of L_{1} and L_{2} to be $L_{1} \triangle L_{2}=\left(L_{1} \backslash L_{2}\right) \cup\left(L_{2} \backslash L_{1}\right)$.

Observation: IF $L_{1}, L_{2} \in \operatorname{RegLang}(\Sigma)$, so too is $L_{1} \triangle L_{2}$.
Proof: Use the above result on closure under set difference, together with closure under union. \square

Closure under Homomorphism

- Let Σ and Σ^{\prime} be alphabets. A homomorphism from Σ to Σ^{\prime} a function $h: \Sigma \rightarrow \Sigma^{\prime *}$.
- A homomorphism extends to strings in a natural way:

$$
h\left(a_{1} a_{2} \ldots a_{k}\right)=h\left(a_{1}\right) \cdot h\left(a_{2}\right) \cdot \ldots \cdot h\left(a_{n}\right)
$$

- And to languages:

$$
h(L)=\{h(\alpha) \mid \alpha \in L\}
$$

Theorem: The set of regular languages over Σ is closed under homomorphism to a second alphabet Σ^{\prime}

Proof outline: Appeal to substitution in REs. See the textbook for details. \square

Closure under Right Quotient

- Let L_{1} and L_{2} be languages over the same alphabet Σ. The right quotient of L_{1} with L_{2} is

$$
L_{1} / L_{2}=\left\{\alpha \in \Sigma^{*} \mid\left(\exists \beta \in L_{2}\right)\left(\alpha \cdot \beta \in L_{1}\right)\right\}
$$

Theorem: Let $L_{1}, L_{2} \in \operatorname{RegLang}(\Sigma)$. Then $L_{1} / L_{2} \in \operatorname{RegLang}(\Sigma)$ as well.
Proof outline: Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA with $\mathcal{L}(M)=L_{1}$, and let $F^{\prime}=\left\{q \in Q \mid\left(\exists \alpha \in L_{2}\right)\left(\delta^{*}(q, \alpha) \in F\right)\right\}$. Then $M^{\prime}=\left(Q, \Sigma, \delta, q_{0}, F^{\prime}\right)$ is an accepter for L_{1} / L_{2}. \square

- Note that the above proof is not constructive.
- How does one determine whether there is an $\alpha \in L_{2}$ for which $\delta^{*}(q, \alpha) \in F$?
- It is possible to limit the length of the candidate strings α, but that issue will not be pursued in detail at the moment.

Decision Questions about Regular Languages

- Typical decision questions include the following:
- Given $L \subseteq \Sigma^{*}$ and $w \in L$, is $w \in L$?
- Given $L \subseteq \Sigma^{*}$, is $\mathcal{L}(L)=\emptyset$?
- Given $L_{1}, L_{2} \subseteq \Sigma^{*}$, is $L_{1} \cap L_{2}=\emptyset$?
- Given $L_{1}, L_{2} \subseteq \Sigma^{*}$, is $L_{1}=L_{2}$?
- Given $L_{1}, L_{2} \subseteq \Sigma^{*}$, is $L_{1} \subseteq L_{2}$?
- For regular languages, the first three are answerable trivially by representing the language as a DFA (and discarding unreachable states.)
- Thus, they are answerable by running an algorithm.
- For the fourth, it suffices to note that $L_{1}=L_{2}$ iff $L_{1} \triangle L_{2}=\emptyset$. Thus,

Observation: There is an algorithm to determine whether or not $L_{1}=L_{2}$ for two regular languages L_{1} and L_{2}. \square

- For the fifth, it suffices to note that $L_{1} \subseteq L_{2}$ iff $L_{1} \backslash L_{2}=\emptyset$. Thus,

Observation: There is an algorithm to determine whether or not $L_{1} \subseteq L_{2}$ for two regular languages L_{1} and L_{2}. \square

Establishing that a Language is Not Regular

- So far, the focus has been on techniques for establishing that a given language is regular.
- How does one show that a language is not regular?
- The most direct approach is to show that there is no DFA, NFA, RE, or regular grammar which accepts/characterizes/generates it.
- To this end, a result known as the Pumping Lemma is the most useful.

The Pumping Lemma for Regular Languages

- Suppose that a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepts a string $\alpha \in \Sigma^{*}$ which is longer than the number of states in Q.
- Then the computation must pass through the same state twice.
- In other words, the computation must contain a loop.

$$
\left(q_{0}, \alpha_{1} \alpha_{2} \alpha_{3}\right) \vdash_{M}^{*}\left(q_{i}, \alpha_{2} \alpha_{3}\right) t_{M}^{*}\left(q_{i}, \alpha_{3}\right) \vdash_{M}^{*}\left(q_{f}, \alpha_{3}\right)
$$

- Length $\left(\alpha_{1} \alpha_{2}\right)<\operatorname{Card}(q)=$ number of states in Q.
- This loop may be repeated any number of times.
- Thus, the machine accepts any string of the form $\alpha_{1} \cdot \alpha_{2}^{*} \cdot \alpha_{3}$.

Formal Statement of the Pumping Lemma

Theorem (The Pumping Lemma for regular languages): Let Σ be a finite alphabet, and let $L \in \operatorname{RegLang}(\Sigma)$. Then there is a constant $N \in \mathbb{N}$, depending only upon L, such that for any $\alpha \in L$ with Length $(\alpha) \geq N$, there is a decomposition
with

$$
\alpha=\alpha_{1} \cdot \alpha_{2} \cdot \alpha_{3}
$$

- Length $\left(\alpha_{2}\right) \geq 1$;
- Length $\left(\alpha_{1}\right)+$ Length $\left(\alpha_{2}\right) \leq N$;
- $\alpha_{1} \cdot\left(\alpha_{2}\right)^{m} \cdot \alpha_{3} \in L$ for all $m \in \mathbb{N}$. \square

How to Use the Pumping Lemma

- Suppose that $L \subseteq \Sigma^{*}$ is a language which is to be proven not regular.
- You may assume that N is fixed, but you may not set it to any particular value.
- You may choose the string $\alpha \in L$ to "pump".
- It must be the case that Length $(\alpha) \geq N$.
- Use N as a parameter of the string α.
- You must take into account all decompositions of α into $\alpha_{1} \alpha_{2} \alpha_{3}$ which satisfy the conditions of the pumping lemma.
- In general, the Pumping Lemma can only be used to show that a language is not regular; it cannot be used to show that a language is regular.

An Example of the Use of the Pumping Lemma

Example: Let $L=\left\{a^{k} b^{k} \mid k \in \mathbb{N}\right\}$ (with the alphabet $\Sigma=\{a, b\}$).

- Show that L is not regular.
- Let N be the constant guaranteed for L by the Pumping Lemma.
- Choose $\alpha=a^{N} b^{N}$.
- Every decomposition $\alpha=\alpha_{1} \alpha_{2} \alpha_{3}$ according to the Pumping Lemma must be of the form $\alpha_{1}=a^{n_{1}} ; \alpha_{2}=a^{n_{2}} ; \alpha_{3}=a^{n_{3}} b^{N}$; with $n_{1}+n_{2} \leq N$, $n_{2}>0$, and $n_{1}+n_{2}+n_{3}=N$.
- Then, if L were regular, it would be the case that $\alpha_{1}\left(\alpha_{2}\right)^{2} \alpha_{3}=a^{n_{1}+2 n_{2}+n_{3}} b^{N} \in L$, which is clearly not the case.
- Alternately if L were regular, it would be the case that $\alpha_{1}\left(\alpha_{2}\right)^{0} \alpha_{3}=a^{n_{1}+n_{3}} b^{N} \in L$, which is clearly not the case either.
- In fact, $\alpha_{1}\left(\alpha_{2}\right)^{k} \alpha_{3}=a^{n_{1}+k n_{2}+n_{3}} b^{N} \notin L$ for any $k \neq 1$.
- Thus, there are many alternatives to "pump" in this example.

Further Examples of Application of the Pumping Lemma

- The same or very similar strings may be used to prove that related languages are not regular.
Example: $L=\left\{w \in\{a, b\}^{*} \mid \operatorname{Count}\langle a, w\rangle=\operatorname{Count}\langle b, w\rangle\right\}$.
- Let N be the constant guaranteed for L by the Pumping Lemma for this language.
- The same string $a^{N} b^{N} \in L$ may be used to show that this language is not regular, in exactly the same way.

Example: $L=\left\{a^{k_{1}} b^{k_{2}} \mid k_{1}, k_{2} \in \mathbb{N}\right.$ and $\left.k_{1}<k_{2}\right\}$.

- Notation as in the Pumping Lemma, choose $\alpha=a^{N} b^{N+1}$ and proceed as in the previous examples.
- Here one must pump up to show that $\alpha_{1}\left(\alpha_{2}\right)^{2} \alpha_{3} \notin L$.

Example: $L=\left\{a^{k_{1}} b^{k_{2}} \mid k_{1}, k_{2} \in \mathbb{N}\right.$ and $\left.k_{1}>k_{2}\right\}$.

- Choose $\alpha=a^{N+1} b^{N}$, decompose in a manner similar to the previous examples, and pump down, showing $\alpha_{1} \alpha_{2}{ }^{0} \alpha_{3}=\alpha_{1} \alpha_{3} \notin L$.

Further Examples of Application of the Pumping Lemma

Example: $L=\left\{w \in\{a, b\}^{*} \mid w=w^{R}\right\}$ (palindromes).

- Notation continues as in the statement of the Pumping Lemma.
- Choose $\alpha=a^{N} b a^{N}$.
- Pump up or down to show that the language is not regular.

Example: $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$.

- Choose $\alpha=a^{N} b b a^{N}$ and proceed as above.

Example: $L=\left\{w \beta w^{R} \mid w, \beta \in\{a, b\}^{*}\right\}$.

- Carefu!!! This language is regular and equal to $\{a, b\}^{*}$.
- To obtain any $\beta \in\{a, b\}^{*}$, just choose $w=w^{R}=\lambda$.

Example: $L=\left\{w \beta w^{R} \mid w, \beta \in\{a, b\}^{*}\right.$ and Length $\left.(w)>0\right\}$.

- This language is also regular, with

$$
\begin{aligned}
L=\left\{a_{1} \ldots a_{k} \in\{a, b\}^{*} \mid k>2\right. & \text { and } \left.a_{1}=a_{k}\right\} \\
& =\mathcal{L}\left(\left(a \cdot(a+b)^{*} \cdot a\right)+\left(b \cdot(a+b)^{*} \cdot b\right)\right)
\end{aligned}
$$

A More Difficult Example

Example: Let $L=\left\{w=a^{k_{1}} b^{k_{2}} \mid k_{1} \neq k_{2}\right\}$.

- Need to choose a string of the form $\alpha=a^{N_{1}} b^{N_{2}} \in L$ which can be pumped to $a^{N_{2}} b^{N_{2}}$.
- This is possible with $N_{1}=N$! and $N_{2}=(N+1)$!.
- See the text for the argument.
- There is a better way!
- Note that $L^{\prime}=\left\{a^{k_{1}} b^{k_{2}} \mid k_{1}=k_{2}\right\}=\bar{L} \cap \mathcal{L}\left(a^{*} b^{*}\right)$.
- Since regular languages are closed under complement and intersection, if L were regular, so too would be L^{\prime}.
- Hence, L cannot be regular.
- The Pumping Lemma is not always the best to use to show that a given language is not regular.

Are Programming Languages Regular?

- Most programming languages allow nested expressions, marked by parentheses or the like.

Example: $(\mathrm{X}+(\mathrm{Y} * \mathrm{Z}) /(\mathrm{W}+(\mathrm{A}+3)))-2$

- To check that an expression is well formed, it is therefore necessary to verify that the parentheses are balanced.
- Let $L_{\text {paren }}$ denote the language over $\{()$,$\} which consists of all strings$ with balanced parentheses.

Examples: $(()()(())) \in L_{\text {paren }}$ $(()()(())) \notin L_{\text {paren }}$
Observation: $L_{\text {paren }}$ is not regular.

Proof outline:

- For convenience, replace (by a and) by b.
- Choose $\alpha=a^{N} b^{N} \in L_{\text {paren }}$ and pump up or down. \square

