
Membership Properties for Regular Languages

5DV037 — Fundamentals of Computer Science

Ume̊a University

Department of Computing Science

Stephen J. Hegner

hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Membership Properties for Regular Languages 20100910 Slide 1 of 17

RE-Based Closure Properties

Notation: Recall that RegLang(Σ) denotes the set of all regular languages
over the alphabet Σ.

Theorem: The class of regular languages over Σ is closed under union,
concatenation, and Kleene star. More precisely, given
L1, L2 ∈ RegLang(Σ), the following languages are also in RegLang(Σ).

• L1 ∪ L2
• L1 · L2
• L1

∗

Proof: Based upon the closure of regular expressions under the
corresponding operations. �

Membership Properties for Regular Languages 20100910 Slide 2 of 17

Closure under Complement

• Recall: the complement of the language L (relative to Σ) is L = Σ∗ \ L.

Theorem: The class of regular languages over Σ is closed under complement
with respect to Σ.

Proof: Let M = (Q,Σ, δ, q0 ,F) be a DFA with L(M) = L, and let
M ′ = (Q,Σ, δ, q0,Q \ F). Then L(M ′) = L. �

Example: The machine on the right accepts the complement of the language
of the machine on the left.

qeestart

qoe

qeo

qoo

a

b

a

b

a

b a

b
qeestart

qoe

qeo

qoo

a

b

a

b

a

b a

b

• Note that the machine must be deterministic for this construction to
work.

Membership Properties for Regular Languages 20100910 Slide 3 of 17

Closure under Intersection

Theorem: The class of regular languages over Σ is closed under intersection
with respect to Σ. More precisely, if M1,M2 ∈ RegLang(Σ), then
L1 ∩ L2 ∈ RegLang(Σ) as well.

Proof 1: Use De Morgan’s law

L1 ∩ L2 = (L1 ∪ L2)

and the fact that RegLang(Σ) is closed under union and complement. �

Proof 2: Construct an accepter directly which runs accepters for each
language in parallel. Let M1 = (Q1,Σ, δ1, q01,F1) and
M2 = (Q2,Σ, δ2, q02,F2) be DFAs with L(M1) = L1 and L(M2) = L2.
Define

M1 ×M2 = (Q1 × Q2,Σ, δ1 × δ2, (qo1, q02),F1 × F2)

with (δ1 × δ2) : ((q1, q2), a) 7→ (δ1(q1, a), δ2(q2, a)). Then
L(M1 ×M2) = L1 ∩ L2. �

• Proof 2 works only for DFAs!

Membership Properties for Regular Languages 20100910 Slide 4 of 17

Closure under other Set Operations

• There are two other set operations which will be of use in that which
follows.

Observation: Let L1, L2 ∈ RegLang(Σ). Then L1 \ L2 ∈ RegLang(L) as well.

Proof: L1 \ L2 = L1 ∩ L2; use closure under intersection and complement . �

• Let L1, L2 ∈ Σ∗. Define the symmetric difference of L1 and L2 to be
L1 △ L2 = (L1 \ L2) ∪ (L2 \ L1).

Observation: IF L1, L2 ∈ RegLang(Σ), so too is L1 △ L2.

Proof: Use the above result on closure under set difference, together with
closure under union. �

Membership Properties for Regular Languages 20100910 Slide 5 of 17

Closure under Homomorphism

• Let Σ and Σ′ be alphabets. A homomorphism from Σ to Σ′ a function
h : Σ → Σ′∗.

• A homomorphism extends to strings in a natural way:

h(a1a2 . . . ak) = h(a1) · h(a2) · . . . · h(an)

• And to languages:
h(L) = {h(α) | α ∈ L}

Theorem: The set of regular languages over Σ is closed under
homomorphism to a second alphabet Σ′

Proof outline: Appeal to substitution in REs. See the textbook for details. �

Membership Properties for Regular Languages 20100910 Slide 6 of 17

Closure under Right Quotient

• Let L1 and L2 be languages over the same alphabet Σ. The right

quotient of L1 with L2 is

L1/L2 = {α ∈ Σ∗ | (∃β ∈ L2)(α · β ∈ L1)}

Theorem: Let L1, L2 ∈ RegLang(Σ). Then L1/L2 ∈ RegLang(Σ) as well.

Proof outline: Let M = (Q,Σ, δ, q0 ,F) be a DFA with L(M) = L1, and let
F ′ = {q ∈ Q | (∃α ∈ L2)(δ

∗(q, α) ∈ F)}. Then M ′ = (Q,Σ, δ, q0,F
′) is

an accepter for L1/L2. �

• Note that the above proof is not constructive.

• How does one determine whether there is an α ∈ L2 for which
δ∗(q, α) ∈ F?

• It is possible to limit the length of the candidate strings α, but that issue
will not be pursued in detail at the moment.

Membership Properties for Regular Languages 20100910 Slide 7 of 17

Decision Questions about Regular Languages

• Typical decision questions include the following:

• Given L ⊆ Σ∗ and w ∈ L, is w ∈ L?

• Given L ⊆ Σ∗, is L(L) = ∅?

• Given L1, L2 ⊆ Σ∗, is L1 ∩ L2 = ∅?

• Given L1, L2 ⊆ Σ∗, is L1 = L2?

• Given L1, L2 ⊆ Σ∗, is L1 ⊆ L2?

• For regular languages, the first three are answerable trivially by
representing the language as a DFA (and discarding unreachable states.)

• Thus, they are answerable by running an algorithm.

• For the fourth, it suffices to note that L1 = L2 iff L1 △ L2 = ∅. Thus,

Observation: There is an algorithm to determine whether or not L1 = L2 for
two regular languages L1 and L2. �

• For the fifth, it suffices to note that L1 ⊆ L2 iff L1 \ L2 = ∅. Thus,

Observation: There is an algorithm to determine whether or not L1 ⊆ L2 for
two regular languages L1 and L2. �

Membership Properties for Regular Languages 20100910 Slide 8 of 17

Establishing that a Language is Not Regular

• So far, the focus has been on techniques for establishing that a given
language is regular.

• How does one show that a language is not regular?

• The most direct approach is to show that there is no DFA, NFA, RE, or
regular grammar which accepts/characterizes/generates it.

• To this end, a result known as the Pumping Lemma is the most useful.

Membership Properties for Regular Languages 20100910 Slide 9 of 17

The Pumping Lemma for Regular Languages

• Suppose that a DFA M = (Q,Σ, δ, q0 ,F) accepts a string α ∈ Σ∗ which
is longer than the number of states in Q.

• Then the computation must pass through the same state twice.

• In other words, the computation must contain a loop.

(q0, α1α2α3) ⊢
∗

M
(qi , α2α3) ⊢

∗

M
(qi , α3) ⊢

∗

M
(qf , α3)

q0 qi qf
α1 α3

α2

• Length(α1α2) < Card(q) = number of states in Q.

• This loop may be repeated any number of times.

• Thus, the machine accepts any string of the form α1 · α
∗

2 · α3.

Membership Properties for Regular Languages 20100910 Slide 10 of 17

Formal Statement of the Pumping Lemma

Theorem (The Pumping Lemma for regular languages): Let Σ be a finite
alphabet, and let L ∈ RegLang(Σ). Then there is a constant N ∈ N,
depending only upon L, such that for any α ∈ L with Length(α) ≥ N,
there is a decomposition

α = α1 · α2 · α3with

• Length(α2) ≥ 1;

• Length(α1) + Length(α2) ≤ N;

• α1 · (α2)
m · α3 ∈ L for all m ∈ N. �

q0 qi qf
α1 α3

α2

Membership Properties for Regular Languages 20100910 Slide 11 of 17

How to Use the Pumping Lemma

• Suppose that L ⊆ Σ∗ is a language which is to be proven not regular.

• You may assume that N is fixed, but you may not set it to any particular
value.

• You may choose the string α ∈ L to “pump”.

• It must be the case that Length(α) ≥ N.

• Use N as a parameter of the string α.

• You must take into account all decompositions of α into α1α2α3 which
satisfy the conditions of the pumping lemma.

• In general, the Pumping Lemma can only be used to show that a
language is not regular; it cannot be used to show that a language is
regular.

Membership Properties for Regular Languages 20100910 Slide 12 of 17

An Example of the Use of the Pumping Lemma

Example: Let L = {akbk | k ∈ N} (with the alphabet Σ = {a, b}).

• Show that L is not regular.

• Let N be the constant guaranteed for L by the Pumping Lemma.

• Choose α = aNbN .

• Every decomposition α = α1α2α3 according to the Pumping Lemma
must be of the form α1 = an1 ; α2 = an2 ; α3 = an3bN ; with n1 + n2 ≤ N,
n2 > 0, and n1 + n2 + n3 = N.

• Then, if L were regular, it would be the case that
α1(α2)

2α3 = an1+2n2+n3bN ∈ L, which is clearly not the case.

• Alternately if L were regular, it would be the case that
α1(α2)

0α3 = an1+n3bN ∈ L, which is clearly not the case either.

• In fact, α1(α2)
kα3 = an1+kn2+n3bN 6∈ L for any k 6= 1.

• Thus, there are many alternatives to “pump” in this example.

Membership Properties for Regular Languages 20100910 Slide 13 of 17

Further Examples of Application of the Pumping Lemma

• The same or very similar strings may be used to prove that related
languages are not regular.

Example: L = {w ∈ {a, b}∗ | Count〈a,w〉 = Count〈b,w〉}.

• Let N be the constant guaranteed for L by the Pumping Lemma for this
language.

• The same string aNbN ∈ L may be used to show that this language is not
regular, in exactly the same way.

Example: L = {ak1bk2 | k1, k2 ∈ N and k1 < k2}.

• Notation as in the Pumping Lemma, choose α = aNbN+1 and proceed as
in the previous examples.

• Here one must pump up to show that α1(α2)
2α3 6∈ L.

Example: L = {ak1bk2 | k1, k2 ∈ N and k1 > k2}.

• Choose α = aN+1bN , decompose in a manner similar to the previous
examples, and pump down, showing α1α2

0α3 = α1α3 6∈ L.
Membership Properties for Regular Languages 20100910 Slide 14 of 17

Further Examples of Application of the Pumping Lemma

Example: L = {w ∈ {a, b}∗ | w = wR} (palindromes).

• Notation continues as in the statement of the Pumping Lemma.

• Choose α = aNbaN .

• Pump up or down to show that the language is not regular.

Example: L = {wwR | w ∈ {a, b}∗}.

• Choose α = aNbbaN and proceed as above.

Example: L = {wβwR | w , β ∈ {a, b}∗}.

• Careful!! This language is regular and equal to {a, b}∗.

• To obtain any β ∈ {a, b}∗, just choose w = wR = λ.

Example: L = {wβwR | w , β ∈ {a, b}∗ and Length(w) > 0}.

• This language is also regular, with
L = {a1 . . . ak ∈ {a, b}∗ | k > 2 and a1 = ak}

= L((a · (a + b)∗ · a) + (b · (a + b)∗ · b)).

Membership Properties for Regular Languages 20100910 Slide 15 of 17

A More Difficult Example

Example: Let L = {w = ak1bk2 | k1 6= k2}.

• Need to choose a string of the form α = aN1bN2 ∈ L which can be
pumped to aN2bN2.

• This is possible with N1 = N! and N2 = (N + 1)!.

• See the text for the argument.

• There is a better way!

• Note that L′ = {ak1bk2 | k1 = k2} = L ∩ L(a∗b∗).

• Since regular languages are closed under complement and intersection, if
L were regular, so too would be L′.

• Hence, L cannot be regular.

• The Pumping Lemma is not always the best to use to show that a given
language is not regular.

Membership Properties for Regular Languages 20100910 Slide 16 of 17

Are Programming Languages Regular?

• Most programming languages allow nested expressions, marked by
parentheses or the like.

Example: (X + (Y * Z) / (W + (A + 3))) - 2

• To check that an expression is well formed, it is therefore necessary to
verify that the parentheses are balanced.

• Let Lparen denote the language over {(,)} which consists of all strings
with balanced parentheses.

Examples: (()()(())) ∈ Lparen
((()()(())) 6∈ Lparen

Observation: Lparen is not regular.

Proof outline:

• For convenience, replace (by a and) by b.

• Choose α = aNbN ∈ Lparen and pump up or down. �

Membership Properties for Regular Languages 20100910 Slide 17 of 17

