Regular Grammars

5DV037 — Fundamentals of Computer Science Umeå University Department of Computing Science Stephen J. Hegner hegner@cs.umu.se http://www.cs.umu.se/~hegner

A Review of the Notion of a Grammar

Definition: A (phrase-structure) grammar is a four-tuple

$$G = (V, \Sigma, S, P)$$

in which

- V is a finite alphabet, called the *variables* or *nonterminal symbols*;
- Σ is a finite alphabet, called the set of *terminal symbols*;
- $S \in V$ is the *start symbol*;
- P is a finite subset of (V ∪ Σ)⁺ × (V ∪ Σ)^{*} called the set of productions or rewrite rules;
- $V \cap \Sigma = \emptyset$;
- The production $(w_1, w_2) \in P$ is typically written $w_1 \xrightarrow[G]{} w_2$, or just $w_1 \to w_2$ if the context G is clear.
- The meaning of $w_1 \rightarrow w_2$ is that w_1 may be replaced by w_2 in a string.
- Usually, for w₁ → w₂, w₁ will contain at least one variable, although this is not strictly necessary.

Regular Grammars

20100909 Slide 2 of 11

The Derivation of Words from a Grammar *Context:* $G = (V, \Sigma, S, P)$

- Let w₁ → w₂, and let w ∈ (V ∪ Σ)⁺ be a string which contains w₁; *i.e.*, w = α₁w₁α₂ for some α₁, α₂ ∈ (V ∪ Σ)^{*}.
- A possible *single-step derivation* on w replaces w_1 with w_2 .
- Write $\alpha_1 w_1 \alpha_2 \Rightarrow \alpha_1 w_2 \alpha_2$ (or just $\alpha_1 w_1 \alpha_2 \Rightarrow \alpha_1 w_2 \alpha_2$).
- Note that many derivation steps may be possible on a given string, and that applying one may preclude the application of another.
- This process is thus inherently nondeterministic.
- Write $w \stackrel{*}{\underset{G}{\rightarrow}} u$ (or just $w \stackrel{*}{\Rightarrow} u$) if w = u or else there is a sequence

$$w = \alpha_0 \underset{G}{\stackrel{*}{\Rightarrow}} \alpha_1 \underset{G}{\stackrel{*}{\Rightarrow}} \alpha_2 \dots \underset{G}{\stackrel{*}{\Rightarrow}} \alpha_k = u$$

called a *derivation* of u from w (for G).

- The language of G is $\mathcal{L}(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}.$
- The grammars G_1 and G_2 are *equivalent* if $\mathcal{L}(G_1) = \mathcal{L}(G_2)$.

Regular Grammars

20100909 Slide 3 of 11

The Basic Idea of Regular Grammars

- A grammar G = (V, Σ, S, P) is *right linear* if every production is of one of the following forms:
 - $A \rightarrow \alpha B$ for $A, B \in V$, $\alpha \in \Sigma^*$.
 - $A \rightarrow \alpha$ for $A \in V$, $\alpha \in \Sigma^*$.
- In a left-linear grammar, the variable occurs on the left:
- A grammar G = (V, Σ, S, P) is *left linear* if every production is of one of the following forms:
 - $A \rightarrow B\alpha$ for $A, B \in V$, $\alpha \in \Sigma^*$.

•
$$A \rightarrow \alpha$$
 for $A \in V$, $\alpha \in \Sigma^*$.

• A grammar is *regular* if it is either right linear or else left linear.

Example: The following grammar is right linear, with $\mathcal{L}(G) = (\mathfrak{Gallo})^* \mathfrak{Welt}$.

•
$$V = \{S\}$$

• $\Sigma = \{\mathfrak{A}, \mathfrak{B}, \dots, \mathfrak{B}, \mathfrak{a}, \mathfrak{b}, \dots, \mathfrak{s}\}$

• $\Sigma \rightarrow \text{fallo} \cdot S \mid S_1, \quad S_1 \rightarrow \text{Welt.}$

Regular Grammars

20100909 Slide 4 of 11

Simple Regular Grammars

- A right-linear grammar *G* = (*V*, Σ, *S*, *P*) is *simple* if every production is of one of the following forms:
 - $A \rightarrow aB$ for $A, B \in V$, $a \in \Sigma$.
 - $A \rightarrow B$ for $A, B \in V$.
 - $A \rightarrow \lambda$ for $A \in V$.
- A simple right-linear grammar is a way of encoding an NFA as a grammar, and conversely, so that they accept the same language.

Automaton		Grammar	
$M = (Q, \Sigma, \delta, q_0, F)$	Grammar	$G = (V, \Sigma, S, P)$	Automaton
Q	variables	V	states
q_0	start symbol	S	initial state
${old q}'\in \delta({old q},{old a})$	$q ightarrow extbf{a}q'$	A ightarrow aB	$B\in\delta(A,a)$
$q'\in\delta(q,\lambda)$	q ightarrow q'	A ightarrow B	$B \in \delta(A, \lambda)$
$q \in F$	$q ightarrow \lambda$	$A ightarrow \lambda$	$A \in F$

Examples of Simple Regular Grammars and Conversion

- Simple right-linear grammar: variables = $\{q_{ee}, q_{eo}, q_{oe}, q_{oo}\}$ start symbol = q_{ee} $q_{ee} \rightarrow aq_{oe} \mid bq_{eo} \mid \lambda$ $q_{oe} \rightarrow aq_{ee} \mid bq_{oo}$ $q_{eo} \rightarrow aq_{oo} \mid bq_{ee} \mid \lambda$ $q_{oo} \rightarrow aq_{eo} \mid bq_{oe} \mid \lambda$
- start $\rightarrow q_0 \xrightarrow{\lambda} q_1 \xrightarrow{\lambda} q_2$
- Simple right-linear grammar: variables = $\{q_0, q_1, q_2\}$ start symbol = q_0 $q_0 \rightarrow aq_0 \mid q_1$ $q_1 \rightarrow bq_1 \mid q_2$ $q_2 \rightarrow cq_2 \mid \lambda$

General Right Linear Grammars to Simple

- The constructions apply only to simple right-linear grammars.
- However, a conversion to simple is very easy.
- Let $G = (V, \Sigma, S, P)$ be a right-linear grammar.
- Construct an equivalent simple right-linear grammar G = (V', Σ, S, P') as follows.
 - For each A → a₁a₂...a_nB ∈ P, (with a₁a₂...a_n ∈ Σ⁺ and B ∈ V), create n − 1 new nonterminal symbols {A₁, A₂, ..., A_{n-1}} and n new productions: A → a₁A₁, A₁ → a₂A₂, ..., A_{n-2} → a_{n-1}A_{n-1}, A_{n-1} → a_nB.
 - For each A → a₁a₂...a_n ∈ P, (with a₁a₂...a_n ∈ Σ⁺), create n new nonterminal symbols {A₁, A₂,..., A_n} and n + 1 new productions: A → a₁A₁, A₁ → a₂A₂, ..., A_{n-2} → a_{n-1}A_{n-1}, A_{n-1} → a_nA_n, A_n → λ.
- The new nonterminals must be distinct for each construction for a production in *P*. 20100909 Slide 7 of 11

Example of the Conversion

Example: The following grammar $G = (V, \Sigma, S, P)$ is right linear but not simple, with $\mathcal{L}(G) = (\mathfrak{Gallo})^* \mathfrak{Welt}$.

•
$$V = \{S\}$$

• $\Sigma = \{\mathfrak{U}, \mathfrak{B}, \dots, \mathfrak{Z}, \mathfrak{a}, \mathfrak{b}, \dots, \mathfrak{z}\}$

- $S \to \text{Gallo} \cdot S \mid S_1, \qquad S_1 \to \mathfrak{Welt}.$
- Following the construction, an equivalent simple right-linear grammar $G' = (V', \Sigma, S, P')$ is given by: • $V = \{S\}$ • $\Sigma = \{\mathfrak{U}, \mathfrak{B}, \dots, \mathfrak{J}, \mathfrak{a}, \mathfrak{b}, \dots, \mathfrak{J}\}$ • $S \rightarrow \mathfrak{Z}A_1 \quad A_1 \rightarrow \mathfrak{a}A_2 \quad A_2 \rightarrow \mathfrak{l}A_3 \quad A_3 \rightarrow \mathfrak{l}A_4 \quad A_4 \rightarrow \mathfrak{o}S$ $S \rightarrow S_1$ $S_1 \rightarrow \mathfrak{W}B_1 \quad B_1 \rightarrow \mathfrak{e}B_2 \quad B_2 \rightarrow \mathfrak{l}B_3 \quad B_3 \rightarrow \mathfrak{t}B_4 \quad B_4 \rightarrow \lambda$
- A derivation of falloWelt using G': $S \Rightarrow A_1 \Rightarrow A_2 \Rightarrow A_1 A_3 \Rightarrow A_2 A_3 \Rightarrow A_3 A_3 \Rightarrow$

The Main Theorem for Regular Constructions

Theorem: For any finite alphabet Σ and any language $L \subseteq \Sigma$, the following conditions are equivalent.

- There is a DFA M with $\mathcal{L}(M) = L$.
- There is an NFA M with $\mathcal{L}(M) = L$.
- There is an RE r with $\mathcal{L}(r) = L$.
- There is a simple right-linear grammar G with $\mathcal{L}(G) = L$.
- There is a right-linear grammar G with $\mathcal{L}(G) = L$.

Furthermore, there are algorithms to translate between these representations. $\hfill\square$

- Definition: Let $\text{RegLang}(\Sigma)$ denote the class of languages over Σ which satisfy any of the above equivalent conditions.
 - Clearly, based upon the earlier definition of regular language based upon acceptance by an NFA, RegLang(Σ) is just the set of all regular languages over Σ .

Left-Linear Grammars

- Recall that a *regular grammar* is defined to be one which is either right linear or else left linear.
- A grammar G = (V, Σ, S, P) is *left linear* if every production is of one of the following forms:
 - $A \rightarrow B\alpha$ for $A, B \in V$, $\alpha \in \Sigma^*$.
 - $A \rightarrow \alpha$ for $A \in V$, $\alpha \in \Sigma^*$.
- It is easy to see that the constructions for right-linear grammars may be applied to their left-linear counterparts with only minor changes.
- Therefore, the theorem may be generalized:
- Theorem: For any finite alphabet Σ and any language $L \subseteq \Sigma$, the following conditions are equivalent.
 - There is a DFA M with $\mathcal{L}(M) = L$.
 - There is an NFA M with $\mathcal{L}(M) = L$.
 - There is an RE r with $\mathcal{L}(r) = L$.
 - There is a regular grammar G with $\mathcal{L}(G) = L$. \Box

Regular Grammars

20100909 Slide 10 of 11

A Warning about Combining Left and Right Linearity

- The following grammar $G = (V, \Sigma, S, P)$ contains one right-linear production and one left-linear production:
 - $V = \{S, S'\}$
 - $\Sigma = \{a, b\}$
 - $P = \{ S \rightarrow aS' \mid \lambda, S' \rightarrow Sb \}.$
- $\mathcal{L}(G) = \{a^k b^k \mid k \in \mathbb{N}\}$, which is known not to be a regular language.
- Therefore, if left-linear and right-linear productions are combined in the same grammar, the result may not be a regular language.
- In a regular grammar, either all productions are left linear or else all productions are right linear.