Regular Grammars

5DV037 - Fundamentals of Computer Science Umeå University Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se http://www.cs.umu.se/~hegner

A Review of the Notion of a Grammar

Definition: A (phrase-structure) grammar is a four-tuple

$$
G=(V, \Sigma, S, P)
$$

in which

- V is a finite alphabet, called the variables or nonterminal symbols;
- Σ is a finite alphabet, called the set of terminal symbols;
- $S \in V$ is the start symbol;
- P is a finite subset of $(V \cup \Sigma)^{+} \times(V \cup \Sigma)^{*}$ called the set of productions or rewrite rules;
- $V \cap \Sigma=\emptyset$;
- The production $\left(w_{1}, w_{2}\right) \in P$ is typically written $w_{1} \underset{G}{\rightarrow} w_{2}$, or just $w_{1} \rightarrow w_{2}$ if the context G is clear.
- The meaning of $w_{1} \rightarrow w_{2}$ is that w_{1} may be replaced by w_{2} in a string.
- Usually, for $w_{1} \rightarrow w_{2}, w_{1}$ will contain at least one variable, although this is not strictly necessary.

The Derivation of Words from a Grammar

Context: $G=(V, \Sigma, S, P)$

- Let $w_{1} \underset{G}{\rightarrow} w_{2}$, and let $w \in(V \cup \Sigma)^{+}$be a string which contains w_{1}; i.e., $w=\alpha_{1} w_{1} \alpha_{2}$ for some $\alpha_{1}, \alpha_{2} \in(V \cup \Sigma)^{*}$.
- A possible single-step derivation on w replaces w_{1} with w_{2}.
- Write $\alpha_{1} w_{1} \alpha_{2} \underset{G}{\Rightarrow} \alpha_{1} w_{2} \alpha_{2}$ (or just $\alpha_{1} w_{1} \alpha_{2} \Rightarrow \alpha_{1} w_{2} \alpha_{2}$).
- Note that many derivation steps may be possible on a given string, and that applying one may preclude the application of another.
- This process is thus inherently nondeterministic.
- Write $w \underset{G}{*} u($ or just $w \stackrel{*}{\Rightarrow} u$) if $w=u$ or else there is a sequence

$$
w=\alpha_{0} \underset{G}{\stackrel{*}{\Rightarrow}} \alpha_{1} \underset{G}{\stackrel{*}{\Rightarrow}} \alpha_{2} \ldots \stackrel{*}{\Rightarrow} \alpha_{k}=u
$$

called a derivation of u from w (for G).

- The language of G is $\mathcal{L}(G)=\left\{w \in \Sigma^{*} \mid S \underset{G}{*} w\right\}$.
- The grammars G_{1} and G_{2} are equivalent if $\mathcal{L}\left(G_{1}\right)=\mathcal{L}\left(G_{2}\right)$.

The Basic Idea of Regular Grammars

- A grammar $G=(V, \Sigma, S, P)$ is right linear if every production is of one of the following forms:
- $A \rightarrow \alpha B$ for $A, B \in V, \alpha \in \Sigma^{*}$.
- $A \rightarrow \alpha$ for $A \in V, \alpha \in \Sigma^{*}$.
- In a left-linear grammar, the variable occurs on the left:
- A grammar $G=(V, \Sigma, S, P)$ is left linear if every production is of one of the following forms:
- $A \rightarrow B \alpha$ for $A, B \in V, \alpha \in \Sigma^{*}$.
- $A \rightarrow \alpha$ for $A \in V, \alpha \in \Sigma^{*}$.
- A grammar is regular if it is either right linear or else left linear.

Example: The following grammar is right linear, with $\mathcal{L}(G)=(\text { Jallo })^{*} \mathfrak{W}$ elt.

- $V=\{S\}$
- $\Sigma=\{\mathfrak{a}, \mathfrak{z}, \ldots, \mathfrak{3}, \mathfrak{a}, \mathfrak{b}, \ldots, \mathfrak{s}\}$
- $S \rightarrow$ 万allo $\cdot S \mid S_{1}, \quad S_{1} \rightarrow \mathfrak{w}$ elt.

Simple Regular Grammars

- A right-linear grammar $G=(V, \Sigma, S, P)$ is simple if every production is of one of the following forms:
- $A \rightarrow a B$ for $A, B \in V, a \in \Sigma$.
- $A \rightarrow B$ for $A, B \in V$.
- $A \rightarrow \lambda$ for $A \in V$.
- A simple right-linear grammar is a way of encoding an NFA as a grammar, and conversely, so that they accept the same language.

Automaton $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$	Grammar
Q	variables
q_{0}	start symbol
$q^{\prime} \in \delta(q, a)$	$q \rightarrow a q^{\prime}$
$q^{\prime} \in \delta(q, \lambda)$	$q \rightarrow q^{\prime}$
$q \in F$	$q \rightarrow \lambda$

Grammar $G=(V, \Sigma, S, P)$	Automaton
V	states
S	initial state
$A \rightarrow a B$	$B \in \delta(A, a)$
$A \rightarrow B$	$B \in \delta(A, \lambda)$
$A \rightarrow \lambda$	$A \in F$

Examples of Simple Regular Grammars and Conversion

- Simple right-linear grammar:

$$
\begin{aligned}
& \text { variables }=\left\{q_{e e}, q_{e o}, q_{o e}, q_{o o}\right\} \\
& \text { start symbol }=q_{e e} \\
& q_{e e} \rightarrow a q_{o e}\left|b q_{e o}\right| \lambda \\
& q_{o e} \rightarrow a q_{e e} \mid b q_{o o} \\
& q_{e o} \rightarrow a q_{o o}\left|b q_{e e}\right| \lambda \\
& q_{o o} \rightarrow a q_{e o}\left|b q_{o e}\right| \lambda
\end{aligned}
$$

- Simple right-linear grammar:

$$
\begin{aligned}
& \text { variables }=\left\{q_{0}, q_{1}, q_{2}\right\} \\
& \text { start symbol }=q_{0} \\
& q_{0} \rightarrow a q_{0} \mid q_{1} \\
& q_{1} \rightarrow b q_{1} \mid q_{2} \\
& q_{2} \rightarrow c q_{2} \mid \lambda
\end{aligned}
$$

General Right Linear Grammars to Simple

- The constructions apply only to simple right-linear grammars.
- However, a conversion to simple is very easy.
- Let $G=(V, \Sigma, S, P)$ be a right-linear grammar.
- Construct an equivalent simple right-linear grammar $G=\left(V^{\prime}, \Sigma, S, P^{\prime}\right)$ as follows.
- For each $A \rightarrow a_{1} a_{2} \ldots a_{n} B \in P$, (with $a_{1} a_{2} \ldots a_{n} \in \Sigma^{+}$and $B \in V$), create $n-1$ new nonterminal symbols $\left\{A_{1}, A_{2}, \ldots, A_{n-1}\right\}$ and n new productions: $A \rightarrow a_{1} A_{1}, A_{1} \rightarrow a_{2} A_{2}, \ldots, A_{n-2} \rightarrow a_{n-1} A_{n-1}$, $A_{n-1} \rightarrow a_{n} B$.
- For each $A \rightarrow a_{1} a_{2} \ldots a_{n} \in P$, (with $a_{1} a_{2} \ldots a_{n} \in \Sigma^{+}$), create n new nonterminal symbols $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ and $n+1$ new productions: $A \rightarrow a_{1} A_{1}, A_{1} \rightarrow a_{2} A_{2}, \ldots, A_{n-2} \rightarrow a_{n-1} A_{n-1}, A_{n-1} \rightarrow a_{n} A_{n}$, $A_{n} \rightarrow \lambda$.
- The new nonterminals must be distinct for each construction for a

Example of the Conversion

Example: The following grammar $G=(V, \Sigma, S, P)$ is right linear but not simple, with $\mathcal{L}(G)=(\text { (Jallo })^{*} \mathfrak{w}_{\text {elt }}$.

- $V=\{S\}$
- $\Sigma=\{\mathfrak{a}, \mathfrak{z}, \ldots, \mathfrak{3}, \mathfrak{a}, \mathfrak{b}, \ldots, \mathfrak{s}\}$
- $S \rightarrow$ Jallo $\cdot S \mid S_{1}, \quad S_{1} \rightarrow \mathfrak{w}$ elt.
- Following the construction, an equivalent simple right-linear grammar $G^{\prime}=\left(V^{\prime}, \Sigma, S, P^{\prime}\right)$ is given by:
- $V=\{S\}$
- $\Sigma=\{\mathfrak{2}, 2 \mathfrak{z}, \ldots, \mathfrak{z}, \mathfrak{a}, \mathfrak{b}, \ldots, \mathfrak{s}\}$
- $S \rightarrow$ S $A_{1} \quad A_{1} \rightarrow \mathfrak{a} A_{2} \quad A_{2} \rightarrow\left[A_{3} \quad A_{3} \rightarrow \mathbb{I} A_{4} \quad A_{4} \rightarrow \mathfrak{o} S\right.$

$$
S \rightarrow S_{1}
$$

$$
S_{1} \rightarrow \mathfrak{w} B_{1} \quad B_{1} \rightarrow \mathfrak{e} B_{2} \quad B_{2} \rightarrow \mathfrak{I} B_{3} \quad B_{3} \rightarrow \mathfrak{t} B_{4} \quad B_{4} \rightarrow \lambda
$$

- A derivation of Sallo $\mathfrak{W}_{\text {elt }}$ using G^{\prime} :
$S \Rightarrow$ S $A_{1} \Rightarrow$ ऽa $A_{2} \Rightarrow$ Sal $A_{3} \Rightarrow$ 万all $A_{4} \Rightarrow$ 万allo $S \Rightarrow$ Sallo $S_{1} \Rightarrow$

The Main Theorem for Regular Constructions

Theorem: For any finite alphabet Σ and any language $L \subseteq \Sigma$, the following conditions are equivalent.

- There is a DFA M with $\mathcal{L}(M)=L$.
- There is an NFA M with $\mathcal{L}(M)=L$.
- There is an RE r with $\mathcal{L}(r)=L$.
- There is a simple right-linear grammar G with $\mathcal{L}(G)=L$.
- There is a right-linear grammar G with $\mathcal{L}(G)=L$.

Furthermore, there are algorithms to translate between these representations. \square

Definition: Let RegLang (Σ) denote the class of languages over Σ which satisfy any of the above equivalent conditions.

- Clearly, based upon the earlier definition of regular language based upon acceptance by an NFA, RegLang (Σ) is just the set of all regular languages over Σ.

Left-Linear Grammars

- Recall that a regular grammar is defined to be one which is either right linear or else left linear.
- A grammar $G=(V, \Sigma, S, P)$ is left linear if every production is of one of the following forms:
- $A \rightarrow B \alpha$ for $A, B \in V, \alpha \in \Sigma^{*}$.
- $A \rightarrow \alpha$ for $A \in V, \alpha \in \Sigma^{*}$.
- It is easy to see that the constructions for right-linear grammars may be applied to their left-linear counterparts with only minor changes.
- Therefore, the theorem may be generalized:

Theorem: For any finite alphabet Σ and any language $L \subseteq \Sigma$, the following conditions are equivalent.

- There is a DFA M with $\mathcal{L}(M)=L$.
- There is an NFA M with $\mathcal{L}(M)=L$.
- There is an RE r with $\mathcal{L}(r)=L$.
- There is a regular grammar G with $\mathcal{L}(G)=L . \square$

A Warning about Combining Left and Right Linearity

- The following grammar $G=(V, \Sigma, S, P)$ contains one right-linear production and one left-linear production:
- $V=\left\{S, S^{\prime}\right\}$
- $\Sigma=\{a, b\}$
- $P=\left\{S \rightarrow a S^{\prime} \mid \lambda, S^{\prime} \rightarrow S b\right\}$.
- $\mathcal{L}(G)=\left\{a^{k} b^{k} \mid k \in \mathbb{N}\right\}$, which is known not to be a regular language.
- Therefore, if left-linear and right-linear productions are combined in the same grammar, the result may not be a regular language.
- In a regular grammar, either all productions are left linear or else all productions are right linear.

