
Regular Expressions

5DV037 — Fundamentals of Computer Science

Ume̊a University

Department of Computing Science

Stephen J. Hegner

hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Regular Expressions 20100906 Slide 1 of 19



The Idea of Regular Expressions

• The regular expressions (or RE’s) are a way of defining languages in a
recursive fashion, based upon simple primitives.

• The primitive regular expressions over Σ and the languages which they
define:

Regular Expression e Language L(e) Note

∅ ∅

λ {λ}
a {a} for each a ∈ Σ

• The recursively defined regular expressions over Σ and the languages
which they define:

Regular Expression e Language L(e)

(r1 + r2) L(r1) ∪ L(r2)
(r1 · r2) L(r1) · L(r2)
r1

∗ (L(r1))
∗

(r1) L(r1)

Regular Expressions 20100906 Slide 2 of 19



An Example of the Language of a Regular Expression

• Let r = (((a · b) + c) + a∗)∗.

• To find L(r), simply apply the rules:

L(r) = L((((a · b) + c) + a∗)∗)

= (L((((a · b) + c) + a∗)))∗

= (L(((a · b) + c)) ∪ L(a∗)))∗

= ((L((a · b)) ∪ L(c)) ∪ L(a∗)))∗

= (((L(a) · L(b)) ∪ L(c)) ∪ L(a∗)))∗

= (((L(a) · L(b)) ∪ L(c)) ∪ (L(a))∗)
∗

= ({ab, c} ∪ {λ, a, aa, aaa, aaaa, . . .})∗

= ({ab, c , a})∗

• The last step requires a little thought and does not follow automatically
from the rules.

• Some useful simplifications can be developed, however.

Regular Expressions 20100906 Slide 3 of 19



Properties of Regular Expressions

• The REs r1 and r2 are equivalent if L(r1) = L(r2).

• Write r1 = r2.

• + and · are associative: ((r1 + r2) + r3) = (r1 + (r2 + r3))
((r1 · r2) · r3) = (r1 · (r2 · r3))

• + is commutative: (r1 + r2) = (r2 + r1)

• · distributes over +: (r1 · (r2 + r3)) = ((r1 · r2) + (r1 · r3))
((r1 + r2) · r3) = ((r1 · r3) + (r2 · r3))

• ∅ is an identity for +: (r + ∅) = (∅+ r) = r

• λ is an identity for ·: (r · λ) = (λ · r) = r

• Positivity: (r1 + r2) = ∅ implies r1 = ∅ and r2 = ∅

• Dual of positivity: (r1 · r2) = ∅ implies r1 = ∅ or r2 = ∅

• Mathematicians call this a positive semiring.

Regular Expressions 20100906 Slide 4 of 19



Additional Conventions for and Properties of REs

• Just as with the the usual (semiring of) integers, parentheses may be
dropped:

Examples: r1 + r2 = (r1 + r2)
r1 · r2 = (r1 · r2)

r1 + r2 + r3 = ((r1 + r2) + r3) = (r1 + (r2 + r3))
r1 · r2 · r3 = ((r1 · r2) · r3) = (r1 · (r2 · r3))

• Multiplication has higher precedence than addition:
r1 · r2 + r3 = (r1 · r2) + r3

• Star has higher precedence than multiplication: r1
∗ · r2 = (r1

∗) · r2

• Dot may be dropped: a · b = ab

• Some additional properties of regular expressions:

• r∗∗ = r∗

• (λ+ r)∗ = r∗

• (r1
∗ · r2

∗)∗ = (r1 + r2)
∗

• Test your knowledge of REs by proving the last property ...

• ... or find the answer as a solution to an exercise in the book.
Regular Expressions 20100906 Slide 5 of 19



Some Examples of Constructing Regular Expressions

• The set of all strings over Σ = {a, b} which contain ab as a substring:
(a + b)∗ · ab · (a + b)∗

• The set of all strings over Σ = {a, b} which contain ab as a substring at
least twice: (a + b)∗ · ab · (a + b)∗ · ab · (a + b)∗

• The set of all strings over Σ = {a, b} which do not contain ab as a
substring:

• This is more difficult, since the REs do not have a negation
construct: b∗ · a∗.

• The set of all strings over Σ = {a, b, c} which do not contain ab as a
substring:

• This is even more difficult, and requires some thought:
(b + a∗c)∗ · a∗.

• The set of all strings over Σ = {a, b} which contain ab as a substring
exactly twice: (b + a∗c)∗ · ab · (b + a∗c)∗ · ab · (b + a∗c)∗

Regular Expressions 20100906 Slide 6 of 19



Constructing an NFA from an RE

• For the primitive REs, a “building block” with exactly one accepting
state is required.

∅ λ a

q0 q1 q0 q1
λ q0 q1

a

• For a complex RE r , assume that an NFA M(r) with exactly one
accepting state and with L(M(r)) = L(r) is given for each constituent.

M(r)

• These NFAs are then connected together to obtain the NFA accepting a
more complex RE.

Regular Expressions 20100906 Slide 7 of 19



Constructing an NFA from an RE — the “+” Case

• To obtain an accepter for r1 + r2, use a “parallel” connection of the two
accepters, as follows.

M(r2)

M(r1)

λ

λ

λ

λ

• Note the utility of λ transitions.

• The direct realization of a deterministic accepter for r1 + r2 is much more
complex.

Regular Expressions 20100906 Slide 8 of 19



Constructing an NFA from an RE — “·” and “∗” Cases

• To obtain an accepter for r1 · r2, use a “serial” connection of the two
accepters, as follows.

M(r1) M(r2)
λ λ λ

• To obtain an accepter for r∗, use a “feedback/feedforward” connection of
the two accepters, as follows.

M(r)
λ λ

λ

λ

• Note that these constructions all preserve the condition of a single
accepting state, so they may be applied repeatedly.

Regular Expressions 20100906 Slide 9 of 19



The Result Stated Formally

Theorem: Given any regular expression r , there is an algorithm to construct
an NFA M with L(M) = L(r).

Proof: Just apply the constructions just illustrated repeatedly to the
regular expression “bottom up”. �

Corollary: Given any regular expression r , there is an algorithm to construct
a DFA M with L(M) = L(r).

Proof: First construct the NFA using the above method, and then
convert it to a DFA. �

Regular Expressions 20100906 Slide 10 of 19



An Example of the RE-to-NFA Construction

• Let r = (((a · b) + c) + a∗)∗.

a bλ λ λ

c

λ

λ

λ

λ

aλ λ

λ

λ

λ

λ

λ

λ

λ λ

λ

λ

Regular Expressions 20100906 Slide 11 of 19



Simplification for a Particular Example

• The formal construction often results in an automaton which is more
complex than necessary.

• Here are simpler solutions for r = (((a · b) + c) + a∗)∗.

a b

c

λ λa

λ

λ

a b
a, c

λ

λ

• The solution on the left is a direct simplification of the result of the
algorithm.

• The solution on the right requires further analysis of the RE.

Regular Expressions 20100906 Slide 12 of 19



Another Example

• r = abb∗ + ba.

λ

a b

b

λ

λ

b a

λ

Regular Expressions 20100906 Slide 13 of 19



Construction of an NFA from an RE

• Let M = (Q,Σ, δ, q0 ,F) be an NFA.

• Assume, without loss of generality, that the states of M are numbered,
beginning with 0.

• Q = {q0, q1, . . . , qn}.

• Define Rk
ij to be the set of all α ∈ Σ∗ such that there is a computation

(qi , α) ⊢M (qm1 , α1) . . . ⊢M (qmp , αp) ⊢M (qj , λ)

for which {qm1 , . . . , qmp} ⊆ {q0, . . . , qk}.

• Thus, the computation is only allowed to go through intermediate states
indexed by 0, 1, . . . , k .

• It is easy to see that L(M) =
⋃

qj∈F
Rn
0j .

• The idea of the construction is to build Rn
ij recursively and construct the

RE from the pieces.

Regular Expressions 20100906 Slide 14 of 19



Recursive Construction of the RE of an NFA

• First, note that

R−1
ij =

{

{x ∈ Σ ∪ {λ} | qj ∈ δ(qi , x)} if i 6= j

{a ∈ Σ | qj ∈ δ(qi , a)} ∪ {λ} if i = j

• Now the inductive step:

Rk+1
ij = Rk

ij only {q0, . . . , qk}.

∪Rk
i(k+1) · R

k
(k+1)j exactly one qk+1

∪Rk
i(k+1) · R

k
(k+1)(k+1) · R

k
(k+1)j exactly two qk+1’s

∪Rk
i(k+1) · (R

k
(k+1)(k+1))

2
· Rk

(k+1)j exactly three qk+1’s
...

∪Rk
i(k+1) · (R

k
(k+1)(k+1))

m
· Rk

(k+1)j exactly m qk+1’s
...

= ∪Rk
i(k+1) · (R

k
(k+1)(k+1))

∗

· Rk
(k+1)j any number of qk+1’s

Regular Expressions 20100906 Slide 15 of 19



Recursive Construction of the RE of an NFA Continued

• The algorithm constructs an RE rkij from Rk
ij and is best illustrated by

example.

q0 q1 q2

a b c

b c

c

k −1 0 1

rk00 a+ λ a∗ a∗

rk01 b a∗b a∗bb∗

rk02 c a∗c a∗c + a∗bb∗c = a∗b∗c

rk10 ∅ ∅ ∅
rk11 b + λ b + λ b∗

rk12 c c b∗c

rk20 ∅ ∅ ∅
rk21 ∅ ∅ ∅
rk22 c + λ c + λ c + λ

r200 = r100 + r102 · (r
1
22)

∗

· r120 = a∗ + a∗b∗c · (c + λ)∗ · ∅ = a∗

r201 = r101 + r102 · (r
1
22)

∗

· r121 = a∗bb∗ + a∗b∗c · (c + λ)∗ · ∅ = a∗bb∗

r202 = r102 + r102 · (r22)
∗ · r122 = a∗b∗c + a∗b∗c · (c + λ)∗ · (c + λ) = a∗b∗cc∗

Regular Expressions 20100906 Slide 16 of 19



Recursive Construction of the RE of an NFA Continued

q0start q1 q2

a b c

b c

c

r200 = r100 + r102 · (r
1
22)

∗

· r120 = a∗ + a∗b∗c · (c + λ)∗ · ∅ = a∗

r201 = r101 + r102 · (r
1
22)

∗

· r121 = a∗bb∗ + a∗b∗c · (c + λ)∗ · ∅ = a∗bb∗

r202 = r102 + r102 · (r22)
∗ · r122 = a∗b∗c + a∗b∗c · (c + λ)∗ · (c + λ) = a∗b∗cc∗

L(M) = L(r200 + r201 + r202)

= L(a∗ + a∗bb∗ + a∗b∗cc∗)

= L(a∗(λ+ bb∗ + b∗cc∗))

= L(a∗(b∗ + b∗cc∗))

= L(a∗b∗(λ+ cc∗))

= L(a∗b∗c∗)

Regular Expressions 20100906 Slide 17 of 19



A Better Algorithm

• The algorithm to convert an RE to an NFA is very tedious to execute.

Question: Is there a better algorithm for humans to use?

Answer: Yes

• There is an algorithm which solves the equations algebraically, using
formal power series.

• For the previous example, the equations are:

q0start q1 q2

a b c

b c

c

X0 =aX0+ bX1+ cX2 + λ

X1 = bX1+ cX2 + λ

X2 = cX2 + λ

• It is similar in principle to solving linear equations in algebra.

• However, it requires the development of the theory of formal power
series and so will not be presented here.

Regular Expressions 20100906 Slide 18 of 19



The Main Result So Far

Theorem: Let L be a language over the alphabet Σ. The following
statements are equivalent.

• L = L(M) for some DFA M.

• L = L(M) for some NFA M.

• L = L(r) for some RE r .

Furthermore, there are algorithms for converting between the three
representations. �

Regular Expressions 20100906 Slide 19 of 19


