Regular Expressions

5DV037 — Fundamentals of Computer Science Umeå University Department of Computing Science Stephen J. Hegner hegner@cs.umu.se http://www.cs.umu.se/~hegner

The Idea of Regular Expressions

- The *regular expressions* (or *RE*'s) are a way of defining languages in a recursive fashion, based upon simple primitives.
- The primitive regular expressions over Σ and the languages which they define:

Regular Expression e	Language $\mathcal{L}(e)$	Note
Ø	Ø	
λ	$\{\lambda\}$	
а	$\{a\}$	for each $a \in \Sigma$

• The recursively defined regular expressions over Σ and the languages which they define:

Regular Expression <i>e</i>	Language $\mathcal{L}(e)$	
$(r_1 + r_2)$	$\mathcal{L}(r_1) \cup \mathcal{L}(r_2)$	
$(r_1 \cdot r_2)$	$\mathcal{L}(r_1) \cdot \mathcal{L}(r_2)$	
r_1^*	$(\mathcal{L}(r_1))^*$	
(r_1)	$\mathcal{L}(r_1)$	

An Example of the Language of a Regular Expression

- Let $r = (((a \cdot b) + c) + a^*)^*$.
- To find $\mathcal{L}(r)$, simply apply the rules:

$$\begin{split} \mathcal{L}(r) &= \mathcal{L}((((a \cdot b) + c) + a^*)^*) \\ &= (\mathcal{L}((((a \cdot b) + c) + a^*)))^* \\ &= (\mathcal{L}((((a \cdot b) + c)) \cup \mathcal{L}(a^*)))^* \\ &= ((\mathcal{L}((a \cdot b)) \cup \mathcal{L}(c)) \cup \mathcal{L}(a^*)))^* \\ &= (((\mathcal{L}(a) \cdot \mathcal{L}(b)) \cup \mathcal{L}(c)) \cup \mathcal{L}(a^*)))^* \\ &= (((\mathcal{L}(a) \cdot \mathcal{L}(b)) \cup \mathcal{L}(c)) \cup (\mathcal{L}(a))^*)^* \\ &= (\{ab, c\} \cup \{\lambda, a, aa, aaa, aaaa, ...\})^* \\ &= (\{ab, c, a\})^* \end{split}$$

- The last step requires a little thought and does not follow automatically from the rules.
- Some useful simplifications can be developed, however.

Regular Expressions

20100906 Slide 3 of 19

Properties of Regular Expressions

- The REs r_1 and r_2 are *equivalent* if $\mathcal{L}(r_1) = \mathcal{L}(r_2)$.
 - Write $r_1 = r_2$.

• + and
$$\cdot$$
 are associative: $((r_1 + r_2) + r_3) = (r_1 + (r_2 + r_3))$
 $((r_1 \cdot r_2) \cdot r_3) = (r_1 \cdot (r_2 \cdot r_3))$

• + is commutative:
$$(r_1 + r_2) = (r_2 + r_1)$$

• · distributes over +:
$$(r_1 \cdot (r_2 + r_3)) = ((r_1 \cdot r_2) + (r_1 \cdot r_3))$$

 $((r_1 + r_2) \cdot r_3) = ((r_1 \cdot r_3) + (r_2 \cdot r_3))$

- \emptyset is an identity for +: $(r + \emptyset) = (\emptyset + r) = r$
- λ is an identity for \cdot : $(r \cdot \lambda) = (\lambda \cdot r) = r$
- Positivity: $(r_1 + r_2) = \emptyset$ implies $r_1 = \emptyset$ and $r_2 = \emptyset$
- Dual of positivity: $(r_1 \cdot r_2) = \emptyset$ implies $r_1 = \emptyset$ or $r_2 = \emptyset$
- Mathematicians call this a *positive semiring*.

Additional Conventions for and Properties of REs

• Just as with the the usual (semiring of) integers, parentheses may be dropped:

Examples:

$$r_1 + r_2 = (r_1 + r_2)$$

 $r_1 \cdot r_2 = (r_1 \cdot r_2)$
 $r_1 + r_2 + r_3 = ((r_1 + r_2) + r_3) = (r_1 + (r_2 + r_3))$
 $r_1 \cdot r_2 \cdot r_3 = ((r_1 \cdot r_2) \cdot r_3) = (r_1 \cdot (r_2 \cdot r_3))$

• Multiplication has higher precedence than addition:

$$r_1 \cdot r_2 + r_3 = (r_1 \cdot r_2) + r_3$$

- Star has higher precedence than multiplication: $r_1^* \cdot r_2 = (r_1^*) \cdot r_2$
- Dot may be dropped: $a \cdot b = ab$
- Some additional properties of regular expressions:

•
$$r^{**} = r^*$$

•
$$(\lambda + r)^* = r^*$$

•
$$(r_1^* \cdot r_2^*)^* = (r_1 + r_2)^*$$

- \bullet Test your knowledge of REs by proving the last property \ldots
- ... or find the answer as a solution to an exercise in the book.

Regular Expressions

20100906 Slide 5 of 19

Some Examples of Constructing Regular Expressions

- The set of all strings over Σ = {a, b} which contain ab as a substring: (a + b)* · ab · (a + b)*
- The set of all strings over Σ = {a, b} which contain ab as a substring at least twice: (a + b)* ⋅ ab ⋅ (a + b)* ⋅ ab ⋅ (a + b)*
- The set of all strings over $\Sigma = \{a, b\}$ which do not contain ab as a substring:
 - This is more difficult, since the REs do not have a negation construct: b* · a*.
- The set of all strings over $\Sigma = \{a, b, c\}$ which do not contain ab as a substring:
 - This is even more difficult, and requires some thought: $(b + a^*c)^* \cdot a^*.$
- The set of all strings over $\Sigma = \{a, b\}$ which contain ab as a substring exactly twice: $(b + a^*c)^* \cdot ab \cdot (b + a^*c)^* \cdot ab \cdot (b + a^*c)^*$

Constructing an NFA from an RE

• For the primitive REs, a "building block" with exactly one accepting state is required.

 For a complex RE r, assume that an NFA M(r) with exactly one accepting state and with L(M(r)) = L(r) is given for each constituent.

• These NFAs are then connected together to obtain the NFA accepting a more complex RE.

Constructing an NFA from an RE — the "+" Case

• To obtain an accepter for $r_1 + r_2$, use a "parallel" connection of the two accepters, as follows.

- Note the utility of λ transitions.
- The direct realization of a deterministic accepter for $r_1 + r_2$ is much more complex.

Constructing an NFA from an RE — " \cdot " and "*" Cases

• To obtain an accepter for $r_1 \cdot r_2$, use a "serial" connection of the two accepters, as follows.

• To obtain an accepter for *r**, use a "feedback/feedforward" connection of the two accepters, as follows.

• Note that these constructions all preserve the condition of a single accepting state, so they may be applied repeatedly.

Regular Expressions

20100906 Slide 9 of 19

The Result Stated Formally

Theorem: Given any regular expression r, there is an algorithm to construct an NFA M with $\mathcal{L}(M) = \mathcal{L}(r)$.

Proof: Just apply the constructions just illustrated repeatedly to the regular expression "bottom up". \Box

Corollary: Given any regular expression r, there is an algorithm to construct a DFA M with $\mathcal{L}(M) = \mathcal{L}(r)$.

Proof: First construct the NFA using the above method, and then convert it to a DFA. \Box

An Example of the RE-to-NFA Construction

• Let $r = (((a \cdot b) + c) + a^*)^*$.

Simplification for a Particular Example

- The formal construction often results in an automaton which is more complex than necessary.
- Here are simpler solutions for $r = (((a \cdot b) + c) + a^*)^*$.

- The solution on the left is a direct simplification of the result of the algorithm.
- The solution on the right requires further analysis of the RE.

Regular Expressions

20100906 Slide 12 of 19

Another Example

• $r = abb^* + ba$.

Construction of an NFA from an RE

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA.
- Assume, without loss of generality, that the states of *M* are numbered, beginning with 0.
 - $Q = \{q_0, q_1, \ldots, q_n\}.$
- Define R_{ii}^k to be the set of all $\alpha \in \Sigma^*$ such that there is a computation

$$(q_i, \alpha) \vdash_{M} (q_{m_1}, \alpha_1) \dots \vdash_{M} (q_{m_p}, \alpha_p) \vdash_{M} (q_j, \lambda)$$

for which $\{q_{m_1},\ldots,q_{m_p}\}\subseteq \{q_0,\ldots,q_k\}.$

- Thus, the computation is only allowed to go through intermediate states indexed by $0, 1, \ldots, k$.
- It is easy to see that $\mathcal{L}(M) = \bigcup_{q_i \in F} R_{0j}^n$.
- The idea of the construction is to build R_{ij}^n recursively and construct the RE from the pieces.

Recursive Construction of the RE of an NFA

• First, note that

$$R_{ij}^{-1} = \begin{cases} \{x \in \Sigma \cup \{\lambda\} \mid q_j \in \delta(q_i, x)\} & \text{if } i \neq j \\ \{a \in \Sigma \mid q_j \in \delta(q_i, a)\} \cup \{\lambda\} & \text{if } i = j \end{cases}$$

• Now the inductive step:

$$\begin{aligned} R_{ij}^{k+1} &= R_{ij}^{k} & \text{only } \{q_{0}, \dots, q_{k}\}. \\ & \cup R_{i(k+1)}^{k} \cdot R_{(k+1)j}^{k} & \text{exactly one } q_{k+1} \\ & \cup R_{i(k+1)}^{k} \cdot R_{(k+1)(k+1)}^{k} \cdot R_{(k+1)j}^{k} & \text{exactly two } q_{k+1}\text{'s} \\ & \cup R_{i(k+1)}^{k} \cdot \left(R_{(k+1)(k+1)}^{k}\right)^{2} \cdot R_{(k+1)j}^{k} & \text{exactly three } q_{k+1}\text{'s} \\ & \vdots & \\ & \cup R_{i(k+1)}^{k} \cdot \left(R_{(k+1)(k+1)}^{k}\right)^{m} \cdot R_{(k+1)j}^{k} & \text{exactly } m \; q_{k+1}\text{'s} \\ & \vdots & \\ & = & \cup R_{i(k+1)}^{k} \cdot \left(R_{(k+1)(k+1)}^{k}\right)^{*} \cdot R_{(k+1)j}^{k} & \text{any number of } q_{k+1}\text{'s} \end{aligned}$$

Regular Expressions

20100906 Slide 15 of 19

Recursive Construction of the RE of an NFA Continued

• The algorithm constructs an RE r_{ij}^k from R_{ij}^k and is best illustrated by example.

k	-1	0	1
r_{00}^{k}	$a + \lambda$	a*	a*
r_{01}^{k}	b	a*b	a* bb*
r ₀₂ ^k	С	a*c	$a^*c + a^*bb^*c = a^*b^*c$
r_{10}^{k}	Ø	Ø	Ø
r_{11}^{k}	$b + \lambda$	$b + \lambda$	b^*
r_{12}^{k}	С	С	b*c
r_{20}^{k}	Ø	Ø	Ø
r_{21}^{k}	Ø	Ø	Ø
r_{22}^{k}	$c + \lambda$	$c + \lambda$	$c + \lambda$

$$\begin{aligned} r_{00}^{2} &= r_{00}^{1} + r_{02}^{1} \cdot (r_{22}^{1})^{*} \cdot r_{20}^{1} = a^{*} + a^{*}b^{*}c \cdot (c + \lambda)^{*} \cdot \emptyset &= a^{*} \\ r_{01}^{2} &= r_{01}^{1} + r_{02}^{1} \cdot (r_{22}^{1})^{*} \cdot r_{21}^{1} = a^{*}bb^{*} + a^{*}b^{*}c \cdot (c + \lambda)^{*} \cdot \emptyset &= a^{*}bb^{*} \\ r_{02}^{2} &= r_{02}^{1} + r_{02}^{1} \cdot (r_{22})^{*} \cdot r_{22}^{1} = a^{*}b^{*}c + a^{*}b^{*}c \cdot (c + \lambda)^{*} \cdot (c + \lambda) &= a^{*}b^{*}cc^{*} \end{aligned}$$

Regular Expressions

20100906 Slide 16 of 19

Recursive Construction of the RE of an NFA Continued

$$\begin{aligned} r_{00}^{2} &= r_{00}^{1} + r_{02}^{1} \cdot (r_{22}^{1})^{*} \cdot r_{20}^{1} = a^{*} + a^{*}b^{*}c \cdot (c + \lambda)^{*} \cdot \emptyset &= a^{*} \\ r_{01}^{2} &= r_{01}^{1} + r_{02}^{1} \cdot (r_{22}^{1})^{*} \cdot r_{21}^{1} = a^{*}bb^{*} + a^{*}b^{*}c \cdot (c + \lambda)^{*} \cdot \emptyset &= a^{*}bb^{*} \\ r_{02}^{2} &= r_{02}^{1} + r_{02}^{1} \cdot (r_{22})^{*} \cdot r_{22}^{1} = a^{*}b^{*}c + a^{*}b^{*}c \cdot (c + \lambda)^{*} \cdot (c + \lambda) &= a^{*}b^{*}cc^{*} \\ \mathcal{L}(M) &= \mathcal{L}(r_{00}^{2} + r_{01}^{2} + r_{02}^{2}) \\ &= \mathcal{L}(a^{*} + a^{*}bb^{*} + a^{*}b^{*}cc^{*}) \\ &= \mathcal{L}(a^{*}(\lambda + bb^{*} + b^{*}cc^{*})) \\ &= \mathcal{L}(a^{*}(b^{*} + b^{*}cc^{*})) \\ &= \mathcal{L}(a^{*}b^{*}(\lambda + cc^{*})) \\ &= \mathcal{L}(a^{*}b^{*}c^{*}) \end{aligned}$$

A Better Algorithm

 $\bullet\,$ The algorithm to convert an RE to an NFA is very tedious to execute.

Question: Is there a better algorithm for humans to use?

Answer: Yes

- There is an algorithm which solves the equations algebraically, using *formal power series*.
- For the previous example, the equations are:

- It is similar in principle to solving linear equations in algebra.
- However, it requires the development of the theory of formal power series and so will not be presented here.

The Main Result So Far

Theorem: Let *L* be a language over the alphabet Σ . The following statements are equivalent.

- $L = \mathcal{L}(M)$ for some DFA M.
- $L = \mathcal{L}(M)$ for some NFA M.
- $L = \mathcal{L}(r)$ for some RE r.

Furthermore, there are algorithms for converting between the three representations. $\hfill\square$