
Regular Expressions

5DV037 — Fundamentals of Computer Science

Ume̊a University

Department of Computing Science

Stephen J. Hegner

hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Regular Expressions 20100906 Slide 1 of 19



The Idea of Regular Expressions

• The regular expressions (or RE’s) are a way of defining languages in a
recursive fashion, based upon simple primitives.

• The primitive regular expressions over Σ and the languages which they
define:

Regular Expression e Language L(e) Note

∅ ∅

λ {λ}
a {a} for each a ∈ Σ

• The recursively defined regular expressions over Σ and the languages
which they define:

Regular Expression e Language L(e)

(r1 + r2) L(r1) ∪ L(r2)
(r1 · r2) L(r1) · L(r2)
r1

∗ (L(r1))
∗

(r1) L(r1)
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An Example of the Language of a Regular Expression

• Let r = (((a · b) + c) + a∗)∗.

• To find L(r), simply apply the rules:

L(r) = L((((a · b) + c) + a∗)∗)

= (L((((a · b) + c) + a∗)))∗

= (L(((a · b) + c)) ∪ L(a∗)))∗

= ((L((a · b)) ∪ L(c)) ∪ L(a∗)))∗

= (((L(a) · L(b)) ∪ L(c)) ∪ L(a∗)))∗

= (((L(a) · L(b)) ∪ L(c)) ∪ (L(a))∗)
∗

= ({ab, c} ∪ {λ, a, aa, aaa, aaaa, . . .})∗

= ({ab, c , a})∗

• The last step requires a little thought and does not follow automatically
from the rules.

• Some useful simplifications can be developed, however.
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Properties of Regular Expressions

• The REs r1 and r2 are equivalent if L(r1) = L(r2).

• Write r1 = r2.

• + and · are associative: ((r1 + r2) + r3) = (r1 + (r2 + r3))
((r1 · r2) · r3) = (r1 · (r2 · r3))

• + is commutative: (r1 + r2) = (r2 + r1)

• · distributes over +: (r1 · (r2 + r3)) = ((r1 · r2) + (r1 · r3))
((r1 + r2) · r3) = ((r1 · r3) + (r2 · r3))

• ∅ is an identity for +: (r + ∅) = (∅+ r) = r

• λ is an identity for ·: (r · λ) = (λ · r) = r

• Positivity: (r1 + r2) = ∅ implies r1 = ∅ and r2 = ∅

• Dual of positivity: (r1 · r2) = ∅ implies r1 = ∅ or r2 = ∅

• Mathematicians call this a positive semiring.
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Additional Conventions for and Properties of REs

• Just as with the the usual (semiring of) integers, parentheses may be
dropped:

Examples: r1 + r2 = (r1 + r2)
r1 · r2 = (r1 · r2)

r1 + r2 + r3 = ((r1 + r2) + r3) = (r1 + (r2 + r3))
r1 · r2 · r3 = ((r1 · r2) · r3) = (r1 · (r2 · r3))

• Multiplication has higher precedence than addition:
r1 · r2 + r3 = (r1 · r2) + r3

• Star has higher precedence than multiplication: r1
∗ · r2 = (r1

∗) · r2

• Dot may be dropped: a · b = ab

• Some additional properties of regular expressions:

• r∗∗ = r∗

• (λ+ r)∗ = r∗

• (r1
∗ · r2

∗)∗ = (r1 + r2)
∗

• Test your knowledge of REs by proving the last property ...

• ... or find the answer as a solution to an exercise in the book.
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Some Examples of Constructing Regular Expressions

• The set of all strings over Σ = {a, b} which contain ab as a substring:
(a + b)∗ · ab · (a + b)∗

• The set of all strings over Σ = {a, b} which contain ab as a substring at
least twice: (a + b)∗ · ab · (a + b)∗ · ab · (a + b)∗

• The set of all strings over Σ = {a, b} which do not contain ab as a
substring:

• This is more difficult, since the REs do not have a negation
construct: b∗ · a∗.

• The set of all strings over Σ = {a, b, c} which do not contain ab as a
substring:

• This is even more difficult, and requires some thought:
(b + a∗c)∗ · a∗.

• The set of all strings over Σ = {a, b} which contain ab as a substring
exactly twice: (b + a∗c)∗ · ab · (b + a∗c)∗ · ab · (b + a∗c)∗
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Constructing an NFA from an RE

• For the primitive REs, a “building block” with exactly one accepting
state is required.

∅ λ a

q0 q1 q0 q1
λ q0 q1

a

• For a complex RE r , assume that an NFA M(r) with exactly one
accepting state and with L(M(r)) = L(r) is given for each constituent.

M(r)

• These NFAs are then connected together to obtain the NFA accepting a
more complex RE.
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Constructing an NFA from an RE — the “+” Case

• To obtain an accepter for r1 + r2, use a “parallel” connection of the two
accepters, as follows.

M(r2)

M(r1)

λ

λ

λ

λ

• Note the utility of λ transitions.

• The direct realization of a deterministic accepter for r1 + r2 is much more
complex.
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Constructing an NFA from an RE — “·” and “∗” Cases

• To obtain an accepter for r1 · r2, use a “serial” connection of the two
accepters, as follows.

M(r1) M(r2)
λ λ λ

• To obtain an accepter for r∗, use a “feedback/feedforward” connection of
the two accepters, as follows.

M(r)
λ λ

λ

λ

• Note that these constructions all preserve the condition of a single
accepting state, so they may be applied repeatedly.
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The Result Stated Formally

Theorem: Given any regular expression r , there is an algorithm to construct
an NFA M with L(M) = L(r).

Proof: Just apply the constructions just illustrated repeatedly to the
regular expression “bottom up”. �

Corollary: Given any regular expression r , there is an algorithm to construct
a DFA M with L(M) = L(r).

Proof: First construct the NFA using the above method, and then
convert it to a DFA. �
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An Example of the RE-to-NFA Construction

• Let r = (((a · b) + c) + a∗)∗.

a bλ λ λ

c

λ

λ

λ

λ

aλ λ

λ

λ

λ

λ

λ

λ

λ λ

λ

λ
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Simplification for a Particular Example

• The formal construction often results in an automaton which is more
complex than necessary.

• Here are simpler solutions for r = (((a · b) + c) + a∗)∗.

a b

c

λ λa

λ

λ

a b
a, c

λ

λ

• The solution on the left is a direct simplification of the result of the
algorithm.

• The solution on the right requires further analysis of the RE.
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Another Example

• r = abb∗ + ba.

λ

a b

b

λ

λ

b a

λ
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Construction of an NFA from an RE

• Let M = (Q,Σ, δ, q0 ,F) be an NFA.

• Assume, without loss of generality, that the states of M are numbered,
beginning with 0.

• Q = {q0, q1, . . . , qn}.

• Define Rk
ij to be the set of all α ∈ Σ∗ such that there is a computation

(qi , α) ⊢M (qm1 , α1) . . . ⊢M (qmp , αp) ⊢M (qj , λ)

for which {qm1 , . . . , qmp} ⊆ {q0, . . . , qk}.

• Thus, the computation is only allowed to go through intermediate states
indexed by 0, 1, . . . , k .

• It is easy to see that L(M) =
⋃

qj∈F
Rn
0j .

• The idea of the construction is to build Rn
ij recursively and construct the

RE from the pieces.
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Recursive Construction of the RE of an NFA

• First, note that

R−1
ij =

{

{x ∈ Σ ∪ {λ} | qj ∈ δ(qi , x)} if i 6= j

{a ∈ Σ | qj ∈ δ(qi , a)} ∪ {λ} if i = j

• Now the inductive step:

Rk+1
ij = Rk

ij only {q0, . . . , qk}.

∪Rk
i(k+1) · R

k
(k+1)j exactly one qk+1

∪Rk
i(k+1) · R

k
(k+1)(k+1) · R

k
(k+1)j exactly two qk+1’s

∪Rk
i(k+1) · (R

k
(k+1)(k+1))

2
· Rk

(k+1)j exactly three qk+1’s
...

∪Rk
i(k+1) · (R

k
(k+1)(k+1))

m
· Rk

(k+1)j exactly m qk+1’s
...

= ∪Rk
i(k+1) · (R

k
(k+1)(k+1))

∗

· Rk
(k+1)j any number of qk+1’s
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Recursive Construction of the RE of an NFA Continued

• The algorithm constructs an RE rkij from Rk
ij and is best illustrated by

example.

q0 q1 q2

a b c

b c

c

k −1 0 1

rk00 a+ λ a∗ a∗

rk01 b a∗b a∗bb∗

rk02 c a∗c a∗c + a∗bb∗c = a∗b∗c

rk10 ∅ ∅ ∅
rk11 b + λ b + λ b∗

rk12 c c b∗c

rk20 ∅ ∅ ∅
rk21 ∅ ∅ ∅
rk22 c + λ c + λ c + λ

r200 = r100 + r102 · (r
1
22)

∗

· r120 = a∗ + a∗b∗c · (c + λ)∗ · ∅ = a∗

r201 = r101 + r102 · (r
1
22)

∗

· r121 = a∗bb∗ + a∗b∗c · (c + λ)∗ · ∅ = a∗bb∗

r202 = r102 + r102 · (r22)
∗ · r122 = a∗b∗c + a∗b∗c · (c + λ)∗ · (c + λ) = a∗b∗cc∗
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Recursive Construction of the RE of an NFA Continued

q0start q1 q2

a b c

b c

c

r200 = r100 + r102 · (r
1
22)

∗

· r120 = a∗ + a∗b∗c · (c + λ)∗ · ∅ = a∗

r201 = r101 + r102 · (r
1
22)

∗

· r121 = a∗bb∗ + a∗b∗c · (c + λ)∗ · ∅ = a∗bb∗

r202 = r102 + r102 · (r22)
∗ · r122 = a∗b∗c + a∗b∗c · (c + λ)∗ · (c + λ) = a∗b∗cc∗

L(M) = L(r200 + r201 + r202)

= L(a∗ + a∗bb∗ + a∗b∗cc∗)

= L(a∗(λ+ bb∗ + b∗cc∗))

= L(a∗(b∗ + b∗cc∗))

= L(a∗b∗(λ+ cc∗))

= L(a∗b∗c∗)
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A Better Algorithm

• The algorithm to convert an RE to an NFA is very tedious to execute.

Question: Is there a better algorithm for humans to use?

Answer: Yes

• There is an algorithm which solves the equations algebraically, using
formal power series.

• For the previous example, the equations are:

q0start q1 q2

a b c

b c

c

X0 =aX0+ bX1+ cX2 + λ

X1 = bX1+ cX2 + λ

X2 = cX2 + λ

• It is similar in principle to solving linear equations in algebra.

• However, it requires the development of the theory of formal power
series and so will not be presented here.
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The Main Result So Far

Theorem: Let L be a language over the alphabet Σ. The following
statements are equivalent.

• L = L(M) for some DFA M.

• L = L(M) for some NFA M.

• L = L(r) for some RE r .

Furthermore, there are algorithms for converting between the three
representations. �
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