Regular Expressions

5DV037 - Fundamentals of Computer Science Umeå University Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se http://www.cs.umu.se/~hegner

The Idea of Regular Expressions

- The regular expressions (or REs) are a way of defining languages in a recursive fashion, based upon simple primitives.
- The primitive regular expressions over Σ and the languages which they define:

Regular Expression e	Language $\mathcal{L}(e)$	Note
\emptyset	\emptyset	
λ	$\{\lambda\}$	
a	$\{a\}$	for each $a \in \Sigma$

- The recursively defined regular expressions over Σ and the languages which they define:

Regular Expression e	Language $\mathcal{L}(e)$
$\left(r_{1}+r_{2}\right)$	$\mathcal{L}\left(r_{1}\right) \cup \mathcal{L}\left(r_{2}\right)$
$\left(r_{1} \cdot r_{2}\right)$	$\mathcal{L}\left(r_{1}\right) \cdot \mathcal{L}\left(r_{2}\right)$
$r_{1}{ }^{*}$	$\left(\mathcal{L}\left(r_{1}\right)\right)^{*}$
$\left(r_{1}\right)$	$\mathcal{L}\left(r_{1}\right)$

An Example of the Language of a Regular Expression

- Let $r=\left(((a \cdot b)+c)+a^{*}\right)^{*}$.
- To find $\mathcal{L}(r)$, simply apply the rules:

$$
\begin{aligned}
\mathcal{L}(r) & =\mathcal{L}\left(\left(((a \cdot b)+c)+a^{*}\right)^{*}\right) \\
& =\left(\mathcal{L}\left(\left(((a \cdot b)+c)+a^{*}\right)\right)\right)^{*} \\
& \left.=\left(\mathcal{L}(((a \cdot b)+c)) \cup \mathcal{L}\left(a^{*}\right)\right)\right)^{*} \\
& \left.=\left((\mathcal{L}((a \cdot b)) \cup \mathcal{L}(c)) \cup \mathcal{L}\left(a^{*}\right)\right)\right)^{*} \\
& \left.=\left(((\mathcal{L}(a) \cdot \mathcal{L}(b)) \cup \mathcal{L}(c)) \cup \mathcal{L}\left(a^{*}\right)\right)\right)^{*} \\
& =\left(((\mathcal{L}(a) \cdot \mathcal{L}(b)) \cup \mathcal{L}(c)) \cup(\mathcal{L}(a))^{*}\right)^{*} \\
& =(\{a b, c\} \cup\{\lambda, a, a a, \text { aaa, aaaa, } \ldots\})^{*} \\
& =(\{a b, c, a\})^{*}
\end{aligned}
$$

- The last step requires a little thought and does not follow automatically from the rules.
- Some useful simplifications can be developed, however.

Properties of Regular Expressions

- The REs r_{1} and r_{2} are equivalent if $\mathcal{L}\left(r_{1}\right)=\mathcal{L}\left(r_{2}\right)$.
- Write $r_{1}=r_{2}$.
- + and are associative: $\left(\left(r_{1}+r_{2}\right)+r_{3}\right)=\left(r_{1}+\left(r_{2}+r_{3}\right)\right)$

$$
\left(\left(r_{1} \cdot r_{2}\right) \cdot r_{3}\right)=\left(r_{1} \cdot\left(r_{2} \cdot r_{3}\right)\right)
$$

- + is commutative: $\left(r_{1}+r_{2}\right)=\left(r_{2}+r_{1}\right)$
- distributes over +: $\left(r_{1} \cdot\left(r_{2}+r_{3}\right)\right)=\left(\left(r_{1} \cdot r_{2}\right)+\left(r_{1} \cdot r_{3}\right)\right)$

$$
\left(\left(r_{1}+r_{2}\right) \cdot r_{3}\right)=\left(\left(r_{1} \cdot r_{3}\right)+\left(r_{2} \cdot r_{3}\right)\right)
$$

- \emptyset is an identity for $+:(r+\emptyset)=(\emptyset+r)=r$
- λ is an identity for $:(r \cdot \lambda)=(\lambda \cdot r)=r$
- Positivity: $\left(r_{1}+r_{2}\right)=\emptyset$ implies $r_{1}=\emptyset$ and $r_{2}=\emptyset$
- Dual of positivity: $\left(r_{1} \cdot r_{2}\right)=\emptyset$ implies $r_{1}=\emptyset$ or $r_{2}=\emptyset$
- Mathematicians call this a positive semiring.

Additional Conventions for and Properties of REs

- Just as with the the usual (semiring of) integers, parentheses may be dropped:

$$
\text { Examples: } \begin{aligned}
r_{1}+r_{2} & =\left(r_{1}+r_{2}\right) \\
r_{1} \cdot r_{2} & =\left(r_{1} \cdot r_{2}\right) \\
r_{1}+r_{2}+r_{3} & =\left(\left(r_{1}+r_{2}\right)+r_{3}\right)=\left(r_{1}+\left(r_{2}+r_{3}\right)\right) \\
r_{1} \cdot r_{2} \cdot r_{3} & =\left(\left(r_{1} \cdot r_{2}\right) \cdot r_{3}\right)=\left(r_{1} \cdot\left(r_{2} \cdot r_{3}\right)\right)
\end{aligned}
$$

- Multiplication has higher precedence than addition:

$$
r_{1} \cdot r_{2}+r_{3}=\left(r_{1} \cdot r_{2}\right)+r_{3}
$$

- Star has higher precedence than multiplication: $r_{1}{ }^{*} \cdot r_{2}=\left(r_{1}{ }^{*}\right) \cdot r_{2}$
- Dot may be dropped: $a \cdot b=a b$
- Some additional properties of regular expressions:
- $r^{* *}=r^{*}$
- $(\lambda+r)^{*}=r^{*}$
- $\left(r_{1}{ }^{*} \cdot r_{2}{ }^{*}\right)^{*}=\left(r_{1}+r_{2}\right)^{*}$
- Test your knowledge of REs by proving the last property ...
- ... or find the answer as a solution to an exercise in the book.

Some Examples of Constructing Regular Expressions

- The set of all strings over $\Sigma=\{a, b\}$ which contain $a b$ as a substring: $(a+b)^{*} \cdot a b \cdot(a+b)^{*}$
- The set of all strings over $\Sigma=\{a, b\}$ which contain $a b$ as a substring at least twice: $(a+b)^{*} \cdot a b \cdot(a+b)^{*} \cdot a b \cdot(a+b)^{*}$
- The set of all strings over $\Sigma=\{a, b\}$ which do not contain $a b$ as a substring:
- This is more difficult, since the REs do not have a negation construct: $b^{*} \cdot a^{*}$.
- The set of all strings over $\Sigma=\{a, b, c\}$ which do not contain $a b$ as a substring:
- This is even more difficult, and requires some thought:

$$
\left(b+a^{*} c\right)^{*} \cdot a^{*}
$$

- The set of all strings over $\Sigma=\{a, b\}$ which contain $a b$ as a substring exactly twice: $\left(b+a^{*} c\right)^{*} \cdot a b \cdot\left(b+a^{*} c\right)^{*} \cdot a b \cdot\left(b+a^{*} c\right)^{*}$

Constructing an NFA from an RE

- For the primitive REs, a "building block" with exactly one accepting state is required.

- For a complex RE r, assume that an NFA $M(r)$ with exactly one accepting state and with $\mathcal{L}(M(r))=\mathcal{L}(r)$ is given for each constituent.

- These NFAs are then connected together to obtain the NFA accepting a more complex RE.

Constructing an NFA from an RE - the " + " Case

- To obtain an accepter for $r_{1}+r_{2}$, use a "parallel" connection of the two accepters, as follows.

- Note the utility of λ transitions.
- The direct realization of a deterministic accepter for $r_{1}+r_{2}$ is much more complex.

Constructing an NFA from an RE - "." and "*" Cases

- To obtain an accepter for $r_{1} \cdot r_{2}$, use a "serial" connection of the two accepters, as follows.

- To obtain an accepter for r^{*}, use a "feedback/feedforward" connection of the two accepters, as follows.

- Note that these constructions all preserve the condition of a single accepting state, so they may be applied repeatedly.

The Result Stated Formally

Theorem: Given any regular expression r, there is an algorithm to construct an NFA M with $\mathcal{L}(M)=\mathcal{L}(r)$.
Proof: Just apply the constructions just illustrated repeatedly to the regular expression "bottom up". \square

Corollary: Given any regular expression r, there is an algorithm to construct a DFA M with $\mathcal{L}(M)=\mathcal{L}(r)$.
Proof: First construct the NFA using the above method, and then convert it to a DFA. \square

An Example of the RE-to-NFA Construction

- Let $r=\left(((a \cdot b)+c)+a^{*}\right)^{*}$.

Simplification for a Particular Example

- The formal construction often results in an automaton which is more complex than necessary.
- Here are simpler solutions for $r=\left(((a \cdot b)+c)+a^{*}\right)^{*}$.

- The solution on the left is a direct simplification of the result of the algorithm.
- The solution on the right requires further analysis of the RE.

Another Example

- $r=a b b^{*}+b a$.

Construction of an NFA from an RE

- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an NFA.
- Assume, without loss of generality, that the states of M are numbered, beginning with 0 .
- $Q=\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}$.
- Define $R_{i j}^{k}$ to be the set of all $\alpha \in \Sigma^{*}$ such that there is a computation

$$
\left(q_{i}, \alpha\right) \vdash_{M}\left(q_{m_{1}}, \alpha_{1}\right) \ldots \vdash_{M}\left(q_{m_{p}}, \alpha_{p}\right) \vdash_{M}\left(q_{j}, \lambda\right)
$$

for which $\left\{q_{m_{1}}, \ldots, q_{m_{p}}\right\} \subseteq\left\{q_{0}, \ldots, q_{k}\right\}$.

- Thus, the computation is only allowed to go through intermediate states indexed by $0,1, \ldots, k$.
- It is easy to see that $\mathcal{L}(M)=\bigcup_{q_{j} \in F} R_{0 j}^{n}$.
- The idea of the construction is to build $R_{i j}^{n}$ recursively and construct the RE from the pieces.

Recursive Construction of the RE of an NFA

- First, note that

$$
R_{i j}^{-1}= \begin{cases}\left\{x \in \Sigma \cup\{\lambda\} \mid q_{j} \in \delta\left(q_{i}, x\right)\right\} & \text { if } i \neq j \\ \left\{a \in \Sigma \mid q_{j} \in \delta\left(q_{i}, a\right)\right\} \cup\{\lambda\} & \text { if } i=j\end{cases}
$$

- Now the inductive step:

$$
\begin{aligned}
R_{i j}^{k+1}= & & R_{i j}^{k} & \\
& \cup R_{i(k+1)}^{k} \cdot R_{(k+1) j}^{k} & & \text { exactly }\left\{q_{0}, \ldots, q_{k}\right\} . \\
& \cup R_{i(k+1)}^{k} \cdot R_{(k+1)(k+1)}^{k} \cdot R_{(k+1) j}^{k} & & \text { exactly two } q_{k+1} \prime \prime \\
& \cup R_{i(k+1)}^{k} \cdot\left(R_{(k+1)(k+1)}^{k}\right)^{2} \cdot R_{(k+1) j}^{k} & & \text { exactly three } q_{k+1} \text { 's } \\
& \vdots & & \\
& \cup R_{i(k+1)}^{k} \cdot\left(R_{(k+1)(k+1)}^{k}\right)^{m} \cdot R_{(k+1) j}^{k} & & \text { exactly } m q_{k+1} ' s \\
& \vdots & & \\
= & \cup R_{i(k+1)}^{k} \cdot\left(R_{(k+1)(k+1)}^{k}\right)^{*} \cdot R_{(k+1) j}^{k} & & \text { any number of } q_{k+1} ' s
\end{aligned}
$$

Recursive Construction of the RE of an NFA Continued

- The algorithm constructs an RE $r_{i j}^{k}$ from $R_{i j}^{k}$ and is best illustrated by example.

k	-1	0	1
r_{00}^{k}	$a+\lambda$	a^{*}	a^{*}
r_{01}^{k}	b	$a^{*} b$	$a^{*} b b^{*}$
r_{02}^{k}	c	$a^{*} c$	$a^{*} c+a^{*} b b^{*} c=a^{*} b^{*} c$
r_{10}^{k}	\emptyset	\emptyset	\emptyset
r_{11}^{k}	$b+\lambda$	$b+\lambda$	b^{*}
r_{12}^{k}	c	c	$b^{*} c$
r_{20}^{k}	\emptyset	\emptyset	\emptyset
r_{21}^{k}	\emptyset	\emptyset	\emptyset
r_{22}^{k}	$c+\lambda$	$c+\lambda$	$c+\lambda$

$$
\begin{array}{ll}
r_{00}^{2}=r_{00}^{1}+r_{02}^{1} \cdot\left(r_{22}^{1}\right)^{*} \cdot r_{20}^{1}=a^{*}+a^{*} b^{*} c \cdot(c+\lambda)^{*} \cdot \emptyset & =a^{*} \\
r_{01}^{2}=r_{01}^{1}+r_{02}^{1} \cdot\left(r_{22}^{1}\right)^{*} \cdot r_{21}^{1}=a^{*} b b^{*}+a^{*} b^{*} c \cdot(c+\lambda)^{*} \cdot \emptyset & =a^{*} b b^{*} \\
r_{02}^{2}=r_{02}^{1}+r_{02}^{1} \cdot\left(r_{22}\right)^{*} \cdot r_{22}^{1}=a^{*} b^{*} c+a^{*} b^{*} c \cdot(c+\lambda)^{*} \cdot(c+\lambda) & =a^{*} b^{*} c c^{*}
\end{array}
$$

Recursive Construction of the RE of an NFA Continued

$$
\begin{array}{rlrl}
r_{00}^{2}=r_{00}^{1}+r_{02}^{1} \cdot\left(r_{22}^{1}\right)^{*} \cdot r_{20}^{1} & =a^{*}+a^{*} b^{*} c \cdot(c+\lambda)^{*} \cdot \emptyset & =a^{*} \\
r_{01}^{2}=r_{01}^{1}+r_{02}^{1} \cdot\left(r_{22}^{1}\right)^{*} \cdot r_{21}^{1}=a^{*} b b^{*}+a^{*} b^{*} c \cdot(c+\lambda)^{*} \cdot \emptyset & & =a^{*} b b^{*} \\
r_{02}^{2}=r_{02}^{1}+r_{02}^{1} \cdot\left(r_{22}\right)^{*} \cdot r_{22}^{1} & =a^{*} b^{*} c+a^{*} b^{*} c \cdot(c+\lambda)^{*} \cdot(c+\lambda) & =a^{*} b^{*} c c^{*} \\
\mathcal{L}(M) & =\mathcal{L}\left(r_{00}^{2}+r_{01}^{2}+r_{02}^{2}\right) & \\
& =\mathcal{L}\left(a^{*}+a^{*} b b^{*}+a^{*} b^{*} c c^{*}\right) & \\
& =\mathcal{L}\left(a^{*}\left(\lambda+b b^{*}+b^{*} c c^{*}\right)\right) & \\
& =\mathcal{L}\left(a^{*}\left(b^{*}+b^{*} c c^{*}\right)\right) & \\
& =\mathcal{L}\left(a^{*} b^{*}\left(\lambda+c c^{*}\right)\right) & & \\
& =\mathcal{L}\left(a^{*} b^{*} c^{*}\right) &
\end{array}
$$

A Better Algorithm

- The algorithm to convert an RE to an NFA is very tedious to execute.

Question: Is there a better algorithm for humans to use?
Answer: Yes

- There is an algorithm which solves the equations algebraically, using formal power series.
- For the previous example, the equations are:

$$
\begin{array}{ll}
X_{0}=a X_{0}+ & b X_{1}+c X_{2}+\lambda \\
X_{1}= & b X_{1}+c X_{2}+\lambda \\
X_{2}= & \\
c X_{2}+\lambda
\end{array}
$$

- It is similar in principle to solving linear equations in algebra.
- However, it requires the development of the theory of formal power series and so will not be presented here.

The Main Result So Far

Theorem: Let L be a language over the alphabet Σ. The following statements are equivalent.

- $L=\mathcal{L}(M)$ for some DFA M.
- $L=\mathcal{L}(M)$ for some NFA M.
- $L=\mathcal{L}(r)$ for some RE r.

Furthermore, there are algorithms for converting between the three representations. \square

