
Finite Automata

5DV037 — Fundamentals of Computer Science

Ume̊a University

Department of Computing Science

Stephen J. Hegner

hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Finite Automata 20100902 Slide 1 of 18



The Idea of Deterministic Finite Automata

• Recall the general form of an accepter.

• In a finite automaton, there is no external storage.

• The input is consumed left-to-right, one character at a time, with no
possibility to move left and re-read.

· · ·

Finite-state control

tape head
external storage

· · ·

input
w ∈ L

output
yes (1) or no (0)

Finite Automata 20100902 Slide 2 of 18



The Idea of Deterministic Finite Automata

• Recall the general form of an accepter.

• In a finite automaton, there is no external storage.

• The input is consumed left-to-right, one character at a time, with no
possibility to move left and re-read.

• This picture is thus more representative.

Accepter for L
input
w ∈ L

output
yes (1) or no (0)

Finite Automata 20100902 Slide 3 of 18



An Example to Illustrate the Idea

• Let Σ = {a, b}
L = {w ∈ Σ∗ | Count〈a,w〉 is even or Count〈b,w〉 is odd}

.

• Design a deterministic finite-state accepter for L.

qeestart

qoe

qeo

qoo

a

b

a

b

a

b a

b

State Count〈a, u〉 Count〈b, u〉 Accept

qee even even yes

qoe odd even no

qeo even odd yes

qoo odd odd yes

u = part of input already processed.

• States are represented as labelled circles.

• Transitions between states are represented as labelled arrows.

• The start state is identified by an inward arrow.

• Accepting states are identified by concentric circles.

Finite Automata 20100902 Slide 4 of 18



Formalization of Deterministic Finite Automata

A deterministic finite-state automaton or deterministic finite-state
accepter (DFA) is a five-tuple

M = (Q,Σ, δ, q0,F )
in which
• Q is finite set of states;
• Σ is an alphabet, called the input alphabet;
• δ : Q × Σ→ Q is a total function, the state-transition function;
• q0 ∈ Q is the initial state;
• F ⊆ Q is the set of final or accepting states.

qeestart

qoe

qeo

qoo

a

b

a

b

a

b a

b

Q = {qee , qeo , qoe , qoo}; q0 = qee .

State q δ(q, a) δ(q, b) q ∈ F

qee qoe qeo yes

qoe qee qoo no

qeo qoo qee yes

qoo qeo qoe yes

Finite Automata 20100902 Slide 5 of 18



The Extended Transition Function and Acceptance

• Let M = (Q,Σ, δ, q0,F ) be a DFA. The extended transition function or
run map

δ∗ : Q × Σ∗ → Q

extends δ : Q × Σ→ Q to input strings.

• It is defined inductively as follows.

• δ∗(q, λ) = q for any q ∈ Q;

• δ∗(q, α · a) = δ(δ∗(q, α), a) for any q ∈ Q, α ∈ Σ∗, and a ∈ Σ.

• The language accepted by M is the set of all strings which drive M from
its initial state to an accepting state.

• Formally,
L(M) = {w ∈ Σ∗ | δ∗(q0,w) ∈ F}

• Given L ⊆ Σ∗, M is called a deterministic finite-state accepter for L if
L(M) = L.

Finite Automata 20100902 Slide 6 of 18



A Larger Example

• Let Σ = {0, 1}, and define
L = {α ∈ Σ∗ | Length(α) ≥ 10

and the 10th element from the right is a 1}.

• Design a DFA which accepts L.

• Such an accepter must have (at least) 210 = 1024 states.

• Define:

• Q = {qβ | β ∈ {0, 1}
∗ and Length(β) = 10};

• q0 = q0000000000;

• The transition function operates as shift left and append:

• δ(qβ , x) = qRest〈β〉·x .

• The accepting states are F = {qβ ∈ Q | First〈β〉 = 1} with First〈β〉 the
leftmost element of β.

• Then (Q,Σ, δ, q0,F ) is a deterministic finite-state accepter for L.

Finite Automata 20100902 Slide 7 of 18



Instantaneous Descriptions and the Move Relation

• An instantaneous description (or machine configuration or ID) for the
DFA M = (Q,Σ, δ, q0,F ) is a pair (q, α) ∈ Q ×Σ∗ in which:

• q represents the current state;

• α represents the part of the input string which has not yet been read.

• ID〈M〉 = Q × Σ∗; the set of all possible IDs of M.

• The move relation ⊢M ⊆ ID〈M〉 × ID〈M〉 represents one step of M and is
defined by (q1, α1) ⊢M (q2, α2) iff

• α2 = Rest〈α1〉; and

• δ(q1,First〈α1〉) = q2.

• Thus (q, a1a2 . . . ak) ⊢M (δ(q, a1), a2 . . . ak).

• ⊢∗M is the reflexive and transitive closure of ⊢M :

• (q, α) ⊢∗M (q, α);

• (q1, α1) ⊢
∗
M (q2, α2), (q2, α2) ⊢

∗
M (q3, α3) ⇒ (q1, α1) ⊢

∗
M (q3, α3).

• Thus (q, α1α2) ⊢
∗
M (δ∗(q, α1), α2).

• For a DFA, ⊢M and ⊢∗
M
are functions.

Finite Automata 20100902 Slide 8 of 18



Computations and the Language Accepted by a DFA

• The computation of M on α ∈ Σ∗ is the sequence

(q0, α) = (q0, α0) ⊢M (q1, α1) ⊢M . . . ⊢M (qm, αm) = (qm, λ)

• In the above, αi+1 = Rest〈αi 〉 and qi+1 = δ(qi ,First〈αi 〉).

• The language of a DFA may be characterized succinctly using
computations.

Observation: For any DFA M = (Q,Σ, δ, q0,F ),
L(M) = {α ∈ Σ∗ | (q0, α) ⊢

∗
M (qf , λ) with qf ∈ F}. �

• This flavor of representation of the language of a machine will prove very
useful in the more complex models of computation which will follow.

Finite Automata 20100902 Slide 9 of 18



The Class of Languages Accepted by DFAs

Question: How is the class of languages which are accepted by DFAs
characterized?

• Begin with a definition.

• The class of all languages (over a given alphabet Σ) which are accepted
by some DFA is called the regular languages (over Σ).

• The next task is to look for alternate characterizations for regular
languages. There are several.

• Alternate forms of finite automata:

• nondeterministic finite automata

• finite automata with λ-transitions

• Other types of language characterization:

• regular expressions

• regular grammars

Finite Automata 20100902 Slide 10 of 18



Nondeterministic Finite Automata

A nondeterministic finite-state automaton or nondeterministic finite-state
accepter (NFA) is a five-tuple

M = (Q,Σ, δ, q0,F )
in which everything is the same as in a DFA except that
• δ : Q × (Σ ∪ {λ})→ 2Q .

• Note that there are three significant differences between a DFA and an
NFA:

• The transition function is nondeterministic; that is, there is a set of
possible next states as opposed to a single possibility.

• The set of possible next states may in fact be empty, so there is not
necessarily even one possible next state.

• So-called λ-transitions are allowed in which no input symbol is
consumed.

• Every DFA may be viewed as an NFA:

• M = (Q,Σ, δ, q0,F ) M̃ = (Q,Σ, δ̃, q0,F ) with δ̃ : Q ×Σ→ 2Q

given by (q, a) 7→ {δ(q, a)}.
Finite Automata 20100902 Slide 11 of 18



The Run Map and Acceptance for NFAs

• To define δ∗ for an NFA M = (Q,Σ, δ, q0,F ), it is convenient to define
and use the move relation.

• Define (q1, α1) ⊢M (q2, α2) to hold if either

• α2 = Rest〈α1〉 and q2 ∈ δ(q1,First〈α1〉); or

• α2 = α1 and q2 ∈ δ(q1, λ).

• Define ⊢∗M to be the reflexive and transitive closure of ⊢M, just as for the
DFA case.

• Note that ⊢M and ⊢∗
M
are not necessarily functions in the case of an NFA.

• Define δ∗ : Q × Σ∗ → 2Q via q′ ∈ δ∗(q, α) iff (q, α) ⊢∗
M
(q′λ).

• Define L(M) = {α ∈ Σ∗ | δ∗(q0, α) ∩ F 6= ∅}.

• Thus, the NFA M accepts a string α ∈ Σ∗ if some computation reads the
entire input and winds up in an accepting state, and rejects that string if
no computation has that property.

Finite Automata 20100902 Slide 12 of 18



An Example of Acceptance by an NFA

• Let Σ = {0, 1}, and define
L = {α ∈ Σ∗ | Length(α) ≥ 10

and the 10th element from the right is a 1}.

• Design an NFA which accepts L.

q0start q1 q2 q3 q4

q5q6q7q8q9qa

0, 1

1 0, 1 0, 1 0, 1

0, 1

0, 10, 10, 10, 10, 1

• Note that this nondeterministic accepter has only 10 states, as opposed
to 1024 for the deterministic version.

Finite Automata 20100902 Slide 13 of 18



An Example with λ-Transitions

• Let Σ = {a, b, c} and let L = {aibjck | i , j , k ∈ N}.

• Here is a simple NFA accepter for L which makes use of λ-transitions.

q0start q1 q2

a b c

λ λ

Finite Automata 20100902 Slide 14 of 18



Formulation of the Equivalence Theorem

Theorem: Given any NFA M, there is a DFA M ′ with L(M ′) = L(M). �

• In other words, NFAs and DFAs are equal in accepting power.

• The idea of the proof is rather simple.

• Let M = (Q,Σ, δ, q0,F ) be the given NFA.

• The set of states of M ′ is 2Q .

• There is a transition
δ′(S , a) = S ′

in the DFA iff there are q ∈ S and q′ ∈ S ′ with the property that
q′ ∈ δ∗(q, a).

• The algorithm also eliminates unreachable states.

• It is summarized on the next slide.

Finite Automata 20100902 Slide 15 of 18



The NFA-to-DFA Conversion Algorithm

Input : An NFA M = (Q,Σ, δ, q0,F )
Output: An equivalent DFA M ′ = (Q ′,Σ, δ′, {q0},F

′)
Pool ← {{q0}}; Q’ ← ∅; DFA Transitions ← ∅;
while Pool 6= ∅ do

choose S ∈ Pool;
Pool ← Pool \ {S}; Q’ ← Q’ ∪ {S};
foreach x ∈ Σ do

NewState ←
⋃
{δ∗(s, x) | s ∈ S};

DFA Transitions ← DFA Transitions ∪ {δ′(S , x) = NewState};
if NewState 6∈ Q’ ∪ Pool then Pool← Pool ∪ {NewState};

end

end

δ′ ← DFA Transitions; F ′ ← {S ∈ Q ′ | S ∩ F 6= ∅};
if δ∗(q0, λ) ∩ F 6= ∅ then F ′ ← F ′ ∪ {{q0}};

Finite Automata 20100902 Slide 16 of 18



Example of Conversion of an NFA to an Equivalent DFA

• Let Σ = {0, 1}, and define
L = {α ∈ Σ∗ | Length(α) ≥ 2, 2nd element from the right is a 1}.

• Here is an NFA which accepts L.

q0start q1 qa

0, 1

1 0, 1

• The corresponding DFA according to the construction:

{q0}start {q0, q1}

{q0, q2}

{q0, q1
q2}

0

1

0

1

0, 1 0

1

Finite Automata 20100902 Slide 17 of 18



Example of Conversion with λ-Transitions

• Let Σ = {a, b, c} and let L = {aibjck | i , j , k ∈ N}.

q0start q1 q2

a b c

λ λ

• The corresponding DFA according to the construction.

{q0}start
{q0, q1

q2}
{q1, q2} {q2} ∅

a

b

c

a

b
c a

b

c

a, b

c a, b, c

Finite Automata 20100902 Slide 18 of 18


