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The Idea of Deterministic Finite Automata

• Recall the general form of an accepter.

• In a finite automaton, there is no external storage.

• The input is consumed left-to-right, one character at a time, with no
possibility to move left and re-read.

· · ·

Finite-state control

tape head
external storage

· · ·

input
w ∈ L

output
yes (1) or no (0)
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The Idea of Deterministic Finite Automata

• Recall the general form of an accepter.

• In a finite automaton, there is no external storage.

• The input is consumed left-to-right, one character at a time, with no
possibility to move left and re-read.

• This picture is thus more representative.

Accepter for L
input
w ∈ L

output
yes (1) or no (0)
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An Example to Illustrate the Idea

• Let Σ = {a, b}
L = {w ∈ Σ∗ | Count〈a,w〉 is even or Count〈b,w〉 is odd}

.

• Design a deterministic finite-state accepter for L.

qeestart

qoe

qeo

qoo

a

b

a

b

a

b a

b

State Count〈a, u〉 Count〈b, u〉 Accept

qee even even yes

qoe odd even no

qeo even odd yes

qoo odd odd yes

u = part of input already processed.

• States are represented as labelled circles.

• Transitions between states are represented as labelled arrows.

• The start state is identified by an inward arrow.

• Accepting states are identified by concentric circles.
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Formalization of Deterministic Finite Automata

A deterministic finite-state automaton or deterministic finite-state
accepter (DFA) is a five-tuple

M = (Q,Σ, δ, q0,F )
in which
• Q is finite set of states;
• Σ is an alphabet, called the input alphabet;
• δ : Q × Σ→ Q is a total function, the state-transition function;
• q0 ∈ Q is the initial state;
• F ⊆ Q is the set of final or accepting states.

qeestart

qoe

qeo

qoo

a

b

a

b

a

b a

b

Q = {qee , qeo , qoe , qoo}; q0 = qee .

State q δ(q, a) δ(q, b) q ∈ F

qee qoe qeo yes

qoe qee qoo no

qeo qoo qee yes

qoo qeo qoe yes
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The Extended Transition Function and Acceptance

• Let M = (Q,Σ, δ, q0,F ) be a DFA. The extended transition function or
run map

δ∗ : Q × Σ∗ → Q

extends δ : Q × Σ→ Q to input strings.

• It is defined inductively as follows.

• δ∗(q, λ) = q for any q ∈ Q;

• δ∗(q, α · a) = δ(δ∗(q, α), a) for any q ∈ Q, α ∈ Σ∗, and a ∈ Σ.

• The language accepted by M is the set of all strings which drive M from
its initial state to an accepting state.

• Formally,
L(M) = {w ∈ Σ∗ | δ∗(q0,w) ∈ F}

• Given L ⊆ Σ∗, M is called a deterministic finite-state accepter for L if
L(M) = L.
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A Larger Example

• Let Σ = {0, 1}, and define
L = {α ∈ Σ∗ | Length(α) ≥ 10

and the 10th element from the right is a 1}.

• Design a DFA which accepts L.

• Such an accepter must have (at least) 210 = 1024 states.

• Define:

• Q = {qβ | β ∈ {0, 1}
∗ and Length(β) = 10};

• q0 = q0000000000;

• The transition function operates as shift left and append:

• δ(qβ , x) = qRest〈β〉·x .

• The accepting states are F = {qβ ∈ Q | First〈β〉 = 1} with First〈β〉 the
leftmost element of β.

• Then (Q,Σ, δ, q0,F ) is a deterministic finite-state accepter for L.
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Instantaneous Descriptions and the Move Relation

• An instantaneous description (or machine configuration or ID) for the
DFA M = (Q,Σ, δ, q0,F ) is a pair (q, α) ∈ Q ×Σ∗ in which:

• q represents the current state;

• α represents the part of the input string which has not yet been read.

• ID〈M〉 = Q × Σ∗; the set of all possible IDs of M.

• The move relation ⊢M ⊆ ID〈M〉 × ID〈M〉 represents one step of M and is
defined by (q1, α1) ⊢M (q2, α2) iff

• α2 = Rest〈α1〉; and

• δ(q1,First〈α1〉) = q2.

• Thus (q, a1a2 . . . ak) ⊢M (δ(q, a1), a2 . . . ak).

• ⊢∗M is the reflexive and transitive closure of ⊢M :

• (q, α) ⊢∗M (q, α);

• (q1, α1) ⊢
∗
M (q2, α2), (q2, α2) ⊢

∗
M (q3, α3) ⇒ (q1, α1) ⊢

∗
M (q3, α3).

• Thus (q, α1α2) ⊢
∗
M (δ∗(q, α1), α2).

• For a DFA, ⊢M and ⊢∗
M
are functions.
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Computations and the Language Accepted by a DFA

• The computation of M on α ∈ Σ∗ is the sequence

(q0, α) = (q0, α0) ⊢M (q1, α1) ⊢M . . . ⊢M (qm, αm) = (qm, λ)

• In the above, αi+1 = Rest〈αi 〉 and qi+1 = δ(qi ,First〈αi 〉).

• The language of a DFA may be characterized succinctly using
computations.

Observation: For any DFA M = (Q,Σ, δ, q0,F ),
L(M) = {α ∈ Σ∗ | (q0, α) ⊢

∗
M (qf , λ) with qf ∈ F}. �

• This flavor of representation of the language of a machine will prove very
useful in the more complex models of computation which will follow.
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The Class of Languages Accepted by DFAs

Question: How is the class of languages which are accepted by DFAs
characterized?

• Begin with a definition.

• The class of all languages (over a given alphabet Σ) which are accepted
by some DFA is called the regular languages (over Σ).

• The next task is to look for alternate characterizations for regular
languages. There are several.

• Alternate forms of finite automata:

• nondeterministic finite automata

• finite automata with λ-transitions

• Other types of language characterization:

• regular expressions

• regular grammars
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Nondeterministic Finite Automata

A nondeterministic finite-state automaton or nondeterministic finite-state
accepter (NFA) is a five-tuple

M = (Q,Σ, δ, q0,F )
in which everything is the same as in a DFA except that
• δ : Q × (Σ ∪ {λ})→ 2Q .

• Note that there are three significant differences between a DFA and an
NFA:

• The transition function is nondeterministic; that is, there is a set of
possible next states as opposed to a single possibility.

• The set of possible next states may in fact be empty, so there is not
necessarily even one possible next state.

• So-called λ-transitions are allowed in which no input symbol is
consumed.

• Every DFA may be viewed as an NFA:

• M = (Q,Σ, δ, q0,F ) M̃ = (Q,Σ, δ̃, q0,F ) with δ̃ : Q ×Σ→ 2Q

given by (q, a) 7→ {δ(q, a)}.
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The Run Map and Acceptance for NFAs

• To define δ∗ for an NFA M = (Q,Σ, δ, q0,F ), it is convenient to define
and use the move relation.

• Define (q1, α1) ⊢M (q2, α2) to hold if either

• α2 = Rest〈α1〉 and q2 ∈ δ(q1,First〈α1〉); or

• α2 = α1 and q2 ∈ δ(q1, λ).

• Define ⊢∗M to be the reflexive and transitive closure of ⊢M, just as for the
DFA case.

• Note that ⊢M and ⊢∗
M
are not necessarily functions in the case of an NFA.

• Define δ∗ : Q × Σ∗ → 2Q via q′ ∈ δ∗(q, α) iff (q, α) ⊢∗
M
(q′λ).

• Define L(M) = {α ∈ Σ∗ | δ∗(q0, α) ∩ F 6= ∅}.

• Thus, the NFA M accepts a string α ∈ Σ∗ if some computation reads the
entire input and winds up in an accepting state, and rejects that string if
no computation has that property.
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An Example of Acceptance by an NFA

• Let Σ = {0, 1}, and define
L = {α ∈ Σ∗ | Length(α) ≥ 10

and the 10th element from the right is a 1}.

• Design an NFA which accepts L.

q0start q1 q2 q3 q4

q5q6q7q8q9qa

0, 1

1 0, 1 0, 1 0, 1

0, 1

0, 10, 10, 10, 10, 1

• Note that this nondeterministic accepter has only 10 states, as opposed
to 1024 for the deterministic version.
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An Example with λ-Transitions

• Let Σ = {a, b, c} and let L = {aibjck | i , j , k ∈ N}.

• Here is a simple NFA accepter for L which makes use of λ-transitions.

q0start q1 q2

a b c

λ λ
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Formulation of the Equivalence Theorem

Theorem: Given any NFA M, there is a DFA M ′ with L(M ′) = L(M). �

• In other words, NFAs and DFAs are equal in accepting power.

• The idea of the proof is rather simple.

• Let M = (Q,Σ, δ, q0,F ) be the given NFA.

• The set of states of M ′ is 2Q .

• There is a transition
δ′(S , a) = S ′

in the DFA iff there are q ∈ S and q′ ∈ S ′ with the property that
q′ ∈ δ∗(q, a).

• The algorithm also eliminates unreachable states.

• It is summarized on the next slide.
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The NFA-to-DFA Conversion Algorithm

Input : An NFA M = (Q,Σ, δ, q0,F )
Output: An equivalent DFA M ′ = (Q ′,Σ, δ′, {q0},F

′)
Pool ← {{q0}}; Q’ ← ∅; DFA Transitions ← ∅;
while Pool 6= ∅ do

choose S ∈ Pool;
Pool ← Pool \ {S}; Q’ ← Q’ ∪ {S};
foreach x ∈ Σ do

NewState ←
⋃
{δ∗(s, x) | s ∈ S};

DFA Transitions ← DFA Transitions ∪ {δ′(S , x) = NewState};
if NewState 6∈ Q’ ∪ Pool then Pool← Pool ∪ {NewState};

end

end

δ′ ← DFA Transitions; F ′ ← {S ∈ Q ′ | S ∩ F 6= ∅};
if δ∗(q0, λ) ∩ F 6= ∅ then F ′ ← F ′ ∪ {{q0}};
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Example of Conversion of an NFA to an Equivalent DFA

• Let Σ = {0, 1}, and define
L = {α ∈ Σ∗ | Length(α) ≥ 2, 2nd element from the right is a 1}.

• Here is an NFA which accepts L.

q0start q1 qa

0, 1

1 0, 1

• The corresponding DFA according to the construction:

{q0}start {q0, q1}

{q0, q2}

{q0, q1
q2}

0

1

0

1

0, 1 0

1
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Example of Conversion with λ-Transitions

• Let Σ = {a, b, c} and let L = {aibjck | i , j , k ∈ N}.

q0start q1 q2

a b c

λ λ

• The corresponding DFA according to the construction.

{q0}start
{q0, q1

q2}
{q1, q2} {q2} ∅

a

b

c

a

b
c a

b

c

a, b

c a, b, c
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