Finite Automata

5DV037 - Fundamentals of Computer Science Umeå University Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se
http://www.cs.umu.se/~hegner

The Idea of Deterministic Finite Automata

- Recall the general form of an accepter.
- In a finite automaton, there is no external storage.
- The input is consumed left-to-right, one character at a time, with no possibility to move left and re-read.

The Idea of Deterministic Finite Automata

- Recall the general form of an accepter.
- In a finite automaton, there is no external storage.
- The input is consumed left-to-right, one character at a time, with no possibility to move left and re-read.
- This picture is thus more representative.

An Example to Illustrate the Idea

- Let $\Sigma=\{a, b\}$
$L=\left\{w \in \Sigma^{*} \mid\right.$ Count $\langle a, w\rangle$ is even or Count $\langle b, w\rangle$ is odd $\}$
- Design a deterministic finite-state accepter for L.

State	Count $\langle a, u\rangle$	Count $\langle b, u\rangle$	Accept
$q_{e e}$	even	even	yes
$q_{o e}$	odd	even	no
$q_{e o}$	even	odd	yes
$q_{o o}$	odd	odd	yes

$u=$ part of input already processed.

- States are represented as labelled circles.
- Transitions between states are represented as labelled arrows.
- The start state is identified by an inward arrow.
- Accepting states are identified by concentric circles.

Formalization of Deterministic Finite Automata

A deterministic finite-state automaton or deterministic finite-state accepter (DFA) is a five-tuple
in which

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

- Q is finite set of states;
- Σ is an alphabet, called the input alphabet;
- $\delta: Q \times \Sigma \rightarrow Q$ is a total function, the state-transition function;
- $q_{0} \in Q$ is the initial state;
- $F \subseteq Q$ is the set of final or accepting states.

$Q=\left\{q_{e e}, q_{e o}, q_{o e}, q_{o o}\right\} ; q_{0}=q_{e e}$.

State q	$\delta(q, a)$	$\delta(q, b)$	$q \in F$
$q_{e e}$	$q_{o e}$	$q_{e o}$	yes
$q_{o e}$	$q_{e e}$	$q_{o o}$	no
$q_{e o}$	$q_{o o}$	$q_{e e}$	yes
$q_{o o}$	$q_{e o}$	$q_{o e}$	yes

The Extended Transition Function and Acceptance

- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. The extended transition function or run map

$$
\delta^{*}: Q \times \Sigma^{*} \rightarrow Q
$$

extends $\delta: Q \times \Sigma \rightarrow Q$ to input strings.

- It is defined inductively as follows.
- $\delta^{*}(q, \lambda)=q$ for any $q \in Q$;
- $\delta^{*}(q, \alpha \cdot a)=\delta\left(\delta^{*}(q, \alpha), a\right)$ for any $q \in Q, \alpha \in \Sigma^{*}$, and $a \in \Sigma$.
- The language accepted by M is the set of all strings which drive M from its initial state to an accepting state.
- Formally,

$$
\mathcal{L}(M)=\left\{w \in \Sigma^{*} \mid \delta^{*}\left(q_{0}, w\right) \in F\right\}
$$

- Given $L \subseteq \Sigma^{*}, M$ is called a deterministic finite-state accepter for L if $\mathcal{L}(M)=L$.

A Larger Example

- Let $\Sigma=\{0,1\}$, and define

$$
L=\left\{\alpha \in \Sigma^{*} \mid \text { Length }(\alpha) \geq 10\right.
$$

- Design a DFA which accepts L.
- Such an accepter must have (at least) $2^{10}=1024$ states.
- Define:
- $Q=\left\{q_{\beta} \mid \beta \in\{0,1\}^{*}\right.$ and Length $\left.(\beta)=10\right\} ;$
- $q_{0}=q_{0000000000 ;}$
- The transition function operates as shift left and append:
- $\delta\left(q_{\beta}, x\right)=q_{\text {Rest }\langle\beta\rangle \cdot x}$.
- The accepting states are $F=\left\{q_{\beta} \in Q \mid \operatorname{First}\langle\beta\rangle=1\right\}$ with First $\langle\beta\rangle$ the leftmost element of β.
- Then $\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a deterministic finite-state accepter for L.

Instantaneous Descriptions and the Move Relation

- An instantaneous description (or machine configuration or ID) for the DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a pair $(q, \alpha) \in Q \times \Sigma *$ in which:
- q represents the current state;
- α represents the part of the input string which has not yet been read.
- $\operatorname{ID}\langle M\rangle=Q \times \Sigma^{*}$; the set of all possible IDs of M.
- The move relation $t_{M} \subseteq \mathrm{ID}\langle M\rangle \times \mathrm{ID}\langle M\rangle$ represents one step of M and is defined by $\left(q_{1}, \alpha_{1}\right) \vdash_{M}\left(q_{2}, \alpha_{2}\right)$ iff
- $\alpha_{2}=\operatorname{Rest}\left\langle\alpha_{1}\right\rangle$; and
- $\delta\left(q_{1}, \operatorname{First}\left\langle\alpha_{1}\right\rangle\right)=q_{2}$.
- Thus $\left(q, a_{1} a_{2} \ldots a_{k}\right) \vdash_{M}\left(\delta\left(q, a_{1}\right), a_{2} \ldots a_{k}\right)$.
- \vdash_{M}^{*} is the reflexive and transitive closure of ${t_{M}}$:
- $(q, \alpha) \vdash_{M}^{*}(q, \alpha)$;
- $\left(q_{1}, \alpha_{1}\right) \vdash_{M}^{*}\left(q_{2}, \alpha_{2}\right),\left(q_{2}, \alpha_{2}\right) \vdash_{M}^{*}\left(q_{3}, \alpha_{3}\right) \Rightarrow\left(q_{1}, \alpha_{1}\right) \vdash_{M}^{*}\left(q_{3}, \alpha_{3}\right)$.
- Thus $\left(q, \alpha_{1} \alpha_{2}\right) \vdash_{M}^{*}\left(\delta^{*}\left(q, \alpha_{1}\right), \alpha_{2}\right)$.
- For a DFA, \vdash_{M} and \vdash_{M}^{*} are functions.

Computations and the Language Accepted by a DFA

- The computation of M on $\alpha \in \Sigma^{*}$ is the sequence

$$
\left(q_{0}, \alpha\right)=\left(q_{0}, \alpha_{0}\right) \vdash_{M}\left(q_{1}, \alpha_{1}\right) \vdash_{M} \ldots \vdash_{M}\left(q_{m}, \alpha_{m}\right)=\left(q_{m}, \lambda\right)
$$

- In the above, $\alpha_{i+1}=\operatorname{Rest}\left\langle\alpha_{i}\right\rangle$ and $q_{i+1}=\delta\left(q_{i}, \operatorname{First}\left\langle\alpha_{i}\right\rangle\right)$.
- The language of a DFA may be characterized succinctly using computations.

Observation: For any DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$,

$$
\mathcal{L}(M)=\left\{\alpha \in \Sigma^{*} \mid\left(q_{0}, \alpha\right) \vdash_{M}^{*}\left(q_{f}, \lambda\right) \text { with } q_{f} \in F\right\}
$$

- This flavor of representation of the language of a machine will prove very useful in the more complex models of computation which will follow.

The Class of Languages Accepted by DFAs

Question: How is the class of languages which are accepted by DFAs characterized?

- Begin with a definition.
- The class of all languages (over a given alphabet Σ) which are accepted by some DFA is called the regular languages (over Σ).
- The next task is to look for alternate characterizations for regular languages. There are several.
- Alternate forms of finite automata:
- nondeterministic finite automata
- finite automata with λ-transitions
- Other types of language characterization:
- regular expressions
- regular grammars

Nondeterministic Finite Automata

A nondeterministic finite-state automaton or nondeterministic finite-state accepter (NFA) is a five-tuple

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

in which everything is the same as in a DFA except that

- $\delta: Q \times(\Sigma \cup\{\lambda\}) \rightarrow 2^{Q}$.
- Note that there are three significant differences between a DFA and an NFA:
- The transition function is nondeterministic; that is, there is a set of possible next states as opposed to a single possibility.
- The set of possible next states may in fact be empty, so there is not necessarily even one possible next state.
- So-called λ-transitions are allowed in which no input symbol is consumed.
- Every DFA may be viewed as an NFA:
- $M=\left(Q, \Sigma, \delta, q_{0}, F\right) \rightsquigarrow \tilde{M}=\left(Q, \Sigma, \tilde{\delta}, q_{0}, F\right)$ with $\tilde{\delta}: Q \times \Sigma \rightarrow 2^{Q}$ given by $(q, a) \mapsto\{\delta(q, a)\}$.

The Run Map and Acceptance for NFAs

- To define δ^{*} for an NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, it is convenient to define and use the move relation.
- Define $\left(q_{1}, \alpha_{1}\right) \vdash_{M}\left(q_{2}, \alpha_{2}\right)$ to hold if either
- $\alpha_{2}=\operatorname{Rest}\left\langle\alpha_{1}\right\rangle$ and $q_{2} \in \delta\left(q_{1}, \operatorname{First}\left\langle\alpha_{1}\right\rangle\right)$; or
- $\alpha_{2}=\alpha_{1}$ and $q_{2} \in \delta\left(q_{1}, \lambda\right)$.
- Define \vdash_{M}^{*} to be the reflexive and transitive closure of t_{M}, just as for the DFA case.
- Note that \vdash_{M} and \vdash_{M}^{*} are not necessarily functions in the case of an NFA.
- Define $\delta^{*}: Q \times \Sigma^{*} \rightarrow 2^{Q}$ via $q^{\prime} \in \delta^{*}(q, \alpha)$ iff $(q, \alpha) \vdash_{M}^{*}\left(q^{\prime} \lambda\right)$.
- Define $\mathcal{L}(M)=\left\{\alpha \in \Sigma^{*} \mid \delta^{*}\left(q_{0}, \alpha\right) \cap F \neq \emptyset\right\}$.
- Thus, the NFA M accepts a string $\alpha \in \Sigma^{*}$ if some computation reads the entire input and winds up in an accepting state, and rejects that string if no computation has that property.

An Example of Acceptance by an NFA

- Let $\Sigma=\{0,1\}$, and define

$$
L=\left\{\alpha \in \Sigma^{*} \mid \text { Length }(\alpha) \geq 10\right.
$$

and the $10^{\text {th }}$ element from the right is a 1$\}$.

- Design an NFA which accepts L.

- Note that this nondeterministic accepter has only 10 states, as opposed to 1024 for the deterministic version.

An Example with λ-Transitions

- Let $\Sigma=\{a, b, c\}$ and let $L=\left\{a^{i} b^{j} c^{k} \mid i, j, k \in \mathbb{N}\right\}$.
- Here is a simple NFA accepter for L which makes use of λ-transitions.

Formulation of the Equivalence Theorem

Theorem: Given any NFA M, there is a DFA M^{\prime} with $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$. \square

- In other words, NFAs and DFAs are equal in accepting power.
- The idea of the proof is rather simple.
- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be the given NFA.
- The set of states of M^{\prime} is 2^{Q}.
- There is a transition

$$
\delta^{\prime}(S, a)=S^{\prime}
$$

in the DFA iff there are $q \in S$ and $q^{\prime} \in S^{\prime}$ with the property that $q^{\prime} \in \delta^{*}(q, a)$.

- The algorithm also eliminates unreachable states.
- It is summarized on the next slide.

The NFA-to-DFA Conversion Algorithm

Input : An NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: An equivalent DFA $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime},\left\{q_{0}\right\}, F^{\prime}\right)$
Pool $\leftarrow\left\{\left\{q_{0}\right\}\right\} ; \quad Q^{\prime} \leftarrow \emptyset ; \quad$ DFA_Transitions $\leftarrow \emptyset$;
while Pool $\neq \emptyset$ do
choose $S \in$ Pool;
Pool \leftarrow Pool $\backslash\{S\} ; \quad Q^{\prime} \leftarrow Q^{\prime} \cup\{S\} ;$
foreach $x \in \Sigma$ do
NewState $\leftarrow \bigcup\left\{\delta^{*}(s, x) \mid s \in S\right\} ;$
DFA_Transitions \leftarrow DFA_Transitions $\cup\left\{\delta^{\prime}(S, x)=\right.$ NewState $\}$; if NewState $\notin Q^{\prime} \cup$ Pool then Pool \leftarrow Pool $\cup\{$ NewState $\}$;
end
end
$\delta^{\prime} \leftarrow$ DFA_Transitions; $\quad F^{\prime} \leftarrow\left\{S \in Q^{\prime} \mid S \cap F \neq \emptyset\right\} ;$
if $\delta^{*}\left(q_{0}, \lambda\right) \cap F \neq \emptyset$ then $F^{\prime} \leftarrow F^{\prime} \cup\left\{\left\{q_{0}\right\}\right\}$;

Example of Conversion of an NFA to an Equivalent DFA

- Let $\Sigma=\{0,1\}$, and define
$L=\left\{\alpha \in \Sigma^{*} \mid\right.$ Length $(\alpha) \geq 2,2^{\text {nd }}$ element from the right is a 1$\}$.
- Here is an NFA which accepts L.

- The corresponding DFA according to the construction:

Example of Conversion with λ-Transitions

- Let $\Sigma=\{a, b, c\}$ and let $L=\left\{a^{i} b^{j} c^{k} \mid i, j, k \in \mathbb{N}\right\}$.

- The corresponding DFA according to the construction.

