
Introductory Slides

5DV037 — Fundamentals of Computer Science

Ume̊a University

Department of Computing Science

Stephen J. Hegner

hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Introductory Slides 20100831 Slide 1 of 22

Alphabets

• An alphabet is a finite nonempty set.

Examples:

• {A,B , . . . ,Z}

• {A,B , . . . ,Z , a, b, . . . , z , , 0, 1, . . . , 9}

• The ASCII character set

• The printable ASCII characters

• The ISO-8859-14 character set

• {0, 1}

• {1}

• The uppercase Greek letter Σ is often used to denote an alphabet.

• Usually each element of an alphabet is represented by a single symbol,
but this is not necessary.

• Practical examples which use other representations will be given later.

Introductory Slides 20100831 Slide 2 of 22

Words

• A word over the alphabet Σ is any finite sequence of symbols from Σ.
(Represented as a string.)

Examples:

• Hello world! is a word over the ASCII character set.

ó Note that a word in this sense is more general than a word in
natural language.

• Hejsan världen! is a word over the ISO-8859-14 character set.

• 01101101 is a word over the character set {0, 1}.

• A program in most programming languages is a word over the ASCII
character set.

• The contents of any file under UNIX is a word over the character set
consisting of all possible byte values.

• The lowercase Greek letter λ is typically used to denote the empty
word or empty string of length zero.

Introductory Slides 20100831 Slide 3 of 22

Languages

• A language over the alphabet Σ is any set of words over Σ.

Examples:

• The set of all legal C programs (Σ = printable ASCII).

• {Hello world!,Hejsan världen!} (Σ = ISO-8859-14).

• All strings containing 5DV037 as a substring.

• All palindromes (strings which are the reverse of themselves; e.g.,
abba, amanaplanacanalpanama).

• In theoretical work, abstract and seemingly meaningless languages are
often used to illustrate points or prove results.

Examples:

• {anbn | n ∈ {0, 1, 2, . . .}}.
• Σ∗ = all words over Σ.

• Σ+ = all words over Σ except the empty word λ.

Introductory Slides 20100831 Slide 4 of 22

Questions about Languages

• The focus of this course is a theory of languages and their properties.

• A central question is the following.

The Membership Problem: Given a language L over an alphabet Σ,
construct a device which will determine whether a string w ∈ Σ∗ is in L.

• Such a device is called an accepter for L.

Accepter for L
input
w ∈ L

output
yes (1) or no (0)

• What is the structure of an accepter?

Introductory Slides 20100831 Slide 5 of 22

The Structure of Accepters

• An accepter consists of two main components:

• The finite-state control

• The external storage

• Often the external storage is regarded as lying on a tape of some sort,
although this is not absolutely necessary.

· · ·

Finite-state control

tape head
external storage

input
w ∈ L

output
yes (1) or no (0)

Introductory Slides 20100831 Slide 6 of 22

The Structure of Accepters

• An accepter consists of two main components:

• The finite-state control

• The external storage

• Often the external storage is regarded as lying on a tape of some sort,
although this is not absolutely necessary.

• The input may also be regarded as lying on a read-only tape.

• There will be other variations, introduced as needed.

· · ·

Finite-state control

tape head
external storage

· · ·

input
w ∈ L

output
yes (1) or no (0)

Introductory Slides 20100831 Slide 7 of 22

Classes of Accepters to Be Studied in this Course

• Three main classes of accepters and the associated languages will be
considered.

Finite-state automata: No external storage.

Pushdown automata: Stack as external storage.

Turing machines: Semi-infinite read-write tape as external storage.
(Effectively unbounded memory)

• For Turing machines, the distinction between a decider and a
semi-decider will also be made.

• A decider answers yes or no for every word w of the input language
L.

• A semi-decider always answers yes if w ∈ L, but it may loop forever
instead of answering no in the case that w 6∈ L.

• The latter is a consequence of the unsolvability of the halting
problem — there exist languages which are semi-decidable but not
decidable.

Introductory Slides 20100831 Slide 8 of 22

Beyond Simple Accepters

• Often, it is desirable to know more than just whether or not w ∈ L.

Example: Parsing a computer language or a natural language.

• If w ∈ L, it is desirable to know something of the structure of or
information contained in w as well. (e.g., parse).

X + Y ∗ Z

〈Expr〉

〈Expr〉

〈Term〉

〈Factor〉

〈Ident〉

X

+ 〈Term〉

〈Term〉

〈Factor〉

〈Ident〉

Y

∗ 〈Factor〉

〈Ident〉

Z

• If w 6∈ L, it is useful to know why.

• To this end, it is important to introduce the notion of a grammar.

Introductory Slides 20100831 Slide 9 of 22

The Idea of a Grammar

• The ideas behind grammars are the following.

Productions: The productions are rules which allow a (sub)string to be
replaced by another string.

Start symbol; The start symbol specifies the starting string to which the
production rules are applied.

Derivation: A string is derivable from the grammar if it may be
obtained by applying the productions to the start symbol.

Parsing: A parser for a given grammar is a program (algorithm) which
takes strings and finds derivations for them.

Accepter: An accepter runs a parser and answers yes if the parser finds
a derivation.

Introductory Slides 20100831 Slide 10 of 22

Formalization of the Notion of a Grammar

Definition: A (phrase-structure) grammar is a four-tuple

G = (V ,Σ,S ,P)

in which

• V is a finite alphabet, called the variables or nonterminal symbols;

• Σ is a finite alphabet, called the set of terminal symbols;

• S ∈ V is the start symbol;

• P is a finite subset of (V ∪Σ)+ × (V ∪ Σ)∗ called the set of
productions or rewrite rules;

• V ∩ Σ = ∅;

• The production (w1,w2) ∈ P is typically written w1 →
G

w2, or just

w1 → w2 if the context G is clear.

• The meaning of w1 → w2 is that w1 may be replaced by w2 in a string.

• Usually, for w1 → w2, w1 will contain at least one variable, although this

is not strictly necessary.

Introductory Slides 20100831 Slide 11 of 22

The Derivation of Words from a Grammar
Context: G = (V ,Σ,S ,P)

• Let w1 →
G

w2, and let w ∈ (V ∪ Σ)+ be a string which contains w1; i.e.,

w = α1w1α2 for some α1, α2 ∈ (V ∪Σ)∗.

• A possible single-step derivation on w replaces w1 with w2.

• Write α1w1α2 ⇒
G

α1w2α2 (or just α1w1α2 ⇒ α1w2α2).

• Note that many derivation steps may be possible on a given string, and
that applying one may preclude the application of another.

• This process is thus inherently nondeterministic.

• Write w
∗

⇒
G

u (or just w
∗

⇒ u) if w = u or else there is a sequence

w = α0
∗

⇒
G

α1
∗

⇒
G

α2 . . .
∗

⇒
G

αk = u

called a derivation of u from w (for G).

• The language of G is L(G) = {w ∈ Σ∗ | S
∗

⇒
G

w}.

• The grammars G1 and G2 are equivalent if L(G1) = L(G2).

Introductory Slides 20100831 Slide 12 of 22

An Example of Derivation

Let G = (V ,Σ,S ,P) = ({S}, {a, b},S , {S → aSb, S → ab}

= ({S}, {a, b},S , {S → aSb | ab}

• The symbol “|” is frequently used to specify alternatives for productions
and save space.

• The string aaabbb has the derivation

S ⇒ aSb ⇒ aaSbb ⇒ aaabbb

and hence is in L(G).

• The string aaaabbb has no derivation and hence is not in L(G).

• It is easy to see that L(G) = {anbn | n ≥ 1}.

• It is furthermore easy to see that every string in L(G) has a unique
derivation.

Introductory Slides 20100831 Slide 13 of 22

Inessential Non-Uniqueness in Derivation

Let G = (V ,Σ,S ,P) = ({S ,S1,S2}, {a, b},S ,
{S → S1S2, S1 → aS1b | ab, S2 → aS2b | ab}.

• Here L(G) = {an1bn1an2bn2 | n1, n2 ≥ 1}.

• In this case even the simple string abab has two distinct derivations:
S ⇒ S1S2 ⇒ abS2 ⇒ abab

S ⇒ S1S2 ⇒ S1ab ⇒ abab

• However, there is only one tree-like representation of the derivation.
S

S1

a b

S2

a b

• Such a tree, called a derivation tree, provides more useful information
than just a linear derivation using ⇒.

• Such trees are widely used in computer science.

Introductory Slides 20100831 Slide 14 of 22

Context-Free Grammars and Derivation Trees

• The grammars which have been presented as examples here (as well as in
Chapter 1 of the book) are all context free.

• Such grammars are by far the most important kind in practice.

• The grammar G = (V ,Σ,S ,P) is context free if every production in P is
of the form N → α for some N ∈ V . (CFG = context-free grammar).

• As shown on the previous slide, for a CFG, every derivation can be
represented as a tree with ordered children.

• The root of the tree is is the start symbol.

• Every interior vertex is a nonterminal symbol.

• Every leaf vertex is a terminal symbol.

• For every interior vertex labelled with a nonterminal symbol N, the
children of that vertex, from left to right, are labelled with the
symbols defined by the string α for some production N → α.

Introductory Slides 20100831 Slide 15 of 22

A Real-World Example
Consider the problem of representing simple infix arithmetic expressions for a
programming language.

• For simplicity, only addition and multiplication are considered.

• Want the parse tree to be unique.

• Want the tree to represent the precedence of the operations.

• Here is the standard example of such a grammar.

• GAExp has:

Nonterminals: {〈Expr〉, 〈Term〉, 〈Factor〉, 〈Ident〉}.

Terminals: {A,B , . . . ,Z , (,),+, ∗}.

Start symbol: 〈Expr〉

Productions: 〈Ident〉 → A | B | . . . | Y | Z

〈Expr〉 → 〈Expr〉 + 〈Term〉 | 〈Term〉

〈Term〉 → 〈Term〉 ∗ 〈Factor〉 | 〈Factor〉

〈Factor〉 → (〈Expr〉) | 〈Ident〉

Introductory Slides 20100831 Slide 16 of 22

A Real-World Example Continued

Nonterminals: {〈Expr〉, 〈Term〉, 〈Factor〉, 〈Ident〉}.

Terminals: {A,B , . . . ,Z , (,),+, ∗}.

Start symbol: 〈Expr〉

Productions: 〈Ident〉 → A | B | . . . | Y | Z

〈Expr〉 → 〈Expr〉 + 〈Term〉 | 〈Term〉

〈Term〉 → 〈Term〉 ∗ 〈Factor〉 | 〈Factor〉

〈Factor〉 → (〈Expr〉) | 〈Ident〉

• Here is the unique parse trees for X +Y ∗ Z .

• Uniqueness will be discussed later in the
course.

• Note here how the derivation is represented.

• Note also how it respects the standard
arithmetic precedence operations.

• Subtrees can be evaluated and combined.

〈Expr〉

〈Expr〉

〈Term〉

〈Factor〉

〈Ident〉

X

+ 〈Term〉

〈Term〉

〈Factor〉

〈Ident〉

Y

∗ 〈Factor〉

〈Ident〉

Z

Introductory Slides 20100831 Slide 17 of 22

Standard Notation for Context-Free Grammars

• There is a standard notation known as BNF.

• Backus Normal Form, or

• Backus-Naur Form

• Identifiers are typically written enclosed in angle brackets, as already
illustrated; e.g., 〈Ident〉.

• This is necessary because, in contrast to abstract theoretical
examples, it is often the case that in real examples all of the usual
Latin letters are terminal symbols.

• In typesetting using the ASCII character set, the angle brackets may
be written using < and >; e.g., <Ident>.

• The production symbol is sometimes written ::=, particularly in an ASCII
description.

Example: <Expr> ::= <Expr>+<Term> | <Term>

Introductory Slides 20100831 Slide 18 of 22

Some Supporting Notation and Notions

• It is useful to clarify and collect some notation.

• Some minor differences in mathematical notation:

In the textbook In these slides Meaning

{x : x ∈ S} {x | x ∈ S} set definition

X − Y X \ Y set difference

|x | Length(x) length of a string

na(w) Count〈a,w〉 number of a’s occurring in w

L(G) L(G) the language of G

• Some useful sets:

The natural numbers: N = {0, 1, 2, 3, . . .}

The positive natural numbers: N
>0 = {1, 2, 3, . . .} = N \ {0}

The integers: Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

Introductory Slides 20100831 Slide 19 of 22

Some Supporting Concepts for Strings

• Some basic operations on strings:

Concatenation: Concatenation simply appends one string to another.
(w1,w2) 7→ w1w2 (also denoted w1 · w2).

Example: (abc , def) 7→ abcdef .

• Concatenation extends to finitely many strings in the obvious
way: (w1,w2, . . . ,wk) 7→ w1w2 . . .wk .

Practical implementation: The UNIX cat command.

Length: Length(w) just counts the number of elements in the string.

Example: Length(Hello) = 5.

Practical implementation: The UNIX wc command.

Reversal: wR is the string w with the letters in reverse order.

Example: If w = abc , then wR = cba.

Practical implementation: The UNIX rev command.

Introductory Slides 20100831 Slide 20 of 22

Further Supporting Concepts for Strings

• Lisp-like operations on strings:

• First〈w〉 extracts the first element of a nonempty string. (Lisp car)

• First〈a1a2 . . . ak〉 = a1

• Rest〈w〉 drops the first element of a nonempty string. (Lisp cdr)

• Rest〈a1a2 . . . ak〉 = a2 . . . ak

• Other basic concepts of strings:

Substring: A substring of w is any contiguous sequence extracted from
w .

Example: Let w = abcdefg . Then bcdef and efg are substrings, as
are λ and w itself. acd is not a substring.

Prefix: A prefix is an initial substring. In the above, λ, a, abc , and
abcdefg are prefixes of abcdefg .

Suffix: A suffix is a final substring. In the above, λ, f , def , and abcdefg
are prefixes of abcdefg .

Introductory Slides 20100831 Slide 21 of 22

Some Supporting Concepts for Languages

• First of all, as languages are sets, all set operations apply.

Union: L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 or w ∈ L2}.

Intersection: L1 ∩ L2 = {w ∈ Σ∗ | w ∈ L1 and w ∈ L2}.

Difference: L1 \ L2 = {w ∈ Σ∗ | w ∈ L1 and w 6∈ L2}.

Complement relative to Σ∗: L = {w ∈ Σ∗ | w 6∈ L}.

• Many string operation extend to languages in a natural way.

Concatenation: L1L2 = L1 · L2 = {w1w2 | w ∈ L1 and w ∈ L2}.

Reversal : LR = {wR | w ∈ L}.

• Star and plus on a single language:

• L0 = {λ}.

• L1 = L.

• Lk+1 = Lk · L.

• L∗ =
⋃
{Lk | k ∈ N} = L0 ∪ L1 ∪ L2 . . . Lk ∪

• L+ =
⋃
{Lk | k ∈ N

>0} = L1 ∪ L2 . . . Lk ∪ . . . = L∗ \ {λ}.

• Note finally that Σ+ is defined to be Σ∗ \ {λ}.

Introductory Slides 20100831 Slide 22 of 22

