Introductory Slides

5DV037 — Fundamentals of Computer Science Umeå University Department of Computing Science Stephen J. Hegner

Stepnen J. Hegner hegner@cs.umu.se http://www.cs.umu.se/~hegner

Alphabets

• An *alphabet* is a finite nonempty set.

Examples:

- $\{A, B, \ldots, Z\}$
- $\{A, B, \dots, Z, a, b, \dots, z, 0, 1, \dots, 9\}$
- The ASCII character set
- The printable ASCII characters
- The ISO-8859-14 character set
- $\{0,1\}$
- {1}
- $\bullet\,$ The uppercase Greek letter Σ is often used to denote an alphabet.
- Usually each element of an alphabet is represented by a single symbol, but this is not necessary.
- Practical examples which use other representations will be given later.

Words

• A *word* over the alphabet Σ is any finite sequence of symbols from Σ . (Represented as a string.)

Examples:

- *Hello_world!* is a word over the ASCII character set.
 - Note that a word in this sense is more general than a word in natural language.
- Hejsan_världen! is a word over the ISO-8859-14 character set.
- 01101101 is a word over the character set $\{0, 1\}$.
- A program in most programming languages is a word over the ASCII character set.
- The contents of any file under UNIX is a word over the character set consisting of all possible byte values.
- The lowercase Greek letter λ is typically used to denote the *empty* word or *empty string* of length zero.

Languages

• A language over the alphabet Σ is any set of words over Σ .

Examples:

- The set of all legal C programs (Σ = printable ASCII).
- {*Hello_world!*, *Hejsan_världen!*} ($\Sigma = ISO-8859-14$).
- All strings containing 5DV037 as a substring.
- All *palindromes* (strings which are the reverse of themselves; *e.g.*, *abba*, *amanaplanacanalpanama*).
- In theoretical work, abstract and seemingly meaningless languages are often used to illustrate points or prove results.

Examples:

- $\{a^nb^n \mid n \in \{0, 1, 2, \ldots\}\}.$
- $\Sigma^* = \text{all words over } \Sigma$.
- $\Sigma^+ = \text{all words over } \Sigma$ except the empty word λ .

Questions about Languages

- The focus of this course is a theory of languages and their properties.
- A central question is the following.
- The Membership Problem: Given a language *L* over an alphabet Σ , construct a device which will determine whether a string $w \in \Sigma^*$ is in *L*.
 - Such a device is called an *accepter* for *L*.

• What is the structure of an accepter?

The Structure of Accepters

- An accepter consists of two main components:
 - The finite-state control
 - The external storage
- Often the external storage is regarded as lying on a tape of some sort, although this is not absolutely necessary.

The Structure of Accepters

- An accepter consists of two main components:
 - The finite-state control
 - The external storage
- Often the external storage is regarded as lying on a tape of some sort, although this is not absolutely necessary.
- The input may also be regarded as lying on a read-only tape.
- There will be other variations, introduced as needed.

Classes of Accepters to Be Studied in this Course

• Three main classes of accepters and the associated languages will be considered.

Finite-state automata: No external storage.Pushdown automata: Stack as external storage.Turing machines: Semi-infinite read-write tape as external storage. (Effectively unbounded memory)

- For Turing machines, the distinction between a *decider* and a *semi-decider* will also be made.
 - A decider answers *yes* or *no* for every word *w* of the input language *L*.
 - A semi-decider always answers yes if w ∈ L, but it may loop forever instead of answering no in the case that w ∉ L.
 - The latter is a consequence of the unsolvability of the *halting problem* there exist languages which are semi-decidable but not decidable.

Beyond Simple Accepters

- Often, it is desirable to know more than just whether or not w ∈ L.
 Example: Parsing a computer language or a natural language.
 - If w ∈ L, it is desirable to know something of the structure of or information contained in w as well. (e.g., parse).

- If $w \notin L$, it is useful to know why.
- To this end, it is important to introduce the notion of a grammar.

The Idea of a Grammar

- The ideas behind grammars are the following.
 Productions: The productions are rules which allow a (sub)string to be replaced by another string.
 - Start symbol; The start symbol specifies the starting string to which the production rules are applied.
 - Derivation: A string is derivable from the grammar if it may be
 - obtained by applying the productions to the start symbol.
 - Parsing: A parser for a given grammar is a program (algorithm) which takes strings and finds derivations for them.
 - Accepter: An accepter runs a parser and answers yes if the parser finds a derivation.

Formalization of the Notion of a Grammar

Definition: A (phrase-structure) grammar is a four-tuple

$$G = (V, \Sigma, S, P)$$

in which

- V is a finite alphabet, called the *variables* or *nonterminal symbols*;
- Σ is a finite alphabet, called the set of *terminal symbols*;
- $S \in V$ is the *start symbol*;
- P is a finite subset of (V ∪ Σ)⁺ × (V ∪ Σ)^{*} called the set of productions or rewrite rules;
- $V \cap \Sigma = \emptyset$;
- The production $(w_1, w_2) \in P$ is typically written $w_1 \xrightarrow[G]{} w_2$, or just $w_1 \to w_2$ if the context G is clear.
- The meaning of $w_1 \rightarrow w_2$ is that w_1 may be replaced by w_2 in a string.
- Usually, for w₁ → w₂, w₁ will contain at least one variable, although this is not strictly necessary.

Introductory Slides

The Derivation of Words from a Grammar *Context:* $G = (V, \Sigma, S, P)$

- Let w₁ → w₂, and let w ∈ (V ∪ Σ)⁺ be a string which contains w₁; *i.e.*, w = α₁w₁α₂ for some α₁, α₂ ∈ (V ∪ Σ)^{*}.
- A possible *single-step derivation* on w replaces w_1 with w_2 .
- Write $\alpha_1 w_1 \alpha_2 \Rightarrow \alpha_1 w_2 \alpha_2$ (or just $\alpha_1 w_1 \alpha_2 \Rightarrow \alpha_1 w_2 \alpha_2$).
- Note that many derivation steps may be possible on a given string, and that applying one may preclude the application of another.
- This process is thus inherently nondeterministic.
- Write $w \stackrel{*}{\underset{G}{\rightarrow}} u$ (or just $w \stackrel{*}{\Rightarrow} u$) if w = u or else there is a sequence

$$w = \alpha_0 \underset{G}{\stackrel{*}{\Rightarrow}} \alpha_1 \underset{G}{\stackrel{*}{\Rightarrow}} \alpha_2 \dots \underset{G}{\stackrel{*}{\Rightarrow}} \alpha_k = u$$

called a *derivation* of u from w (for G).

- The language of G is $\mathcal{L}(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\xrightarrow[G]{\rightarrow}} w \}.$
- The grammars G_1 and G_2 are *equivalent* if $\mathcal{L}(G_1) = \mathcal{L}(G_2)$.

Introductory Slides

An Example of Derivation

Let
$$G = (V, \Sigma, S, P) = (\{S\}, \{a, b\}, S, \{S \to aSb, S \to ab\})$$

= $(\{S\}, \{a, b\}, S, \{S \to aSb \mid ab\})$

- The symbol "|" is frequently used to specify alternatives for productions and save space.
- The string *aaabbb* has the derivation

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaabbb$$

and hence is in $\mathcal{L}(G)$.

- The string *aaaabbb* has no derivation and hence is not in $\mathcal{L}(G)$.
- It is easy to see that $\mathcal{L}(G) = \{a^n b^n \mid n \ge 1\}.$
- It is furthermore easy to see that every string in L(G) has a unique derivation.

Inessential Non-Uniqueness in Derivation

Let
$$G = (V, \Sigma, S, P) = (\{S, S_1, S_2\}, \{a, b\}, S, \{S \to S_1S_2, S_1 \to aS_1b \mid ab, S_2 \to aS_2b \mid ab\}.$$

- Here $\mathcal{L}(G) = \{a^{n_1}b^{n_1}a^{n_2}b^{n_2} \mid n_1, n_2 \ge 1\}.$
- In this case even the simple string *abab* has two distinct derivations: $S \Rightarrow S_1S_2 \Rightarrow abS_2 \Rightarrow abab$ $S \Rightarrow S_1S_2 \Rightarrow S_1ab \Rightarrow abab$
- However, there is only one tree-like representation of the derivation.

- Such a tree, called a *derivation tree*, provides more useful information than just a linear derivation using ⇒.
- Such trees are widely used in computer science.

Context-Free Grammars and Derivation Trees

- The grammars which have been presented as examples here (as well as in Chapter 1 of the book) are all *context free*.
- Such grammars are by far the most important kind in practice.
- The grammar G = (V, Σ, S, P) is *context free* if every production in P is of the form N → α for some N ∈ V. (CFG = context-free grammar).
- As shown on the previous slide, for a CFG, every derivation can be represented as a tree with ordered children.
 - The root of the tree is is the start symbol.
 - Every interior vertex is a nonterminal symbol.
 - Every leaf vertex is a terminal symbol.
 - For every interior vertex labelled with a nonterminal symbol N, the children of that vertex, from left to right, are labelled with the symbols defined by the string α for some production $N \rightarrow \alpha$.

A Real-World Example

Consider the problem of representing simple infix arithmetic expressions for a programming language.

- For simplicity, only addition and multiplication are considered.
- Want the parse tree to be unique.
- Want the tree to represent the precedence of the operations.
- Here is the standard example of such a grammar.

•
$$G_{AExp}$$
 has:
Nonterminals: { $\langle Expr \rangle$, $\langle Term \rangle$, $\langle Factor \rangle$, $\langle Ident \rangle$ }.
Terminals: { $A, B, ..., Z, (,), +, *$ }.
Start symbol: $\langle Expr \rangle$
Productions: $\langle Ident \rangle \rightarrow A | B | ... | Y | Z$
 $\langle Expr \rangle \rightarrow \langle Expr \rangle + \langle Term \rangle | \langle Term \rangle$
 $\langle Term \rangle \rightarrow \langle Term \rangle * \langle Factor \rangle | \langle Factor \rangle$
 $\langle Factor \rangle \rightarrow (\langle Expr \rangle) | \langle Ident \rangle$

A Real-World Example Continued

Nonterminals: $\{\langle Expr \rangle, \langle Term \rangle, \langle Factor \rangle, \langle Ident \rangle\}$. Terminals: $\{A, B, \dots, Z, (,), +, *\}$. Start symbol: $\langle Expr \rangle$ Productions: $\langle Ident \rangle \rightarrow A \mid B \mid \dots \mid Y \mid Z$ $\langle Expr \rangle \rightarrow \langle Expr \rangle + \langle Term \rangle \mid \langle Term \rangle$ $\langle Term \rangle \rightarrow \langle Term \rangle * \langle Factor \rangle \mid \langle Factor \rangle$ $\langle Factor \rangle \rightarrow (\langle Expr \rangle) \mid \langle Ident \rangle$

- Here is the unique parse trees for X + Y * Z.
- Uniqueness will be discussed later in the course.
- Note here how the derivation is represented.
- Note also how it respects the standard arithmetic precedence operations.
- Subtrees can be evaluated and combined.

Standard Notation for Context-Free Grammars

- There is a standard notation known as BNF.
 - Backus Normal Form, or
 - Backus-Naur Form
- Identifiers are typically written enclosed in angle brackets, as already illustrated; *e.g.*, (Ident).
 - This is necessary because, in contrast to abstract theoretical examples, it is often the case that in real examples all of the usual Latin letters are terminal symbols.
 - In typesetting using the ASCII character set, the angle brackets may be written using < and >; *e.g.*, <Ident>.
- The production symbol is sometimes written ::=, particularly in an ASCII description.

Example: <Expr> ::= <Expr>+<Term> | <Term>

Some Supporting Notation and Notions

- It is useful to clarify and collect some notation.
- Some minor differences in mathematical notation:

In the textbook	In these slides	Meaning
$\{x : x \in S\}$	$\{x \mid x \in S\}$	set definition
X - Y	$X \setminus Y$	set difference
x	Length(x)	length of a string
$n_a(w)$	$Count\langle a, w angle$	number of <i>a</i> 's occurring in <i>w</i>
L(G)	$\mathcal{L}(G)$	the language of <i>G</i>

• Some useful sets:

The natural numbers: $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ The positive natural numbers: $\mathbb{N}^{>0} = \{1, 2, 3, \ldots\} = \mathbb{N} \setminus \{0\}$ The integers: $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$

Some Supporting Concepts for Strings

• Some basic operations on strings:

Concatenation: Concatenation simply appends one string to another. $(w_1, w_2) \mapsto w_1 w_2$ (also denoted $w_1 \cdot w_2$). Example: $(abc, def) \mapsto abcdef$.

Concatenation extends to finitely many strings in the obvious way: (w₁, w₂,..., w_k) → w₁w₂...w_k.

Practical implementation: The UNIX cat command.

- Length: Length(w) just counts the number of elements in the string. Example: Length(Hello) = 5. Practical implementation: The UNIX *wc* command.
- Reversal: w^R is the string w with the letters in reverse order. Example: If w = abc, then $w^R = cba$. Practical implementation: The UNIX *rev* command.

Further Supporting Concepts for Strings

- Lisp-like operations on strings:
 - First $\langle w \rangle$ extracts the first element of a nonempty string. (Lisp *car*)
 - First $\langle a_1 a_2 \dots a_k \rangle = a_1$
 - Rest $\langle w \rangle$ drops the first element of a nonempty string. (Lisp *cdr*)
 - $\operatorname{Rest}\langle a_1a_2\ldots a_k\rangle = a_2\ldots a_k$
- Other basic concepts of strings:

Substring: A substring of *w* is any contiguous sequence extracted from *w*.

Example: Let w = abcdefg. Then *bcdef* and *efg* are substrings, as are λ and w itself. *acd* is not a substring.

- Prefix: A prefix is an initial substring. In the above, λ , *a*, *abc*, and *abcdefg* are prefixes of *abcdefg*.
- Suffix: A suffix is a final substring. In the above, λ , f, def, and abcdefg are prefixes of abcdefg.

Some Supporting Concepts for Languages

- First of all, as languages are sets, all set operations apply. Union: L₁ ∪ L₂ = {w ∈ Σ* | w ∈ L₁ or w ∈ L₂}. Intersection: L₁ ∩ L₂ = {w ∈ Σ* | w ∈ L₁ and w ∈ L₂}. Difference: L₁ \ L₂ = {w ∈ Σ* | w ∈ L₁ and w ∉ L₂}. Complement relative to Σ*: L = {w ∈ Σ* | w ∉ L}.
- Many string operation extend to languages in a natural way. Concatenation: L₁L₂ = L₁ · L₂ = {w₁w₂ | w ∈ L₁ and w ∈ L₂}. Reversal : L^R = {w^R | w ∈ L}.
- Star and plus on a single language:
 - $L^{0} = \{\lambda\}.$ • $L^{1} = L.$ • $L^{k+1} = L^{k} \cdot L.$ • $L^{*} = \bigcup \{L^{k} \mid k \in \mathbb{N}\} = L^{0} \cup L^{1} \cup L^{2} \dots L^{k} \cup \dots$ • $L^{+} = \bigcup \{L^{k} \mid k \in \mathbb{N}^{>0}\} = L^{1} \cup L^{2} \dots L^{k} \cup \dots = L^{*} \setminus \{\lambda\}.$
- Note finally that Σ^+ is defined to be $\Sigma^* \setminus \{\lambda\}$.

Introductory Slides