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Umeå University

Sweden

hegner@cs.umu.se

http://www.cs.umu.se/˜hegner

c©2002-2003, 2006-2008 Stephen J. Hegner, all rights reserved.



6. State-Space Search Methods

6.1 Basic Concepts

6.1.1 The basic setting

Setting: The setting is that of problems whose solutions may be ex-

pressed in the form

(x1,x2, . . . ,xn) ∈ S1×S2× . . .×Sn

in which the Si’s are fixed, finite sets.

Examples:

discrete-knapsack problem:

• Si = {0,1}, 1≤ i≤ n.

• 0 ⇒ exclude object; 1 ⇒ include object.

sum-of-subsets problem:

Given: weights: {w1,w2, . . . ,wn}

goal: M

Find: all A⊆ {w1,w2, . . . ,wn} with ∑A = M.

• Si = {0,1}, 1≤ i≤ n.

• Solutions (x1,x2, . . . ,xn) ∈ {0,1}
n are such that

n

∑
i=1

xi ·wi = M

n-queens problem:

• Place n queens on a n× n “chessboard” in such a

fashion that no queen can take another.

• Put Si = {1, . . . ,n}×{1, . . . ,n}.

• Si represents the row and column of the ith queen.
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6.1.2 State-space size and reduction

• Consider the eight-queens problem as a specific example.

• The solution space for the representation given in 1.1.1 has the

following size:

8

∏
i=1

Card(Si) = (82)
8
= 248

• One way to reduce the size of the state space is to redefine it.

• A simple by sizeable reduction is realized by building into the

representation the fact that each queen must lie in a distinct row.

• Thus, define:

Value(Si) = column of the queen in row i

• In this case,

Si = {1,2, . . . ,8} for each i

and the size of the new solution space is:

8

∏
i=1

Card(Si) = 88 = 224 = 16777216.
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• An much improved reduction is possible if Si+1 is allowed to de-

pend upon Si.

• For example, observe that in any solution, distinct queens must

lie not only in distinct rows, but in distinct columns as well.

• Thus,

Si =

{

{1,2, . . . ,8} if i = 1

Si−1 \ (position of the queen in Si−1) otherwise

• The size of the solution space is now:

8

∏
i=1

Card(Si) = 8! = 40320

• It is necessary to be somewhat careful in specifying state-space

restriction.

• An extreme but useless criterionmight be to require that (x1,x2, . . . ,x8)

already be a solution.

• Clearly, the definition of a state-space element must be simple.

• For the most part, in these notes, situations in which the Si’s do

not depend upon one another will be considered.

• From a graphical perspective, the solution space may be viewed

as a tree, with each Si a level in that tree.

• The possible final solutions are represented by the leaves.

• A solution is obtained by determining a value (choice) for each

level.
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• Further questions:

• When is a partial solution doomed to failure?

• In other words, when may a subtree be pruned away?

• When are two partial solutions essentially the same?

• Which vertices should be expanded first?

6.1.3 A general formulation for vertex classification and search

strategies

• In that which follows, the solution graph will be generated, one

vertex at a time, top down.

• The following terminology is relevant in the context of a search

tree.

(a) A dead vertex is is one for which either:

(i) all children have been generated; or

(ii) further expansion is not necessary (because the entire sub-

tree of which it is a root may be pruned).

(b) A live vertex is one which has been generated, but which is not

yet dead.

(c) The E-vertex is the parent of the vertex which is currently being

generated.

(d) A bounding function is used to kill live vertices via some evalu-

ation function which establishes that the vertex cannot lead to an

optimal solution, rather than by exhaustively expanding all of its

children.
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• The following two search strategies are those which will be con-

sidered.

Backtracking:

• Vertices are kept in a stack.

• The top of the stack is always the current E-vertex.

• As children of the current E-vertex are generated, they are

pushed onto the top of the stack.

• In particular, as soon as a new child w of the current E-vertex

is generated, w becomes the new E-vertex.

• Vertices which are popped from the stack are dead.

• A bounding function is used to kill live vertices (i.e., remove

them from the stack) without generating all of their children.

Branch-and-bound:

• Vertices are kept in a vertex pool, which may be a stack,

queue, priority queue, or the like. Variation is possible.

• As children of the current E-vertex are generated, they are

inserted into the vertex pool.

• However, once a vertex becomes the E-vertex, it remains so

until it dies.

• The “next” element in the vertex pool becomes the new E-

vertex when the current E-vertex dies.

• Vertices which are removed from the vertex pool are dead.

• A bounding function is used to kill live vertices (i.e., remove

them from the stack) without generating all of their children.
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6.2 Backtracking

• In this subsection, the principles of backtracking will be illus-

trated via application to the discrete knapsack problem.

• Recall the notational conventions of this problem from 4.3.1:

• A knapsack with weight capacityM.

• n objects {obj1,obj2, . . . ,objn}, each with a weight wi and a

value vi.

• M, the wi’s, and the vi’s are all taken to be positive real num-

bers.

6.2.1 Bounding functions

• Effective use of backtracking requires a good bounding function.

• In the context of the discrete knapsack problem, a bounding func-

tion provides a simple-to-compute upper bound on the amount of

additional profit which may be obtained by taking a leaf of the

subtree of the current vertex as a solution.

• An extremely simple bounding function is obtained by adding the

profits of all objects which are yet to be considered.

• If (x1,x2, . . . ,xi) ∈ {0,1}
i have already been chosen, then

bound =
n

∑
j=i+1

v j
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• A better bounding function is obtained as follows.

(i) Generate the solution of an associated continuous knapsack

problem; specifically

(ii) If (x1,x2, . . . ,xi) ∈ {0,1}
i has already been chosen as a par-

tial solution, let A be the continuous knapsack problem cor-

responding to (see 4.3.2) Knap(i+1,n,M−∑
i
j=1 x j ·v j); i.e.,

with

capacity = M−
i

∑
j=1

x j · v j

objects = {obji+1,obji+2, . . . ,objn}

• Solve this problem using a greedy-style method and take the

profit of that solution to be the bound.

• Note that the profit of the solution to the continuous knap-

sack problem will always yield a profit at least as large as

that for its discrete counterpart, so this computation does

provide an upper bound.
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6.2.2 Pseudocode description of the algorithm

/∗ The major data structures: ∗/

profit : array[0..n] of real;

weight : array[0..n] of real;

best sol : array[0..n] of {0,1};

tent sol : array[0..n] of {0,1};

/∗ 0 is a dummy object. ∗/

/∗ The top-level program: ∗/

〈 best profit ← 0;

path profit ← 0;

path weight ← 0;

level ←−1;

try(0);

〉

• Note that −1 labels a dummy top level with only one choice

(x0 = 0).

— Level = −1

— Level = 0

— Level = 1
... ...

x0 = 0

x1 = 0 x1 = 1
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procedure try(choice : {0,1})

〈 level ← level +1;

tent sol [level ]← choice;

if (choice = 1)

then 〈 path weight ← path weight +weight [level ];

path profit ← path profit +profit [level ];

〉

if path weight ≤M

then solve();

if (choice = 1)

then 〈 path weight ← path weight−weight [level ];

path profit ← path profit−profit [level ];

〉

level ← level −1;

〉

procedure solve();

〈 if level = n

then process leaf

else if bound()+path profit > best profit

then 〈 try(0); try(1) 〉

〉

procedure process leaf();

〈 if path profit > best profit

then 〈 best sol ← tent sol ; best profit ← path profit ; 〉

〉
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Improvement: If bound uses a solution to the continuous knapsack

problem which also happens to solve the extant discrete knapsack

problem, a solution has been found, so the computation may be

stopped.

6.2.3 An alternate approach – dynamic state-space solution

• The idea is as follows:

1. Generate a solution (x1,x2, . . . ,xn) to the associated continu-

ous knapsack problem.

• Note that xi ∈ {0,1} must hold for all except possibly

on value of i.

2. If all xi ∈ {0,1}, a solution to the discrete knapsack problem

has been found.

3. If 0 < xi < 1, use xi as the branch value for the next level.

... ...

xi = 0 xi = 1

4. Solve the associated problem for each subtree.

• Experiments have shown (perhaps surprisingly) that this approach

is inferior to that which uses a static representation.
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6.2.4 Solution of two examples

• The example problem introduced in 3.1.3, and solved in 4.3.3

using dynamic programming, is solved here using backtracking.

• For completeness, the data of the example are restated.

• LetM = 8; n = 4.

• In this case, for variation, the solution will be found for two dis-

tinct orderings of the objects, as shown in the tables below.

(a):

i 1 2 3 4

vi 5 6 2 1
wi 4 5 3 2

(b):

i 1 2 3 4

vi 1 2 6 5
wi 2 3 5 4

• The solution to the continuous knapsack problem on the remain-

ing subproblem will be used as the bounding function.

• The heuristic employed is that if the solution to the continuous

knapsack problem is also a solution to the extant discrete prob-

lem, the subtree has been solved optimally.

• Note that the algorithm works regardless of the order of the ob-

jects, but that in any case the p/w ordering on the remaining ob-

jects must be used to obtain the continuous knapsack problem

required for the bounding function.
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(a) backtracking

(p,w)
red=kill
green=exact

(0,0)

(0,0)

x1 = 0

(0,0)

x2 = 0

(0,0)x3 = 0
(0,0)

x4 = 0

(1,2)x4 = 1

(2,3)x3 = 1
(2,3)

(3,5)

(6,5)

x2 = 1
(6,5)x3 = 0

(6,5)

(7,7)

(8,8)x3 = 1
(8,8)

(9,10)

(5,4)

x1 = 1
(5,4)

x2 = 0

(5,4)x3 = 0
(5,4)

(6,6)

(7,7)x3 = 1
(7,7)

(8,9)

(11,9)

x2 = 1
(11,9)x3 = 0

(11,9)

(12,11)

(13,12)x3 = 1
(13,12)

(14,14)

B = 49
5

B = 8 (exact)

B = 24
5

B+P = 49
5

B = 5
2

B+P = 15
2

w > 8
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(b) backtracking

Selection order in continuous-knapsack approximation is by p/w.

(p,w)
red=kill
green=exact

(0,0)

(0,0)

x1 = 0

(0,0)

x2 = 0

(0,0)x3 = 0
(0,0)

x4 = 0

(5,4)x4 = 1

(6,5)x3 = 1
(6,5)

(11,9)

(2,3)

x2 = 1
(2,3)x3 = 0

(2,3)

(7,7)

(8,8)x3 = 1
(8,8)

(13,12)

(1,2)

x1 = 1
(1,2)

x2 = 0

(1,2)x3 = 0
(1,2)

(6,6)

(7,7)x3 = 1
(7,7)

(12,11)

(3,5)

x2 = 1
(3,5)x3 = 0

(3,5)

(8,9)

(9,10)x3 = 1
(9,10)

(14,14)

B = 49
5

B = 49
5

B = 49
5

B = 5
(exact)

B = 15
4

B = 31
5

B+P = 41
5

B = 5

B = 0

B = 37
5

B+P = 42
5

B = 37
5

B+P = 42
5

B = 5
(exact)

B = 5
4

B = 15
4

B+P = 27
4
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6.3 Branch and Bound

6.3.1 Overview of branch and bound

• Recall the general strategy: generate all children of the current

E-vertex before selecting a new E-vertex.

• Strategies for selecting a new E-vertex:

LIFO order: depth first, using a stack.

FIFO order: breadth first, using a queue.

Intelligent order: use a priority queue.

• In each case, a bounding function is also used to kill vertices.

6.3.2 Example – the 8-puzzle

• Eight tiles move about nine squares.

• The goal configuration is shown below:

1 2 3

4 5 6

7 8

1 2 3

4 5 6

7 8

1 2 3

4 5 6

7 8

• Tiles are moved from an initial configuration to reach the goal

configuration.

1 2 3

4 5 6

7 8

1 2 3

4 5 6

7 8

1 2 3

4 5 6

7 8

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

; ;
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• Notation for directions to “move” the open slot:

ℓ = left u = up

r = right d = down

• No bounding function is used here.

• Examples of LIFO and FIFO order are shown on the following

two slides.
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Breadth-first expansion

X = duplicated vertex

1 5 2

4 8 3

7 x 6

1 5 2

4 8 3

7 x 6

1 5 2

4 8 3

7 x 61

1 5 3

4 8 3

x 7 6

1 5 3

4 8 3

x 7 6

1 5 3

4 8 3

x 7 62

ℓ

1 5 2

x 8 3

4 7 6

1 5 2

x 8 3

4 7 6

1 5 2

x 8 3

4 7 65

u

x 5 2

1 8 3

4 7 6

x 5 2

1 8 3

4 7 6

x 5 2

1 8 3

4 7 6

10

u

1 5 2

8 x 3

4 7 6

1 5 2

8 x 3

4 7 6

1 5 2

8 x 3

4 7 6

11

r

x
dxr

1 5 2

4 x 3

7 8 6

1 5 2

4 x 3

7 8 6

1 5 2

4 x 3

7 8 63u

1 5 2

x 4 3

7 8 6

1 5 2

x 4 3

7 8 6

1 5 2

x 4 3

7 8 66

ℓ

x 5 2

1 4 3

7 8 6

x 5 2

1 4 3

7 8 6

x 5 2

1 4 3

7 8 6

12
u

xr

1 5 2

7 4 3

x 8 6

1 5 2

7 4 3

x 8 6

1 5 2

7 4 3

x 8 6

13

d

1 x 2

4 5 3

7 8 6

1 x 2

4 5 3

7 8 6

1 x 2

4 5 3

7 8 67
u

x 1 2

4 5 3

7 8 6

x 1 2

4 5 3

7 8 6

x 1 2

4 5 3

7 8 6

14
ℓ

1 2 x

4 5 3

7 8 6

1 2 x

4 5 3

7 8 6

1 2 x

4 5 3

7 8 6

15

r

x
d

1 5 2

4 3 x

7 8 6

1 5 2

4 3 x

7 8 6

1 5 2

4 3 x

7 8 68

r

xℓ

1 5 x

4 3 2

7 8 6

1 5 x

4 3 2

7 8 6

1 5 x

4 3 2

7 8 6

16u

1 5 2

4 3 6

7 8 x

1 5 2

4 3 6

7 8 x

1 5 2

4 3 6

7 8 x

17

rx

d

1 5 2

4 8 3

7 6 x

1 5 2

4 8 3

7 6 x

1 5 2

4 8 3

7 6 x4

r

xℓ

1 5 2

4 8 x

7 6 3

1 5 2

4 8 x

7 6 3

1 5 2

4 8 x

7 6 39

u

1 5 2

4 x 8

7 6 3

1 5 2

4 x 8

7 6 3

1 5 2

4 x 8

7 6 3

18
ℓ

1 5 x

4 8 2

7 6 3

1 5 x

4 8 2

7 6 3

1 5 x

4 8 2

7 6 3

19

u

x
d
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Depth-first expansion

X = duplicated vertex

1 5 2

4 8 3

7 x 6

1 5 2

4 8 3

7 x 6

1 5 2

4 8 3

7 x 6
1

1 5 2

4 8 3

x 7 6

1 5 2

4 8 3

x 7 6

1 5 2

4 8 3

x 7 6
2

ℓ

1 5 2

4 x 3

7 8 6

1 5 2

4 x 3

7 8 6

1 5 2

4 x 3

7 8 6
3

u

1 5 2

4 8 3

7 6 x

1 5 2

4 8 3

7 6 x

1 5 2

4 8 3

7 6 x
4

r

x

ℓ

1 5 2

4 8 x

7 6 3

1 5 2

4 8 x

7 6 3

1 5 2

4 8 x

7 6 3
5

u

1 5 2

4 x 8

7 6 3

1 5 2

4 x 8

7 6 3

1 5 2

4 x 8

7 6 3
6

ℓ

1 5 x

4 8 2

7 6 3

1 5 x

4 8 2

7 6 3

1 5 x

4 8 2

7 6 3
7

u

1 x 5

4 8 2

7 6 3

1 x 5

4 8 2

7 6 3

1 x 5

4 8 2

7 6 3
8

ℓ

x 1 5

4 8 2

7 6 3

x 1 5

4 8 2

7 6 3

x 1 5

4 8 2

7 6 3
9

ℓ

x

r

1 8 5

4 x 2

7 6 3

1 8 5

4 x 2

7 6 3

1 8 5

4 x 2

7 6 3
10

d

1 8 5

x 4 2

7 6 3

1 8 5

x 4 2

7 6 3

1 8 5

x 4 2

7 6 3
11

ℓ

x

u

1 8 5

4 2 x

7 6 3

1 8 5

4 2 x

7 6 3

1 8 5

4 2 x

7 6 3
12

r

1 8 5

4 6 2

7 x 3

1 8 5

4 6 2

7 x 3

1 8 5

4 6 2

7 x 3
13

d

x

d

x

d
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6.3.3 Best-first search with branch and bound

• Associated with a best-first strategy is a cost function c.

• c(x) is the cost of finding a solution from vertex x.

• A reasonable measure of cost might be the number of additional

vertices which must be generated in order to obtain a solution.

• The problem is that c(x) is very difficult to compute, in general,

without generating the solution first.

• Therefore, an approximation ĉ is used.

• In the 8-puzzle, an appropriate ĉ might be the following:

ĉ(x) = number of tiles which are out of place

• In this measure, the empty slot is not considered to be a tile.

• On the next slide, the best-first expansion of the extant example

for the 8-puzzle is shown.
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Best-first expansion

X = duplicated vertex

1 5 2

4 8 3

7 x 6

1 5 2

4 8 3

7 x 6

1 5 2

4 8 3

7 x 6
1

1 5 2

4 8 3

x 7 6

1 5 2

4 8 3

x 7 6

1 5 2

4 8 3

x 7 6
2

ĉ = 6

ℓ

1 5 2

4 x 3

7 8 6

1 5 2

4 x 3

7 8 6

1 5 2

4 x 3

7 8 6
3

ĉ = 4

u

1 5 2

x 5 3

7 8 6

1 5 2

x 5 3

7 8 6

1 5 2

x 5 3

7 8 6
5

ĉ = 5

ℓ

1 x 2

4 4 3

7 8 6

1 x 2

4 4 3

7 8 6

1 x 2

4 4 3

7 8 6
6

ĉ = 3

u

x 1 2

4 5 3

7 8 6

x 1 2

4 5 3

7 8 6

x 1 2

4 5 3

7 8 6
8

ĉ = 4

ℓ

1 2 x

4 5 3

7 8 6

1 2 x

4 5 3

7 8 6

1 2 x

4 5 3

7 8 6
9

ĉ = 2

r

x

ℓ

1 2 3

4 5 x

7 8 6

1 2 3

4 5 x

7 8 6

1 2 3

4 5 x

7 8 6
10

ĉ = 1

d

1 2 3

4 x 5

7 8 6

1 2 3

4 x 5

7 8 6

1 2 3

4 x 5

7 8 6
11

ĉ = 2

ℓ

x

u

1 2 3

4 5 6

7 8 x

1 2 3

4 5 6

7 8 x

1 2 3

4 5 6

7 8 x
12

ĉ = 0

d

x

d

1 5 2

4 3 x

7 8 6

1 5 2

4 3 x

7 8 6

1 5 2

4 3 x

7 8 6
7

ĉ = 4

r

x

d

1 5 2

4 8 3

7 6 x

1 5 2

4 8 3

7 6 x

1 5 2

4 8 3

7 6 x
4

ĉ = 5

r
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6.3.4 Desirable properties for ĉ

• The two key properties are the following:

(a) ĉ should approximate c in a “nice” fashion.

(b) ĉ should be easy to compute.

• An oft-used form for ĉ is the following:

ĉ(x) = ĝ(x)+ k(x)

• in which:

• ĝ is an estimate of the cost to reach a solution vertex from x.

• k(x) is a weighted function of the cost to reach vertex x from

the root.

• In the 8-puzzle example:

• ĝ(x) is the number of tiles which are out of place.

• k(x) = 0.

Argument for k(x) = 0: A cost which has already been incurred should

not enter into the evaluation.

Argument for k(x) > 0:

• k = 0 adds a bias in favor of deep searches.

• If |ĝ(x)− c(x)| is large, the wrong path may be expanded to

a very deep level.

• k(x) adds a breadth-first component.

• A possible choice for k(x) for the 8-puzzle is the length of the

path from the root to x.

TDBC91 slides, page 6.20, 20081006



6.3.5 Properties of ĉ for general search problems

• For a general search problem such as 8-puzzle, in which there is

no distinction between feasible solutions and optimal ones, fur-

ther properties on ĉ are not generally necessary for correctness.

• Note, however, that a mechanism for avoiding visiting the same

vertex repeatedly is necessary to avoid loops in the search pro-

cess.

6.3.6 Important properties of ĉ for optimization problems

• For ĉ to function correctly in a best-first search process, it must

satisfy certain formal properties if an optimal solution is to be

found.

• Consider in particular optimization problems such as discrete knap-

sack and travelling salesman.

• It is important to know whether a leaf vertex which has been

reached in the search process is an optimal solution.
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• To see the difficulties, consider a minimization problem with:

c(x) = value of the best leaf beneath vertex x.

ĉ(x) is as shown in the graph below.

1

2

4 5

3

6 7

(

10
10

)

(

20
15

) (

10
16

)

(

20
20

) (

80
80

) (

50
50

) (

10
10

)

key:
(

c(x)
ĉ(x)

)

Found by algorithm Optimal solution

• The problem:

• c(3) < c(2)⇒ the optimal solution is below vertex 3.

• ĉ(3) > ĉ(2)⇒ the algorithm looks below vertex 2.

(a) Call an approximate cost function ĉ ideal if the following condi-

tion holds for all pairs of vertices (x,y):

ĉ(x) < ĉ(y)⇔ c(x) < c(y)

6.3.7 Theorem Let c (resp. ĉ) be the actual (resp. approximate)

cost function for a minimization problem to be solved by branch-and-

bound search. The first leaf vertex to be reached is the optimal solution

iff ĉ is ideal. 2
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• The conditions of 1.3.7 are very difficult to establish in practice.

• A weaker but far more useful result is the following.

6.3.8 Definition Call an approximate cost function ĉ admissible if

the following two conditions are satisfied.

(a) ĉ(x)≤ c(x) for all vertices x.

(b) ĉ(x) = c(x) for all answer vertices (i.e., all leaf vertices which

represent feasible solutions).

6.3.9 Theorem (informal statement) If the approximate cost func-

tion ĉ is admissible, then under branch-and-bound solution, the first

answer vertex to become an E-vertex is an optimal solution.

PROOF: This result will be stated more rigorously and proven in

1.3.11 below. 2
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6.3.10 Example

• Consider the following search tree, which is a modification of that

of 1.3.6, altered so that ĉ(x)≤ c(x) for all nodes x.

1

2

4 5

3

6 7

(

10
10

)

(

20
5

) (

10
6

)

(

20
20

) (

80
80

) (

50
50

) (

10
10

)

key:
(

c(x)
ĉ(x)

)

• The evolution of the priority queue of vertices is as follows:

1(10) ; 2(5)

3(6)

; 3(6)

4(20)

5(80)

; 7(10)

4(20)

6(50)

5(80)

• Vertices 4 and 5 are the first answer vertices to be placed in the

queue.

• However, Vertex 7 is the first which becomes the E-vertex, so it

is an optimal solution and the search may be halted.
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6.3.11 Theorem (formal statement) Let T = (V,E,g) be a finite

rooted tree, and let

c :V →R

be an evaluation function on the vertices of T which is fixed on the

leaves of T and which satisfies

c(x) = min({c(y) | y is a leaf descendant of x})

for all non-leaf vertices. Let

ĉ :V →R

be an admissible approximate cost function with respect to c. Then, if

a least-cost branch-and-bound expansion of the tree is performed with

respect to ĉ, the first E-vertex which is also a leaf is a minimum-cost

leaf.

PROOF: Let x be the current E-vertex, and suppose further that x is a

leaf and that no previous E-vertex has been a leaf. Let y be any other

leaf vertex, and let w be the youngest (i.e., furthest from the root) an-

cestor of y which has been generated. Then ĉ(x)≤ ĉ(w), else w would

have been an E-vertex before x, and have generated descendants. Also,

c(w) ≤ c(y), since c(w) is the minimum value over all of its descen-

dants. Hence c(x) = ĉ(x)≤ ĉ(w)≤ c(w)≤ c(y). 2

6.3.12 Remark

• Branch-and-bound search with an admissible ĉ is calledA*-search

in the artificial intelligence literature.
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6.3.13 Solution of the discrete knapsack problem

• The discrete knapsack examples of 1.2.4 will now be solved using

branch and bound.

• A leaf vertex x is identified with the solution vector (x1,x2, . . . ,xn)

which defines the path from the root to x.

• Since this is a maximization problem, the inequalities must be

reversed; i.e., ĉ(x)≥ c(x).

• The following definition of c(x) is used:

c(x) =























∑
n
i=1 vi · xi for a feasible answer (leaf) vertex x

−∞ for an illegal leaf vertex (too much weight)

max

({

c(LeftChild(x))

c(RightChild(x))

})

for a non-leaf

• The following approximation function is used for a vertex x at

level j in the tree (with the root at level 0):

ĉ(x) =
j

∑
i=1

vi · xi+Profit(CKnap( j+1,n,M−
j

∑
i=1

wi · xi))

in which Profit(CKnap(p,q,W)), with p ≤ q, denotes the profit

obtained in the solution of the continuous knapsack problem with

objects {objk | p≤ k ≤ q} and capacityW .
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• The vertex-killing function at level j which is used is the follow-

ing:

u(x) =
j

∑
i=1

vi · xi+Profit(Greedy(p,q,W))

in which Profit(Greedy(p,q,W)), with p≤ q, is the value obtained

by applying a greedy-style procedure, with the objects {objk | p≤

k ≤ q}, ordered by profit, for a knapsack problem with capacity

W .

• The following global value is maintained:

U = max({u(x) | x has been generated})

• The vertex x is killed whenever ĉ(x) <U .

• Evaluation is also halted if the computation of ĉ(x) results in an

exact solution of the continuous knapsack problem, as in 1.2.4.
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(a) branch and bound

(p,w)
red=kill
green=exact

(0,0)

(0,0)

x1 = 0

(0,0)

x2 = 0

(0,0)x3 = 0
(0,0)

x4 = 0

(1,2)x4 = 1

(2,3)x3 = 1
(2,3)

(3,5)

(6,5)

x2 = 1
(6,5)x3 = 0

(6,5)

(7,7)

(8,8)x3 = 1
(8,8)

(9,10)

(5,4)

x1 = 1
(5,4)

x2 = 0

(5,4)x3 = 0
(5,4)

(6,6)

(7,7)x3 = 1
(7,7)

(8,9)

(11,9)

x2 = 1
(11,9)x3 = 0

(11,9)

(12,11)

(13,12)x3 = 1
(13,12)

(14,14)

ĉ = 49
5 u = 8

ĉ = 8 u = 8

ĉ = 49
5 u = 7

ĉ = 15
2 u = 7

w > 8

1

2

3

4

5

Vertex 2 is regarded as a leaf, because of the exact solution.
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(b) branch and bound

Selection order in both knapsack approximations is by p/w.

(p,w)
red=kill
green=exact

(0,0)

(0,0)

x1 = 0

(0,0)

x2 = 0

(0,0)x3 = 0
(0,0)

x4 = 0

(5,4)x4 = 1

(6,5)x3 = 1
(6,5)

(11,9)

(2,3)

x2 = 1
(2,3)x3 = 0

(2,3)

(8,8)

(8,8)x3 = 1
(8,8)

(13,12)

(1,2)

x1 = 1
(1,2)

x2 = 0

(1,2)x3 = 0
(1,2)

(6,6)

(7,7)x3 = 1
(7,7)

(12,11)

(3,5)

x2 = 1
(3,5)x3 = 0

(3,5)

(8,9)

(9,10)x3 = 1
(9,10)

(14,14)

ĉ = 49
5 u = 8

ĉ = 49
5 u = 8

ĉ = 42
5 u = 7

ĉ = 49
5

u = 5

ĉ = 5
ĉ <U

ĉ = 39
4

u = 5

ĉ = 41
5

u = 8

ĉ = 7
ĉ <U

ĉ = 8

ĉ = 42
5

u = 7

ĉ = 6
u = 6

ĉ = 33
4

u = 7

ĉ = 27
4

ĉ <U

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
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• The priority queue history is as follows:

order (a): 1
(

49
5

)

; 2(8)X

3
(

49
5

)

; 3
(

49
5

)

; done

order (b): 1
(

49
5

)

; 2
(

49
5

)

3
(

42
5

)

; 4
(

49
5

)

3
(

42
5

)

5
(

41
5

)

; 7
(

39
4

)

3
(

42
5

)

5
(

41
5

)

;

3
(

42
5

)

5
(

41
5

)

8(6)L

; 10
(

42
5

)

5
(

41
5

)

8(6)L

; 13
(

33
4

)

5
(

41
5

)

8(6)L

; 5
(

41
5

)

14(7)L

8(6)L

; 17(8)X

14(7)L

8(6)L

; done

key: Entries are of the form v(ĉ(v))[type] with:

v = vertex number

L ⇒ leaf vertex

X ⇒ exact solution; behaves as a leaf vertex
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6.4 The Travelling-Salesman Problem and Branch-and-

Bound

6.4.1 Formulation of the problem

• The (directed) graph G is represented as a cost matrix.

Example:

M =















∞ 20 30 10 11

15 ∞ 16 4 2

3 5 ∞ 2 4

19 6 18 ∞ 3

16 4 7 16 ∞















• Vertices are numbered {1,2, . . . ,n}, with n = 5 in this example.

• Mi j is the cost of the edge i ; j.

• Mi j =∞ means that there is no edge i ; j.

• The associated state-space tree starts at vertex 1, and reflects the

sequence of choices.

• The tree for n = 5 is shown on the next slide.
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1

2

3

4
5 1

5 4 1

4 3
5 1

5 3 15

3
4 1

4 3 1

3

2

4
5 1

5 4 1

4 2
5 1

5 2 15

2
4 1

4 2 1

4 2

3
5 1

5 3 1

3 2
5 1

5 2 15

2
3 1

3 2 1

5

2

3
4 1

4 3 1

3 2
4 1

4 2 14

2
3 1

3 2 1

root

x0
x1 x2 x3
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6.4.2 Conventions for the state-space tree

• Every vertex is labelled with the sequence beginning with 1, and

followed by the sequence of labels of the associated edges.

• For a vertex x of the state-space tree, this label is denoted by

PathOf(x).

PathOf(root) = 〈1〉 PathOf(x2) = 〈1,2,5,4,3〉

PathOf(x0) = 〈1,2,5〉 PathOf(x3) = 〈1,2,5,4,3,1〉

PathOf(x1) = 〈1,2,5,4〉

• Call a vertex x of the state-space tree a decision vertex if it has at

least two ancestors.

• Call a vertex x of the state-space tree a near leaf if PathOf(x)

includes all vertices except one.

• In the tree on the previous page, x1 is a near leaf, while x2 and x3

are not.

• Once a near leaf is reached, all decisions regarding the tour have

been made. No further decision can be made.

• Thus, the near leaves will be treated as leaves in the search pro-

cess.

• Call a vertex x of the state-space tree nonredundant if it is either

a decision vertex or a near leaf.

• For a near leaf x, define Tour(x) to be PathOf(x) · 〈x′,1〉 with x′

the sole vertex not in PathOf(x).

• For example, Tour(x1) = PathOf(x3) in the graph on the previous

page.
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• For an actual cost function on the nonreduncant vertices of the

state-space tree, the following is used:

c(x) =

{

CostOf(Tour(x)) if x is a near leaf

min({c(y) | y ∈ Children(x)} otherwise

• Note that CostOf(rootvertex) is the cost of an optimal tour.

• A simple choice for ĉ is the cost along the path from the root to

x. If x is a near leaf, the cost of travelling to the final new vertex

and then back to the root (along a single edge) must be added on.

• There are much better choices for ĉ, which are now developed.

6.4.3 Rowminimization LetM be the cost matrix for a travelling-

salesman problem of size n, and let i ∈ {1,2, . . . ,n}.

(a) RowMini(M) =

{

min({Mi j | 1≤ j ≤ n}) if someMi j <∞

0 ifMi j =∞ for all j, 1≤ j ≤ n

(b) Reduction(M, row, i) is the matrix obtained by subtractingRowMini(M)

from each entry in row i.

Note: In the context of this computation, ∞− a =∞ for any finite

number a.
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6.4.4 Theorem – row reduction Let T be the travelling-salesman

problem defined by matrix M, and let Reduction(T, row, i) be the

travelling-salesman problem defined by the matrix Reduction(M, row, i).

Then

CostOf(MinTour(T )) =

CostOf(MinTour(Reduction(T, row, i)))+RowMini(M)

PROOF: Each tour must include exactly one entry from row i, since

each tour contains exactly edge which begins at vertex i. From this the

result follows immediately. 2

• Completely similar ideas apply to columns.

6.4.5 Columnminimization LetM be the cost matrix for a travelling-

salesman problem of size n, and let i ∈ {1,2, . . . ,n}.

(a) ColMini(M) =

{

min({M ji | 1≤ j ≤ n}) if someM ji <∞

0 ifM ji =∞ for all j, 1≤ j ≤ n

(b) Reduction(M,col, i) is the matrix obtained by subtractingColMini(M)

from each entry in column i.

6.4.6 Theorem – column reduction Let T be the travelling-salesman

problem defined by matrixM, and let Reduction(T,col, i) be the travelling-

salesman problem defined by the matrix Reduction(M,col, i). Then

CostOf(MinTour(T )) =

CostOf(MinTour(Reduction(T,col, i)))+RowMini(M)

2
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6.4.7 Full reduction LetM be the cost matrix for a travelling sales-

man problem T consisting of n vertices.

(a) Call M reduced if each row and each column consists either en-

tirely of∞ entries, or else contains at least one zero entry.

(b) Define the row-column reduction sequence of M, denoted

RCRed(M), recursively as follows:

R0(M) = M

Rk(M) = Reduction(Rk, row,k−1) 1≤ k ≤ n

Rk(M) = Reduction(Rk−1,col,k−n) n+1≤ k ≤ 2n

(c) Define the row-column reduction ofM, denoted RCRed(M), to be

R2n(M).

6.4.8 Example

• LetM be as in the example of 1.4.1:

M =















∞ 20 30 10 11

15 ∞ 16 4 2

3 5 ∞ 2 4

19 6 18 ∞ 3

16 4 7 16 ∞















• First do the rows:

Rn(M) =















∞ 10 20 0 1

13 ∞ 14 2 0

1 3 ∞ 0 2

16 3 15 ∞ 0

12 0 3 12 ∞















10

2

2

3

4

21
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• Then the columns:

R2n(M) = RCRed(M) =















∞ 10 17 0 1

12 ∞ 11 2 0

0 3 ∞ 0 2

15 3 12 ∞ 0

11 0 0 12 ∞















1 0 3 0 0 = 4

• A lower bound on the cost of a tour is thus 25.

• More generally:

6.4.9 Theorem Let T be the travelling-salesman problem defined

by matrix M, and let RCRed(T ) be the travelling-salesman problem

defined by the matrix RCRed(M). Then

CostOf(MinTour(T )) =

CostOf(MinTour(RCRed(T )))+
n

∑
i=1

(RowMini(M)+ColMini(Rn(M)))

with Rn(M) as defined in 1.4.7. 2
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6.4.10 Dynamic reduction

• Dynamic reduction makes use of the fact that once a choice to

follow an edge i ; j in the tour is made, the ith row and the

jth column of the cost matrix M become irrelevant to the cost

of extending the partial solution to an optimal tour.

• Since such reductions are applied only to nonredundant vertices

of the state-space tree, the entry M j1 is also irrelevant, since in-

cluding it would introduce a cycle into the partial solution.

• These entries may thus be forced to∞ without affecting the com-

putation of an optimal tour.

• The resulting matrix may be further reduced.

• The details are as follows.

(a) For any n× n cost matrix M, and any i, j ∈ {1,2, . . . ,n}, define

PreRed(M, i, j) to be the n×n matrix with

PreRed(M, i, j)k,ℓ =

{

∞ if i = k or j = ℓ or (k, ℓ) = ( j,1)

Mi j otherwise

(b) Define

DynRed(M, i, j) = RCRed(PreRed(M, i, j))
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6.4.11 Example

• In this example, DynRed(M′,1,5) will be computed for the re-

duced matrixM′ of 1.4.8, which is:

M′ = RCRed(M) =















∞ 10 17 0 1

12 ∞ 11 2 0

0 3 ∞ 0 2

15 3 12 ∞ 0

11 0 0 12 ∞















• First, row 1, column 5, as well as the (5,1) entry, are set to∞.

PreRed(M′,1,5) =















∞ ∞ ∞ ∞ ∞

12 ∞ 11 2 ∞

0 3 ∞ 0 ∞

15 3 12 ∞ ∞

∞ 0 0 12 ∞















• Next, the full reduction of this new matrix is computed.

DynRed(M′,1,5) =















∞ ∞ ∞ ∞ ∞

10 ∞ 9 0 ∞

0 3 ∞ 0 ∞

12 0 9 ∞ ∞

∞ 0 0 12 ∞















2

3

5

TDBC91 slides, page 6.39, 20081006



• This yields a new lower bound on the least cost tour which begins

with 1 ; 5.

25 + 1 + 5 = 31

old bound
old

(1,5) entry
bound for

new reduction
new

lower bound

• In the dynamic path reduction technique, such a reduction is per-

formed each time a decision to select a new edge for the tour is

made.
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6.4.12 Formal dynamic path reduction LetM be an n×n matrix

which defines a travelling-salesman problem, and let s= 〈x1,x2, . . . ,xk〉

be a sequence of distinct elements from {1,2, ..,n} representing a nonre-

dundant vertex of the state-space tree.

(a) For 1≤ i≤ k, define

PathRed(M,s,xi) =

{

RCRed(M) if i = 1

DynRed(PathRed(M,s,xi−1),xi−1,xi) otherwise

(b) Define

k(s) =
n

∑
i=1

(RowMini(PathRed(M,s,xk))

+ColMini(Rn(PathRed(M,s,xk))))

with Rn(−) as defined in 1.4.7.

(c) Define

ĉ(s) =







k(s) if x is not a near leaf

k(s)+Mxkx
′+Mx′1 if s is a near leaf

and s · 〈x′,1〉= Tour(s).

• The idea is that, as a path is followed, dynamic reduction is exe-

cuted for choices already made.
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The following is easily verified.

6.4.13 Theorem Let T be the travelling-salesman problem defined

by matrix M, and let ĉ be the cost function defined in 1.4.12. Then ĉ

satisfies the conditions of 1.3.11; i.e.,

(a) for all vertices x, ĉ(x)≤ c(x);

(b) for all leaf vertices x, ĉ(x) = c(x). 2

6.4.14 Vertex killing

• A non-leaf vertex may be killed if its reduced matrix contains all

∞ entries, for then no tour is possible.

• Qualitative vertex killing (equivalent to the use of U in the solu-

tion of the knapsack problem) is not used in this approach.

â It may be added though, upon selection of a suitable means

of obtaining such a bound.

6.4.15 Comments on complexity

• Each dynamic reduction may take time Θ(n2), with n the number

of vertices, although the constant will be small.

• The worst case complexity of this algorithm is Θ(n2 ·n!), which is

worse than the Θ(n2 ·2n) of the dynamic programming approach

(4.4.4).

â Nevertheless, in practice, the performance often exceeds that

of the dynamic-programming approach.
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