
Slides for a Course
on

the Analysis and Design of Algorithms

Chapter 6: State-Space Search Methods

Stephen J. Hegner

Department of Computing Science

Umeå University

Sweden

hegner@cs.umu.se

http://www.cs.umu.se/˜hegner

c©2002-2003, 2006-2008 Stephen J. Hegner, all rights reserved.

6. State-Space Search Methods

6.1 Basic Concepts

6.1.1 The basic setting

Setting: The setting is that of problems whose solutions may be ex-

pressed in the form

(x1,x2, . . . ,xn) ∈ S1×S2× . . .×Sn

in which the Si’s are fixed, finite sets.

Examples:

discrete-knapsack problem:

• Si = {0,1}, 1≤ i≤ n.

• 0 ⇒ exclude object; 1 ⇒ include object.

sum-of-subsets problem:

Given: weights: {w1,w2, . . . ,wn}

goal: M

Find: all A⊆ {w1,w2, . . . ,wn} with ∑A = M.

• Si = {0,1}, 1≤ i≤ n.

• Solutions (x1,x2, . . . ,xn) ∈ {0,1}
n are such that

n

∑
i=1

xi ·wi = M

n-queens problem:

• Place n queens on a n× n “chessboard” in such a

fashion that no queen can take another.

• Put Si = {1, . . . ,n}×{1, . . . ,n}.

• Si represents the row and column of the ith queen.

TDBC91 slides, page 6.1, 20081006

6.1.2 State-space size and reduction

• Consider the eight-queens problem as a specific example.

• The solution space for the representation given in 1.1.1 has the

following size:

8

∏
i=1

Card(Si) = (82)
8
= 248

• One way to reduce the size of the state space is to redefine it.

• A simple by sizeable reduction is realized by building into the

representation the fact that each queen must lie in a distinct row.

• Thus, define:

Value(Si) = column of the queen in row i

• In this case,

Si = {1,2, . . . ,8} for each i

and the size of the new solution space is:

8

∏
i=1

Card(Si) = 88 = 224 = 16777216.

TDBC91 slides, page 6.2, 20081006

• An much improved reduction is possible if Si+1 is allowed to de-

pend upon Si.

• For example, observe that in any solution, distinct queens must

lie not only in distinct rows, but in distinct columns as well.

• Thus,

Si =

{

{1,2, . . . ,8} if i = 1

Si−1 \ (position of the queen in Si−1) otherwise

• The size of the solution space is now:

8

∏
i=1

Card(Si) = 8! = 40320

• It is necessary to be somewhat careful in specifying state-space

restriction.

• An extreme but useless criterionmight be to require that (x1,x2, . . . ,x8)

already be a solution.

• Clearly, the definition of a state-space element must be simple.

• For the most part, in these notes, situations in which the Si’s do

not depend upon one another will be considered.

• From a graphical perspective, the solution space may be viewed

as a tree, with each Si a level in that tree.

• The possible final solutions are represented by the leaves.

• A solution is obtained by determining a value (choice) for each

level.

TDBC91 slides, page 6.3, 20081006

• Further questions:

• When is a partial solution doomed to failure?

• In other words, when may a subtree be pruned away?

• When are two partial solutions essentially the same?

• Which vertices should be expanded first?

6.1.3 A general formulation for vertex classification and search

strategies

• In that which follows, the solution graph will be generated, one

vertex at a time, top down.

• The following terminology is relevant in the context of a search

tree.

(a) A dead vertex is is one for which either:

(i) all children have been generated; or

(ii) further expansion is not necessary (because the entire sub-

tree of which it is a root may be pruned).

(b) A live vertex is one which has been generated, but which is not

yet dead.

(c) The E-vertex is the parent of the vertex which is currently being

generated.

(d) A bounding function is used to kill live vertices via some evalu-

ation function which establishes that the vertex cannot lead to an

optimal solution, rather than by exhaustively expanding all of its

children.

TDBC91 slides, page 6.4, 20081006

• The following two search strategies are those which will be con-

sidered.

Backtracking:

• Vertices are kept in a stack.

• The top of the stack is always the current E-vertex.

• As children of the current E-vertex are generated, they are

pushed onto the top of the stack.

• In particular, as soon as a new child w of the current E-vertex

is generated, w becomes the new E-vertex.

• Vertices which are popped from the stack are dead.

• A bounding function is used to kill live vertices (i.e., remove

them from the stack) without generating all of their children.

Branch-and-bound:

• Vertices are kept in a vertex pool, which may be a stack,

queue, priority queue, or the like. Variation is possible.

• As children of the current E-vertex are generated, they are

inserted into the vertex pool.

• However, once a vertex becomes the E-vertex, it remains so

until it dies.

• The “next” element in the vertex pool becomes the new E-

vertex when the current E-vertex dies.

• Vertices which are removed from the vertex pool are dead.

• A bounding function is used to kill live vertices (i.e., remove

them from the stack) without generating all of their children.

TDBC91 slides, page 6.5, 20081006

6.2 Backtracking

• In this subsection, the principles of backtracking will be illus-

trated via application to the discrete knapsack problem.

• Recall the notational conventions of this problem from 4.3.1:

• A knapsack with weight capacityM.

• n objects {obj1,obj2, . . . ,objn}, each with a weight wi and a

value vi.

• M, the wi’s, and the vi’s are all taken to be positive real num-

bers.

6.2.1 Bounding functions

• Effective use of backtracking requires a good bounding function.

• In the context of the discrete knapsack problem, a bounding func-

tion provides a simple-to-compute upper bound on the amount of

additional profit which may be obtained by taking a leaf of the

subtree of the current vertex as a solution.

• An extremely simple bounding function is obtained by adding the

profits of all objects which are yet to be considered.

• If (x1,x2, . . . ,xi) ∈ {0,1}
i have already been chosen, then

bound =
n

∑
j=i+1

v j

TDBC91 slides, page 6.6, 20081006

• A better bounding function is obtained as follows.

(i) Generate the solution of an associated continuous knapsack

problem; specifically

(ii) If (x1,x2, . . . ,xi) ∈ {0,1}
i has already been chosen as a par-

tial solution, let A be the continuous knapsack problem cor-

responding to (see 4.3.2) Knap(i+1,n,M−∑
i
j=1 x j ·v j); i.e.,

with

capacity = M−
i

∑
j=1

x j · v j

objects = {obji+1,obji+2, . . . ,objn}

• Solve this problem using a greedy-style method and take the

profit of that solution to be the bound.

• Note that the profit of the solution to the continuous knap-

sack problem will always yield a profit at least as large as

that for its discrete counterpart, so this computation does

provide an upper bound.

TDBC91 slides, page 6.7, 20081006

6.2.2 Pseudocode description of the algorithm

/∗ The major data structures: ∗/

profit : array[0..n] of real;

weight : array[0..n] of real;

best sol : array[0..n] of {0,1};

tent sol : array[0..n] of {0,1};

/∗ 0 is a dummy object. ∗/

/∗ The top-level program: ∗/

〈 best profit ← 0;

path profit ← 0;

path weight ← 0;

level ←−1;

try(0);

〉

• Note that −1 labels a dummy top level with only one choice

(x0 = 0).

— Level = −1

— Level = 0

— Level = 1
... ...

x0 = 0

x1 = 0 x1 = 1

TDBC91 slides, page 6.8, 20081006

procedure try(choice : {0,1})

〈 level ← level +1;

tent sol [level]← choice;

if (choice = 1)

then 〈 path weight ← path weight +weight [level];

path profit ← path profit +profit [level];

〉

if path weight ≤M

then solve();

if (choice = 1)

then 〈 path weight ← path weight−weight [level];

path profit ← path profit−profit [level];

〉

level ← level −1;

〉

procedure solve();

〈 if level = n

then process leaf

else if bound()+path profit > best profit

then 〈 try(0); try(1) 〉

〉

procedure process leaf();

〈 if path profit > best profit

then 〈 best sol ← tent sol ; best profit ← path profit ; 〉

〉

TDBC91 slides, page 6.9, 20081006

Improvement: If bound uses a solution to the continuous knapsack

problem which also happens to solve the extant discrete knapsack

problem, a solution has been found, so the computation may be

stopped.

6.2.3 An alternate approach – dynamic state-space solution

• The idea is as follows:

1. Generate a solution (x1,x2, . . . ,xn) to the associated continu-

ous knapsack problem.

• Note that xi ∈ {0,1} must hold for all except possibly

on value of i.

2. If all xi ∈ {0,1}, a solution to the discrete knapsack problem

has been found.

3. If 0 < xi < 1, use xi as the branch value for the next level.

... ...

xi = 0 xi = 1

4. Solve the associated problem for each subtree.

• Experiments have shown (perhaps surprisingly) that this approach

is inferior to that which uses a static representation.

TDBC91 slides, page 6.10, 20081006

6.2.4 Solution of two examples

• The example problem introduced in 3.1.3, and solved in 4.3.3

using dynamic programming, is solved here using backtracking.

• For completeness, the data of the example are restated.

• LetM = 8; n = 4.

• In this case, for variation, the solution will be found for two dis-

tinct orderings of the objects, as shown in the tables below.

(a):

i 1 2 3 4

vi 5 6 2 1
wi 4 5 3 2

(b):

i 1 2 3 4

vi 1 2 6 5
wi 2 3 5 4

• The solution to the continuous knapsack problem on the remain-

ing subproblem will be used as the bounding function.

• The heuristic employed is that if the solution to the continuous

knapsack problem is also a solution to the extant discrete prob-

lem, the subtree has been solved optimally.

• Note that the algorithm works regardless of the order of the ob-

jects, but that in any case the p/w ordering on the remaining ob-

jects must be used to obtain the continuous knapsack problem

required for the bounding function.

TDBC91 slides, page 6.11, 20081006

(a) backtracking

(p,w)
red=kill
green=exact

(0,0)

(0,0)

x1 = 0

(0,0)

x2 = 0

(0,0)x3 = 0
(0,0)

x4 = 0

(1,2)x4 = 1

(2,3)x3 = 1
(2,3)

(3,5)

(6,5)

x2 = 1
(6,5)x3 = 0

(6,5)

(7,7)

(8,8)x3 = 1
(8,8)

(9,10)

(5,4)

x1 = 1
(5,4)

x2 = 0

(5,4)x3 = 0
(5,4)

(6,6)

(7,7)x3 = 1
(7,7)

(8,9)

(11,9)

x2 = 1
(11,9)x3 = 0

(11,9)

(12,11)

(13,12)x3 = 1
(13,12)

(14,14)

B = 49
5

B = 8 (exact)

B = 24
5

B+P = 49
5

B = 5
2

B+P = 15
2

w > 8

TDBC91 slides, page 6.12, 20081006

(b) backtracking

Selection order in continuous-knapsack approximation is by p/w.

(p,w)
red=kill
green=exact

(0,0)

(0,0)

x1 = 0

(0,0)

x2 = 0

(0,0)x3 = 0
(0,0)

x4 = 0

(5,4)x4 = 1

(6,5)x3 = 1
(6,5)

(11,9)

(2,3)

x2 = 1
(2,3)x3 = 0

(2,3)

(7,7)

(8,8)x3 = 1
(8,8)

(13,12)

(1,2)

x1 = 1
(1,2)

x2 = 0

(1,2)x3 = 0
(1,2)

(6,6)

(7,7)x3 = 1
(7,7)

(12,11)

(3,5)

x2 = 1
(3,5)x3 = 0

(3,5)

(8,9)

(9,10)x3 = 1
(9,10)

(14,14)

B = 49
5

B = 49
5

B = 49
5

B = 5
(exact)

B = 15
4

B = 31
5

B+P = 41
5

B = 5

B = 0

B = 37
5

B+P = 42
5

B = 37
5

B+P = 42
5

B = 5
(exact)

B = 5
4

B = 15
4

B+P = 27
4

TDBC91 slides, page 6.13, 20081006

6.3 Branch and Bound

6.3.1 Overview of branch and bound

• Recall the general strategy: generate all children of the current

E-vertex before selecting a new E-vertex.

• Strategies for selecting a new E-vertex:

LIFO order: depth first, using a stack.

FIFO order: breadth first, using a queue.

Intelligent order: use a priority queue.

• In each case, a bounding function is also used to kill vertices.

6.3.2 Example – the 8-puzzle

• Eight tiles move about nine squares.

• The goal configuration is shown below:

1 2 3

4 5 6

7 8

1 2 3

4 5 6

7 8

1 2 3

4 5 6

7 8

• Tiles are moved from an initial configuration to reach the goal

configuration.

1 2 3

4 5 6

7 8

1 2 3

4 5 6

7 8

1 2 3

4 5 6

7 8

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

; ;

TDBC91 slides, page 6.14, 20081006

• Notation for directions to “move” the open slot:

ℓ = left u = up

r = right d = down

• No bounding function is used here.

• Examples of LIFO and FIFO order are shown on the following

two slides.

TDBC91 slides, page 6.15, 20081006

Breadth-first expansion

X = duplicated vertex

1 5 2

4 8 3

7 x 6

1 5 2

4 8 3

7 x 6

1 5 2

4 8 3

7 x 61

1 5 3

4 8 3

x 7 6

1 5 3

4 8 3

x 7 6

1 5 3

4 8 3

x 7 62

ℓ

1 5 2

x 8 3

4 7 6

1 5 2

x 8 3

4 7 6

1 5 2

x 8 3

4 7 65

u

x 5 2

1 8 3

4 7 6

x 5 2

1 8 3

4 7 6

x 5 2

1 8 3

4 7 6

10

u

1 5 2

8 x 3

4 7 6

1 5 2

8 x 3

4 7 6

1 5 2

8 x 3

4 7 6

11

r

x
dxr

1 5 2

4 x 3

7 8 6

1 5 2

4 x 3

7 8 6

1 5 2

4 x 3

7 8 63u

1 5 2

x 4 3

7 8 6

1 5 2

x 4 3

7 8 6

1 5 2

x 4 3

7 8 66

ℓ

x 5 2

1 4 3

7 8 6

x 5 2

1 4 3

7 8 6

x 5 2

1 4 3

7 8 6

12
u

xr

1 5 2

7 4 3

x 8 6

1 5 2

7 4 3

x 8 6

1 5 2

7 4 3

x 8 6

13

d

1 x 2

4 5 3

7 8 6

1 x 2

4 5 3

7 8 6

1 x 2

4 5 3

7 8 67
u

x 1 2

4 5 3

7 8 6

x 1 2

4 5 3

7 8 6

x 1 2

4 5 3

7 8 6

14
ℓ

1 2 x

4 5 3

7 8 6

1 2 x

4 5 3

7 8 6

1 2 x

4 5 3

7 8 6

15

r

x
d

1 5 2

4 3 x

7 8 6

1 5 2

4 3 x

7 8 6

1 5 2

4 3 x

7 8 68

r

xℓ

1 5 x

4 3 2

7 8 6

1 5 x

4 3 2

7 8 6

1 5 x

4 3 2

7 8 6

16u

1 5 2

4 3 6

7 8 x

1 5 2

4 3 6

7 8 x

1 5 2

4 3 6

7 8 x

17

rx

d

1 5 2

4 8 3

7 6 x

1 5 2

4 8 3

7 6 x

1 5 2

4 8 3

7 6 x4

r

xℓ

1 5 2

4 8 x

7 6 3

1 5 2

4 8 x

7 6 3

1 5 2

4 8 x

7 6 39

u

1 5 2

4 x 8

7 6 3

1 5 2

4 x 8

7 6 3

1 5 2

4 x 8

7 6 3

18
ℓ

1 5 x

4 8 2

7 6 3

1 5 x

4 8 2

7 6 3

1 5 x

4 8 2

7 6 3

19

u

x
d

TDBC91 slides, page 6.16, 20081006

Depth-first expansion

X = duplicated vertex

1 5 2

4 8 3

7 x 6

1 5 2

4 8 3

7 x 6

1 5 2

4 8 3

7 x 6
1

1 5 2

4 8 3

x 7 6

1 5 2

4 8 3

x 7 6

1 5 2

4 8 3

x 7 6
2

ℓ

1 5 2

4 x 3

7 8 6

1 5 2

4 x 3

7 8 6

1 5 2

4 x 3

7 8 6
3

u

1 5 2

4 8 3

7 6 x

1 5 2

4 8 3

7 6 x

1 5 2

4 8 3

7 6 x
4

r

x

ℓ

1 5 2

4 8 x

7 6 3

1 5 2

4 8 x

7 6 3

1 5 2

4 8 x

7 6 3
5

u

1 5 2

4 x 8

7 6 3

1 5 2

4 x 8

7 6 3

1 5 2

4 x 8

7 6 3
6

ℓ

1 5 x

4 8 2

7 6 3

1 5 x

4 8 2

7 6 3

1 5 x

4 8 2

7 6 3
7

u

1 x 5

4 8 2

7 6 3

1 x 5

4 8 2

7 6 3

1 x 5

4 8 2

7 6 3
8

ℓ

x 1 5

4 8 2

7 6 3

x 1 5

4 8 2

7 6 3

x 1 5

4 8 2

7 6 3
9

ℓ

x

r

1 8 5

4 x 2

7 6 3

1 8 5

4 x 2

7 6 3

1 8 5

4 x 2

7 6 3
10

d

1 8 5

x 4 2

7 6 3

1 8 5

x 4 2

7 6 3

1 8 5

x 4 2

7 6 3
11

ℓ

x

u

1 8 5

4 2 x

7 6 3

1 8 5

4 2 x

7 6 3

1 8 5

4 2 x

7 6 3
12

r

1 8 5

4 6 2

7 x 3

1 8 5

4 6 2

7 x 3

1 8 5

4 6 2

7 x 3
13

d

x

d

x

d

TDBC91 slides, page 6.17, 20081006

6.3.3 Best-first search with branch and bound

• Associated with a best-first strategy is a cost function c.

• c(x) is the cost of finding a solution from vertex x.

• A reasonable measure of cost might be the number of additional

vertices which must be generated in order to obtain a solution.

• The problem is that c(x) is very difficult to compute, in general,

without generating the solution first.

• Therefore, an approximation ĉ is used.

• In the 8-puzzle, an appropriate ĉ might be the following:

ĉ(x) = number of tiles which are out of place

• In this measure, the empty slot is not considered to be a tile.

• On the next slide, the best-first expansion of the extant example

for the 8-puzzle is shown.

TDBC91 slides, page 6.18, 20081006

Best-first expansion

X = duplicated vertex

1 5 2

4 8 3

7 x 6

1 5 2

4 8 3

7 x 6

1 5 2

4 8 3

7 x 6
1

1 5 2

4 8 3

x 7 6

1 5 2

4 8 3

x 7 6

1 5 2

4 8 3

x 7 6
2

ĉ = 6

ℓ

1 5 2

4 x 3

7 8 6

1 5 2

4 x 3

7 8 6

1 5 2

4 x 3

7 8 6
3

ĉ = 4

u

1 5 2

x 5 3

7 8 6

1 5 2

x 5 3

7 8 6

1 5 2

x 5 3

7 8 6
5

ĉ = 5

ℓ

1 x 2

4 4 3

7 8 6

1 x 2

4 4 3

7 8 6

1 x 2

4 4 3

7 8 6
6

ĉ = 3

u

x 1 2

4 5 3

7 8 6

x 1 2

4 5 3

7 8 6

x 1 2

4 5 3

7 8 6
8

ĉ = 4

ℓ

1 2 x

4 5 3

7 8 6

1 2 x

4 5 3

7 8 6

1 2 x

4 5 3

7 8 6
9

ĉ = 2

r

x

ℓ

1 2 3

4 5 x

7 8 6

1 2 3

4 5 x

7 8 6

1 2 3

4 5 x

7 8 6
10

ĉ = 1

d

1 2 3

4 x 5

7 8 6

1 2 3

4 x 5

7 8 6

1 2 3

4 x 5

7 8 6
11

ĉ = 2

ℓ

x

u

1 2 3

4 5 6

7 8 x

1 2 3

4 5 6

7 8 x

1 2 3

4 5 6

7 8 x
12

ĉ = 0

d

x

d

1 5 2

4 3 x

7 8 6

1 5 2

4 3 x

7 8 6

1 5 2

4 3 x

7 8 6
7

ĉ = 4

r

x

d

1 5 2

4 8 3

7 6 x

1 5 2

4 8 3

7 6 x

1 5 2

4 8 3

7 6 x
4

ĉ = 5

r

TDBC91 slides, page 6.19, 20081006

6.3.4 Desirable properties for ĉ

• The two key properties are the following:

(a) ĉ should approximate c in a “nice” fashion.

(b) ĉ should be easy to compute.

• An oft-used form for ĉ is the following:

ĉ(x) = ĝ(x)+ k(x)

• in which:

• ĝ is an estimate of the cost to reach a solution vertex from x.

• k(x) is a weighted function of the cost to reach vertex x from

the root.

• In the 8-puzzle example:

• ĝ(x) is the number of tiles which are out of place.

• k(x) = 0.

Argument for k(x) = 0: A cost which has already been incurred should

not enter into the evaluation.

Argument for k(x) > 0:

• k = 0 adds a bias in favor of deep searches.

• If |ĝ(x)− c(x)| is large, the wrong path may be expanded to

a very deep level.

• k(x) adds a breadth-first component.

• A possible choice for k(x) for the 8-puzzle is the length of the

path from the root to x.

TDBC91 slides, page 6.20, 20081006

6.3.5 Properties of ĉ for general search problems

• For a general search problem such as 8-puzzle, in which there is

no distinction between feasible solutions and optimal ones, fur-

ther properties on ĉ are not generally necessary for correctness.

• Note, however, that a mechanism for avoiding visiting the same

vertex repeatedly is necessary to avoid loops in the search pro-

cess.

6.3.6 Important properties of ĉ for optimization problems

• For ĉ to function correctly in a best-first search process, it must

satisfy certain formal properties if an optimal solution is to be

found.

• Consider in particular optimization problems such as discrete knap-

sack and travelling salesman.

• It is important to know whether a leaf vertex which has been

reached in the search process is an optimal solution.

TDBC91 slides, page 6.21, 20081006

• To see the difficulties, consider a minimization problem with:

c(x) = value of the best leaf beneath vertex x.

ĉ(x) is as shown in the graph below.

1

2

4 5

3

6 7

(

10
10

)

(

20
15

) (

10
16

)

(

20
20

) (

80
80

) (

50
50

) (

10
10

)

key:
(

c(x)
ĉ(x)

)

Found by algorithm Optimal solution

• The problem:

• c(3) < c(2)⇒ the optimal solution is below vertex 3.

• ĉ(3) > ĉ(2)⇒ the algorithm looks below vertex 2.

(a) Call an approximate cost function ĉ ideal if the following condi-

tion holds for all pairs of vertices (x,y):

ĉ(x) < ĉ(y)⇔ c(x) < c(y)

6.3.7 Theorem Let c (resp. ĉ) be the actual (resp. approximate)

cost function for a minimization problem to be solved by branch-and-

bound search. The first leaf vertex to be reached is the optimal solution

iff ĉ is ideal. 2

TDBC91 slides, page 6.22, 20081006

• The conditions of 1.3.7 are very difficult to establish in practice.

• A weaker but far more useful result is the following.

6.3.8 Definition Call an approximate cost function ĉ admissible if

the following two conditions are satisfied.

(a) ĉ(x)≤ c(x) for all vertices x.

(b) ĉ(x) = c(x) for all answer vertices (i.e., all leaf vertices which

represent feasible solutions).

6.3.9 Theorem (informal statement) If the approximate cost func-

tion ĉ is admissible, then under branch-and-bound solution, the first

answer vertex to become an E-vertex is an optimal solution.

PROOF: This result will be stated more rigorously and proven in

1.3.11 below. 2

TDBC91 slides, page 6.23, 20081006

6.3.10 Example

• Consider the following search tree, which is a modification of that

of 1.3.6, altered so that ĉ(x)≤ c(x) for all nodes x.

1

2

4 5

3

6 7

(

10
10

)

(

20
5

) (

10
6

)

(

20
20

) (

80
80

) (

50
50

) (

10
10

)

key:
(

c(x)
ĉ(x)

)

• The evolution of the priority queue of vertices is as follows:

1(10) ; 2(5)

3(6)

; 3(6)

4(20)

5(80)

; 7(10)

4(20)

6(50)

5(80)

• Vertices 4 and 5 are the first answer vertices to be placed in the

queue.

• However, Vertex 7 is the first which becomes the E-vertex, so it

is an optimal solution and the search may be halted.

TDBC91 slides, page 6.24, 20081006

6.3.11 Theorem (formal statement) Let T = (V,E,g) be a finite

rooted tree, and let

c :V →R

be an evaluation function on the vertices of T which is fixed on the

leaves of T and which satisfies

c(x) = min({c(y) | y is a leaf descendant of x})

for all non-leaf vertices. Let

ĉ :V →R

be an admissible approximate cost function with respect to c. Then, if

a least-cost branch-and-bound expansion of the tree is performed with

respect to ĉ, the first E-vertex which is also a leaf is a minimum-cost

leaf.

PROOF: Let x be the current E-vertex, and suppose further that x is a

leaf and that no previous E-vertex has been a leaf. Let y be any other

leaf vertex, and let w be the youngest (i.e., furthest from the root) an-

cestor of y which has been generated. Then ĉ(x)≤ ĉ(w), else w would

have been an E-vertex before x, and have generated descendants. Also,

c(w) ≤ c(y), since c(w) is the minimum value over all of its descen-

dants. Hence c(x) = ĉ(x)≤ ĉ(w)≤ c(w)≤ c(y). 2

6.3.12 Remark

• Branch-and-bound search with an admissible ĉ is calledA*-search

in the artificial intelligence literature.

TDBC91 slides, page 6.25, 20081006

6.3.13 Solution of the discrete knapsack problem

• The discrete knapsack examples of 1.2.4 will now be solved using

branch and bound.

• A leaf vertex x is identified with the solution vector (x1,x2, . . . ,xn)

which defines the path from the root to x.

• Since this is a maximization problem, the inequalities must be

reversed; i.e., ĉ(x)≥ c(x).

• The following definition of c(x) is used:

c(x) =























∑
n
i=1 vi · xi for a feasible answer (leaf) vertex x

−∞ for an illegal leaf vertex (too much weight)

max

({

c(LeftChild(x))

c(RightChild(x))

})

for a non-leaf

• The following approximation function is used for a vertex x at

level j in the tree (with the root at level 0):

ĉ(x) =
j

∑
i=1

vi · xi+Profit(CKnap(j+1,n,M−
j

∑
i=1

wi · xi))

in which Profit(CKnap(p,q,W)), with p ≤ q, denotes the profit

obtained in the solution of the continuous knapsack problem with

objects {objk | p≤ k ≤ q} and capacityW .

TDBC91 slides, page 6.26, 20081006

• The vertex-killing function at level j which is used is the follow-

ing:

u(x) =
j

∑
i=1

vi · xi+Profit(Greedy(p,q,W))

in which Profit(Greedy(p,q,W)), with p≤ q, is the value obtained

by applying a greedy-style procedure, with the objects {objk | p≤

k ≤ q}, ordered by profit, for a knapsack problem with capacity

W .

• The following global value is maintained:

U = max({u(x) | x has been generated})

• The vertex x is killed whenever ĉ(x) <U .

• Evaluation is also halted if the computation of ĉ(x) results in an

exact solution of the continuous knapsack problem, as in 1.2.4.

TDBC91 slides, page 6.27, 20081006

(a) branch and bound

(p,w)
red=kill
green=exact

(0,0)

(0,0)

x1 = 0

(0,0)

x2 = 0

(0,0)x3 = 0
(0,0)

x4 = 0

(1,2)x4 = 1

(2,3)x3 = 1
(2,3)

(3,5)

(6,5)

x2 = 1
(6,5)x3 = 0

(6,5)

(7,7)

(8,8)x3 = 1
(8,8)

(9,10)

(5,4)

x1 = 1
(5,4)

x2 = 0

(5,4)x3 = 0
(5,4)

(6,6)

(7,7)x3 = 1
(7,7)

(8,9)

(11,9)

x2 = 1
(11,9)x3 = 0

(11,9)

(12,11)

(13,12)x3 = 1
(13,12)

(14,14)

ĉ = 49
5 u = 8

ĉ = 8 u = 8

ĉ = 49
5 u = 7

ĉ = 15
2 u = 7

w > 8

1

2

3

4

5

Vertex 2 is regarded as a leaf, because of the exact solution.

TDBC91 slides, page 6.28, 20081006

(b) branch and bound

Selection order in both knapsack approximations is by p/w.

(p,w)
red=kill
green=exact

(0,0)

(0,0)

x1 = 0

(0,0)

x2 = 0

(0,0)x3 = 0
(0,0)

x4 = 0

(5,4)x4 = 1

(6,5)x3 = 1
(6,5)

(11,9)

(2,3)

x2 = 1
(2,3)x3 = 0

(2,3)

(8,8)

(8,8)x3 = 1
(8,8)

(13,12)

(1,2)

x1 = 1
(1,2)

x2 = 0

(1,2)x3 = 0
(1,2)

(6,6)

(7,7)x3 = 1
(7,7)

(12,11)

(3,5)

x2 = 1
(3,5)x3 = 0

(3,5)

(8,9)

(9,10)x3 = 1
(9,10)

(14,14)

ĉ = 49
5 u = 8

ĉ = 49
5 u = 8

ĉ = 42
5 u = 7

ĉ = 49
5

u = 5

ĉ = 5
ĉ <U

ĉ = 39
4

u = 5

ĉ = 41
5

u = 8

ĉ = 7
ĉ <U

ĉ = 8

ĉ = 42
5

u = 7

ĉ = 6
u = 6

ĉ = 33
4

u = 7

ĉ = 27
4

ĉ <U

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

TDBC91 slides, page 6.29, 20081006

• The priority queue history is as follows:

order (a): 1
(

49
5

)

; 2(8)X

3
(

49
5

)

; 3
(

49
5

)

; done

order (b): 1
(

49
5

)

; 2
(

49
5

)

3
(

42
5

)

; 4
(

49
5

)

3
(

42
5

)

5
(

41
5

)

; 7
(

39
4

)

3
(

42
5

)

5
(

41
5

)

;

3
(

42
5

)

5
(

41
5

)

8(6)L

; 10
(

42
5

)

5
(

41
5

)

8(6)L

; 13
(

33
4

)

5
(

41
5

)

8(6)L

; 5
(

41
5

)

14(7)L

8(6)L

; 17(8)X

14(7)L

8(6)L

; done

key: Entries are of the form v(ĉ(v))[type] with:

v = vertex number

L ⇒ leaf vertex

X ⇒ exact solution; behaves as a leaf vertex

TDBC91 slides, page 6.30, 20081006

6.4 The Travelling-Salesman Problem and Branch-and-

Bound

6.4.1 Formulation of the problem

• The (directed) graph G is represented as a cost matrix.

Example:

M =















∞ 20 30 10 11

15 ∞ 16 4 2

3 5 ∞ 2 4

19 6 18 ∞ 3

16 4 7 16 ∞















• Vertices are numbered {1,2, . . . ,n}, with n = 5 in this example.

• Mi j is the cost of the edge i ; j.

• Mi j =∞ means that there is no edge i ; j.

• The associated state-space tree starts at vertex 1, and reflects the

sequence of choices.

• The tree for n = 5 is shown on the next slide.

TDBC91 slides, page 6.31, 20081006

1

2

3

4
5 1

5 4 1

4 3
5 1

5 3 15

3
4 1

4 3 1

3

2

4
5 1

5 4 1

4 2
5 1

5 2 15

2
4 1

4 2 1

4 2

3
5 1

5 3 1

3 2
5 1

5 2 15

2
3 1

3 2 1

5

2

3
4 1

4 3 1

3 2
4 1

4 2 14

2
3 1

3 2 1

root

x0
x1 x2 x3

TDBC91 slides, page 6.32, 20081006

6.4.2 Conventions for the state-space tree

• Every vertex is labelled with the sequence beginning with 1, and

followed by the sequence of labels of the associated edges.

• For a vertex x of the state-space tree, this label is denoted by

PathOf(x).

PathOf(root) = 〈1〉 PathOf(x2) = 〈1,2,5,4,3〉

PathOf(x0) = 〈1,2,5〉 PathOf(x3) = 〈1,2,5,4,3,1〉

PathOf(x1) = 〈1,2,5,4〉

• Call a vertex x of the state-space tree a decision vertex if it has at

least two ancestors.

• Call a vertex x of the state-space tree a near leaf if PathOf(x)

includes all vertices except one.

• In the tree on the previous page, x1 is a near leaf, while x2 and x3

are not.

• Once a near leaf is reached, all decisions regarding the tour have

been made. No further decision can be made.

• Thus, the near leaves will be treated as leaves in the search pro-

cess.

• Call a vertex x of the state-space tree nonredundant if it is either

a decision vertex or a near leaf.

• For a near leaf x, define Tour(x) to be PathOf(x) · 〈x′,1〉 with x′

the sole vertex not in PathOf(x).

• For example, Tour(x1) = PathOf(x3) in the graph on the previous

page.

TDBC91 slides, page 6.33, 20081006

• For an actual cost function on the nonreduncant vertices of the

state-space tree, the following is used:

c(x) =

{

CostOf(Tour(x)) if x is a near leaf

min({c(y) | y ∈ Children(x)} otherwise

• Note that CostOf(rootvertex) is the cost of an optimal tour.

• A simple choice for ĉ is the cost along the path from the root to

x. If x is a near leaf, the cost of travelling to the final new vertex

and then back to the root (along a single edge) must be added on.

• There are much better choices for ĉ, which are now developed.

6.4.3 Rowminimization LetM be the cost matrix for a travelling-

salesman problem of size n, and let i ∈ {1,2, . . . ,n}.

(a) RowMini(M) =

{

min({Mi j | 1≤ j ≤ n}) if someMi j <∞

0 ifMi j =∞ for all j, 1≤ j ≤ n

(b) Reduction(M, row, i) is the matrix obtained by subtractingRowMini(M)

from each entry in row i.

Note: In the context of this computation, ∞− a =∞ for any finite

number a.

TDBC91 slides, page 6.34, 20081006

6.4.4 Theorem – row reduction Let T be the travelling-salesman

problem defined by matrix M, and let Reduction(T, row, i) be the

travelling-salesman problem defined by the matrix Reduction(M, row, i).

Then

CostOf(MinTour(T)) =

CostOf(MinTour(Reduction(T, row, i)))+RowMini(M)

PROOF: Each tour must include exactly one entry from row i, since

each tour contains exactly edge which begins at vertex i. From this the

result follows immediately. 2

• Completely similar ideas apply to columns.

6.4.5 Columnminimization LetM be the cost matrix for a travelling-

salesman problem of size n, and let i ∈ {1,2, . . . ,n}.

(a) ColMini(M) =

{

min({M ji | 1≤ j ≤ n}) if someM ji <∞

0 ifM ji =∞ for all j, 1≤ j ≤ n

(b) Reduction(M,col, i) is the matrix obtained by subtractingColMini(M)

from each entry in column i.

6.4.6 Theorem – column reduction Let T be the travelling-salesman

problem defined by matrixM, and let Reduction(T,col, i) be the travelling-

salesman problem defined by the matrix Reduction(M,col, i). Then

CostOf(MinTour(T)) =

CostOf(MinTour(Reduction(T,col, i)))+RowMini(M)

2

TDBC91 slides, page 6.35, 20081006

6.4.7 Full reduction LetM be the cost matrix for a travelling sales-

man problem T consisting of n vertices.

(a) Call M reduced if each row and each column consists either en-

tirely of∞ entries, or else contains at least one zero entry.

(b) Define the row-column reduction sequence of M, denoted

RCRed(M), recursively as follows:

R0(M) = M

Rk(M) = Reduction(Rk, row,k−1) 1≤ k ≤ n

Rk(M) = Reduction(Rk−1,col,k−n) n+1≤ k ≤ 2n

(c) Define the row-column reduction ofM, denoted RCRed(M), to be

R2n(M).

6.4.8 Example

• LetM be as in the example of 1.4.1:

M =















∞ 20 30 10 11

15 ∞ 16 4 2

3 5 ∞ 2 4

19 6 18 ∞ 3

16 4 7 16 ∞















• First do the rows:

Rn(M) =















∞ 10 20 0 1

13 ∞ 14 2 0

1 3 ∞ 0 2

16 3 15 ∞ 0

12 0 3 12 ∞















10

2

2

3

4

21

TDBC91 slides, page 6.36, 20081006

• Then the columns:

R2n(M) = RCRed(M) =















∞ 10 17 0 1

12 ∞ 11 2 0

0 3 ∞ 0 2

15 3 12 ∞ 0

11 0 0 12 ∞















1 0 3 0 0 = 4

• A lower bound on the cost of a tour is thus 25.

• More generally:

6.4.9 Theorem Let T be the travelling-salesman problem defined

by matrix M, and let RCRed(T) be the travelling-salesman problem

defined by the matrix RCRed(M). Then

CostOf(MinTour(T)) =

CostOf(MinTour(RCRed(T)))+
n

∑
i=1

(RowMini(M)+ColMini(Rn(M)))

with Rn(M) as defined in 1.4.7. 2

TDBC91 slides, page 6.37, 20081006

6.4.10 Dynamic reduction

• Dynamic reduction makes use of the fact that once a choice to

follow an edge i ; j in the tour is made, the ith row and the

jth column of the cost matrix M become irrelevant to the cost

of extending the partial solution to an optimal tour.

• Since such reductions are applied only to nonredundant vertices

of the state-space tree, the entry M j1 is also irrelevant, since in-

cluding it would introduce a cycle into the partial solution.

• These entries may thus be forced to∞ without affecting the com-

putation of an optimal tour.

• The resulting matrix may be further reduced.

• The details are as follows.

(a) For any n× n cost matrix M, and any i, j ∈ {1,2, . . . ,n}, define

PreRed(M, i, j) to be the n×n matrix with

PreRed(M, i, j)k,ℓ =

{

∞ if i = k or j = ℓ or (k, ℓ) = (j,1)

Mi j otherwise

(b) Define

DynRed(M, i, j) = RCRed(PreRed(M, i, j))

TDBC91 slides, page 6.38, 20081006

6.4.11 Example

• In this example, DynRed(M′,1,5) will be computed for the re-

duced matrixM′ of 1.4.8, which is:

M′ = RCRed(M) =















∞ 10 17 0 1

12 ∞ 11 2 0

0 3 ∞ 0 2

15 3 12 ∞ 0

11 0 0 12 ∞















• First, row 1, column 5, as well as the (5,1) entry, are set to∞.

PreRed(M′,1,5) =















∞ ∞ ∞ ∞ ∞

12 ∞ 11 2 ∞

0 3 ∞ 0 ∞

15 3 12 ∞ ∞

∞ 0 0 12 ∞















• Next, the full reduction of this new matrix is computed.

DynRed(M′,1,5) =















∞ ∞ ∞ ∞ ∞

10 ∞ 9 0 ∞

0 3 ∞ 0 ∞

12 0 9 ∞ ∞

∞ 0 0 12 ∞















2

3

5

TDBC91 slides, page 6.39, 20081006

• This yields a new lower bound on the least cost tour which begins

with 1 ; 5.

25 + 1 + 5 = 31

old bound
old

(1,5) entry
bound for

new reduction
new

lower bound

• In the dynamic path reduction technique, such a reduction is per-

formed each time a decision to select a new edge for the tour is

made.

TDBC91 slides, page 6.40, 20081006

6.4.12 Formal dynamic path reduction LetM be an n×n matrix

which defines a travelling-salesman problem, and let s= 〈x1,x2, . . . ,xk〉

be a sequence of distinct elements from {1,2, ..,n} representing a nonre-

dundant vertex of the state-space tree.

(a) For 1≤ i≤ k, define

PathRed(M,s,xi) =

{

RCRed(M) if i = 1

DynRed(PathRed(M,s,xi−1),xi−1,xi) otherwise

(b) Define

k(s) =
n

∑
i=1

(RowMini(PathRed(M,s,xk))

+ColMini(Rn(PathRed(M,s,xk))))

with Rn(−) as defined in 1.4.7.

(c) Define

ĉ(s) =







k(s) if x is not a near leaf

k(s)+Mxkx
′+Mx′1 if s is a near leaf

and s · 〈x′,1〉= Tour(s).

• The idea is that, as a path is followed, dynamic reduction is exe-

cuted for choices already made.

TDBC91 slides, page 6.41, 20081006

The following is easily verified.

6.4.13 Theorem Let T be the travelling-salesman problem defined

by matrix M, and let ĉ be the cost function defined in 1.4.12. Then ĉ

satisfies the conditions of 1.3.11; i.e.,

(a) for all vertices x, ĉ(x)≤ c(x);

(b) for all leaf vertices x, ĉ(x) = c(x). 2

6.4.14 Vertex killing

• A non-leaf vertex may be killed if its reduced matrix contains all

∞ entries, for then no tour is possible.

• Qualitative vertex killing (equivalent to the use of U in the solu-

tion of the knapsack problem) is not used in this approach.

â It may be added though, upon selection of a suitable means

of obtaining such a bound.

6.4.15 Comments on complexity

• Each dynamic reduction may take time Θ(n2), with n the number

of vertices, although the constant will be small.

• The worst case complexity of this algorithm is Θ(n2 ·n!), which is

worse than the Θ(n2 ·2n) of the dynamic programming approach

(4.4.4).

â Nevertheless, in practice, the performance often exceeds that

of the dynamic-programming approach.

TDBC91 slides, page 6.42, 20081006

